diff options
author | Alex Beregszaszi <alex@rtfs.hu> | 2017-04-18 20:12:04 +0800 |
---|---|---|
committer | Alex Beregszaszi <alex@rtfs.hu> | 2017-11-22 11:07:49 +0800 |
commit | 2a91eb953850b83b121867d95ba1cf6541b4ce7c (patch) | |
tree | 32dce50c90e6ffad4c5f6293469a957684e76415 | |
parent | f73660423ab2a2ff340624fcbbb67f891ace95a2 (diff) | |
download | dexon-solidity-2a91eb953850b83b121867d95ba1cf6541b4ce7c.tar dexon-solidity-2a91eb953850b83b121867d95ba1cf6541b4ce7c.tar.gz dexon-solidity-2a91eb953850b83b121867d95ba1cf6541b4ce7c.tar.bz2 dexon-solidity-2a91eb953850b83b121867d95ba1cf6541b4ce7c.tar.lz dexon-solidity-2a91eb953850b83b121867d95ba1cf6541b4ce7c.tar.xz dexon-solidity-2a91eb953850b83b121867d95ba1cf6541b4ce7c.tar.zst dexon-solidity-2a91eb953850b83b121867d95ba1cf6541b4ce7c.zip |
Move Julia documentation to its own file
-rw-r--r-- | docs/assembly.rst | 198 | ||||
-rw-r--r-- | docs/julia.rst | 189 |
2 files changed, 196 insertions, 191 deletions
diff --git a/docs/assembly.rst b/docs/assembly.rst index a06c616d..00bfb388 100644 --- a/docs/assembly.rst +++ b/docs/assembly.rst @@ -1,197 +1,13 @@ -################################################# -Joyfully Universal Language for (Inline) Assembly -################################################# - -.. _julia: +################# +Solidity Assembly +################# .. index:: ! assembly, ! asm, ! evmasm -JULIA is an intermediate language that can compile to various different backends -(EVM 1.0, EVM 1.5 and eWASM are planned). -Because of that, it is designed to be as featureless as possible. -It can already be used for "inline assembly" inside Solidity and -future versions of the Solidity compiler will even use JULIA as intermediate -language. It should also be easy to build high-level optimizer stages for JULIA. - -The core components of JULIA are functions, blocks, variables, literals, -for-loops, switch-statements, expressions and assignments to variables. - -JULIA in itself does not even provide operators. If the EVM is targeted, -opcodes will be available as built-in functions, but they can be reimplemented -if the backend changes. - -The following example program assumes that the EVM opcodes ``mul``, ``div`` -and ``mod`` are available either natively or as functions and computes exponentiation. - -.. code:: - { - function power(base, exponent) -> (result) - { - switch exponent - 0: { result := 1 } - 1: { result := base } - default: - { - result := power(mul(base, base), div(exponent, 2)) - switch mod(exponent, 2) - 1: { result := mul(base, result) } - } - } - } - -It is also possible to implement the same function using a for-loop -instead of recursion. Here, we need the EVM opcodes ``lt`` (less-than) -and ``add`` to be available. - -.. code:: - { - function power(base, exponent) -> (result) - { - result := 1 - for { let i := 0 } lt(i, exponent) { i := add(i, 1) } - { - result := mul(result, base) - } - } - } - -Specification of JULIA -====================== - -Grammar:: - - Block = '{' Statement* '}' - Statement = - Block | - FunctionDefinition | - VariableDeclaration | - Assignment | - Expression | - Switch | - ForLoop | - BreakContinue | - SubAssembly - FunctionDefinition = - 'function' Identifier '(' IdentifierList? ')' - ( '->' '(' IdentifierList ')' )? Block - VariableDeclaration = - 'let' IdentifierOrList ':=' Expression - Assignment = - IdentifierOrList ':=' Expression - Expression = - FunctionCall | Identifier | Literal - Switch = - 'switch' Expression Case* ( 'default' ':' Block )? - Case = - 'case' Expression ':' Block - ForLoop = - 'for' Block Expression Block Block - BreakContinue = - 'break' | 'continue' - SubAssembly = - 'assembly' Identifier Block - FunctionCall = - Identifier '(' ( Expression ( ',' Expression )* )? ')' - IdentifierOrList = Identifier | '(' IdentifierList ')' - Identifier = [a-zA-Z_$] [a-zA-Z_0-9]* - IdentifierList = Identifier ( ',' Identifier)* - Literal = - NumberLiteral | StringLiteral | HexLiteral - NumberLiteral = HexNumber | DecimalNumber - HexLiteral = 'hex' ('"' ([0-9a-fA-F]{2})* '"' | '\'' ([0-9a-fA-F]{2})* '\'') - StringLiteral = '"' ([^"\r\n\\] | '\\' .)