aboutsummaryrefslogtreecommitdiffstats
path: root/docs/assembly.rst
blob: a06c616d9a55e0958579971c304ea955f3f56748 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
#################################################
Joyfully Universal Language for (Inline) Assembly
#################################################

.. _julia:

.. index:: ! assembly, ! asm, ! evmasm

JULIA is an intermediate language that can compile to various different backends
(EVM 1.0, EVM 1.5 and eWASM are planned).
Because of that, it is designed to be as featureless as possible.
It can already be used for "inline assembly" inside Solidity and
future versions of the Solidity compiler will even use JULIA as intermediate
language. It should also be easy to build high-level optimizer stages for JULIA.

The core components of JULIA are functions, blocks, variables, literals,
for-loops, switch-statements, expressions and assignments to variables.

JULIA in itself does not even provide operators. If the EVM is targeted,
opcodes will be available as built-in functions, but they can be reimplemented
if the backend changes.

The following example program assumes that the EVM opcodes ``mul``, ``div``
and ``mod`` are available either natively or as functions and computes exponentiation.

.. code::
    {
        function power(base, exponent) -> (result)
        {
            switch exponent
            0: { result := 1 }
            1: { result := base }
            default:
            {
                result := power(mul(base, base), div(exponent, 2))
                switch mod(exponent, 2)
                    1: { result := mul(base