* '"' - HexNumber = '0x' [0-9a-fA-F]+ - DecimalNumber = [0-9]+ - -Restrictions on the Grammar ---------------------------- - -Scopes in JULIA are tied to Blocks and all declarations -(``FunctionDefinition``, ``VariableDeclaration`` and ``SubAssembly``) -introduce new identifiers into these scopes. Shadowing is disallowed - -Talk about identifiers across functions etc - - -Restriction for Expression: Statements have to return empty tuple -Function arguments have to be single item - -Restriction for VariableDeclaration and Assignment: Number of elements left and right needs to be the same -continue and break only in for loop - -Literals have to fit 32 bytes - - - - | 'dataSize' '(' Identifier ')' | - LinkerSymbol | - 'bytecodeSize' | - - -Formal Specification --------------------- - -We formally specify JULIA by providing an evaluation function E overloaded -on the various nodes of the AST. Any functions can have side effects, so -E takes a state objects and the actual argument and also returns new -state objects and new arguments. There is a global state object -(which in the context of the EVM is the memory, storage and state of the -blockchain) and a local state object (the state of local variables, i.e. a -segment of the stack in the EVM). - -The the evaluation function E takes a global state, a local state and -a node of the AST and returns a new global state, a new local state -and a value (if the AST node is an expression). - -We use sequence numbers as a shorthand for the order of evaluation -and how state is forwarded. For example, ``E2(x), E1(y)`` is a shorthand -for - -For ``(S1, z) = E(S, y)`` let ``(S2, w) = E(S1, x)``. TODO - -.. code:: - E(G, L, <{St1, ..., Stn}>: Block) = - let L' be a copy of L that adds a new inner scope which contains - all functions and variables declared in the block (but not its sub-blocks) - variables are marked inactive for now - TODO: more formal - G1, L'1 = E(G, L', St1) - G2, L'2 = E(G1, L'1, St2) - ... - Gn, L'n = E(G(n-1), L'(n-1), Stn) - let L'' be a copy of L'n where the innermost scope is removed - Gn, L'' - E(G, L, <function fname (param1, ..., paramn) -> (ret1, ..., retm) block>: FunctionDefinition) = - G, L - E(G, L, <let (var1, ..., varn) := value>: VariableDeclaration) = - E(G, L, <(var1, ..., varn) := value>: Assignment) - E(G, L, <(var1, ..., varn) := value>: Assignment) = - let G', L', v1, ..., vn = E(G, L, value) - let L'' be a copy of L' where L'[vi] = vi for i = 1, ..., n - G, L'' - E(G, L, name: Identifier) = - G, L, L[name] - E(G, L, fname(arg1, ..., argn): FunctionCall) = - G1, L1, vn = E(G, L, argn) - ... - G(n-1), L(n-1), v2 = E(G(n-2), L(n-2), arg2) - Gn, Ln, v1 = E(G(n-1), L(n-1), arg1) - Let <function fname (param1, ..., paramn) -> (ret1, ..., retm) block> - be the function L[fname]. - Let L' be a copy of L that does not contain any variables in any scope, - but which has a new innermost scope such that - L'[parami] = vi and L'[reti] = 0 - Let G'', L'', rv1, ..., rvm = E(Gn, L', block) - G'', Ln, rv1, ..., rvm - E(G, L, l: HexLiteral) = G, L, hexString(l), - where hexString decodes l from hex and left-aligns in into 32 bytes - E(G, L, l: StringLiteral) = G, L, utf8EncodeLeftAligned(l), - where utf8EncodeLeftAligned performs a utf8 encoding of l - and aligns it left into 32 bytes - E(G, L, n: HexNumber) = G, L, hex(n) - where hex is the hexadecimal decoding function - E(G, L, n: DecimalNumber) = G, L, dec(n), - where dec is the decimal decoding function +Solidity defines an assembly language that can also be used without Solidity. +This assembly language can also be used as "inline assembly" inside Solidity +source code. We start with describing how to use inline assembly and how it +differs from standalone assembly and then specify assembly itself. .. _inline-assembly: diff --git a/docs/julia.rst b/docs/julia.rst new file mode 100644 index 00000000..1343f706 --- /dev/null +++ b/docs/julia.rst @@ -0,0 +1,189 @@ +################################################# +Joyfully Universal Language for (Inline) Assembly +################################################# + +.. _julia: + +.. index:: ! assembly, ! asm, ! evmasm, ! julia + +JULIA is an intermediate language that can compile to various different backends +(EVM 1.0, EVM 1.5 and eWASM are planned). +Because of that, it is designed to be as featureless as possible. +It can already be used for "inline assembly" inside Solidity and +future versions of the Solidity compiler will even use JULIA as intermediate +language. It should also be easy to build high-level optimizer stages for JULIA. + +The core components of JULIA are functions, blocks, variables, literals, +for-loops, switch-statements, expressions and assignments to variables. + +JULIA in itself does not even provide operators. If the EVM is targeted, +opcodes will be available as built-in functions, but they can be reimplemented +if the backend changes. + +The following example program assumes that the EVM opcodes ``mul``, ``div`` +and ``mod`` are available either natively or as functions and computes exponentiation. + +.. code:: + + { + function power(base, exponent) -> (result) + { + switch exponent + 0: { result := 1 } + 1: { result := base } + default: + { + result := power(mul(base, base), div(exponent, 2)) + switch mod(exponent, 2) + 1: { result := mul(base, result) } + } + } + } + +It is also possible to implement the same function using a for-loop +instead of recursion. Here, we need the EVM opcodes ``lt`` (less-than) +and ``add`` to be available. + +.. code:: + + { + function power(base, exponent) -> (result) + { + result := 1 + for { let i := 0 } lt(i, exponent) { i := add(i, 1) } + { + result := mul(result, base) + } + } + } + +Specification of JULIA +====================== + +Grammar:: + + Block = '{' Statement* '}' + Statement = + Block | + FunctionDefinition | + VariableDeclaration | + Assignment | + Expression | + Switch | + ForLoop | + BreakContinue | + SubAssembly + FunctionDefinition = + 'function' Identifier '(' IdentifierList? ')' + ( '->' '(' IdentifierList ')' )? Block + VariableDeclaration = + 'let' IdentifierOrList ':=' Expression + Assignment = + IdentifierOrList ':=' Expression + Expression = + FunctionCall | Identifier | Literal + Switch = + 'switch' Expression Case* ( 'default' ':' Block )? + Case = + 'case' Expression ':' Block + ForLoop = + 'for' Block Expression Block Block + BreakContinue = + 'break' | 'continue' + SubAssembly = + 'assembly' Identifier Block + FunctionCall = + Identifier '(' ( Expression ( ',' Expression )* )? ')' + IdentifierOrList = Identifier | '(' IdentifierList ')' + Identifier = [a-zA-Z_$] [a-zA-Z_0-9]* + IdentifierList = Identifier ( ',' Identifier)* + Literal = + NumberLiteral | StringLiteral | HexLiteral + NumberLiteral = HexNumber | DecimalNumber + HexLiteral = 'hex' ('"' ([0-9a-fA-F]{2})* '"' | '\'' ([0-9a-fA-F]{2})* '\'') + StringLiteral = '"' ([^"\r\n\\] | '\\' .)* '"' + HexNumber = '0x' [0-9a-fA-F]+ + DecimalNumber = [0-9]+ + +Restrictions on the Grammar +--------------------------- + +Scopes in JULIA are tied to Blocks and all declarations +(``FunctionDefinition``, ``VariableDeclaration`` and ``SubAssembly``) +introduce new identifiers into these scopes. Shadowing is disallowed + +Talk about identifiers across functions etc + +Restriction for Expression: Statements have to return empty tuple +Function arguments have to be single item + +Restriction for VariableDeclaration and Assignment: Number of elements left and right needs to be the same +continue and break only in for loop + +Literals have to fit 32 bytes + +Formal Specification +-------------------- + +We formally specify JULIA by providing an evaluation function E overloaded +on the various nodes of the AST. Any functions can have side effects, so +E takes a state objects and the actual argument and also returns new +state objects and new arguments. There is a global state object +(which in the context of the EVM is the memory, storage and state of the +blockchain) and a local state object (the state of local variables, i.e. a +segment of the stack in the EVM). + +The the evaluation function E takes a global state, a local state and +a node of the AST and returns a new global state, a new local state +and a value (if the AST node is an expression). + +We use sequence numbers as a shorthand for the order of evaluation +and how state is forwarded. For example, ``E2(x), E1(y)`` is a shorthand +for + +For ``(S1, z) = E(S, y)`` let ``(S2, w) = E(S1, x)``. TODO + +.. code:: + + E(G, L, <{St1, ..., Stn}>: Block) = + let L' be a copy of L that adds a new inner scope which contains + all functions and variables declared in the block (but not its sub-blocks) + variables are marked inactive for now + TODO: more formal + G1, L'1 = E(G, L', St1) + G2, L'2 = E(G1, L'1, St2) + ... + Gn, L'n = E(G(n-1), L'(n-1), Stn) + let L'' be a copy of L'n where the innermost scope is removed + Gn, L'' + E(G, L, <function fname (param1, ..., paramn) -> (ret1, ..., retm) block>: FunctionDefinition) = + G, L + E(G, L, <let (var1, ..., varn) := value>: VariableDeclaration) = + E(G, L, <(var1, ..., varn) := value>: Assignment) + E(G, L, <(var1, ..., varn) := value>: Assignment) = + let G', L', v1, ..., vn = E(G, L, value) + let L'' be a copy of L' where L'[vi] = vi for i = 1, ..., n + G, L'' + E(G, L, name: Identifier) = + G, L, L[name] + E(G, L, fname(arg1, ..., argn): FunctionCall) = + G1, L1, vn = E(G, L, argn) + ... + G(n-1), L(n-1), v2 = E(G(n-2), L(n-2), arg2) + Gn, Ln, v1 = E(G(n-1), L(n-1), arg1) + Let <function fname (param1, ..., paramn) -> (ret1, ..., retm) block> + be the function L[fname]. + Let L' be a copy of L that does not contain any variables in any scope, + but which has a new innermost scope such that + L'[parami] = vi and L'[reti] = 0 + Let G'', L'', rv1, ..., rvm = E(Gn, L', block) + G'', Ln, rv1, ..., rvm + E(G, L, l: HexLiteral) = G, L, hexString(l), + where hexString decodes l from hex and left-aligns in into 32 bytes + E(G, L, l: StringLiteral) = G, L, utf8EncodeLeftAligned(l), + where utf8EncodeLeftAligned performs a utf8 encoding of l + and aligns it left into 32 bytes + E(G, L, n: HexNumber) = G, L, hex(n) + where hex is the hexadecimal decoding function + E(G, L, n: DecimalNumber) = G, L, dec(n), + where dec is the decimal decoding function |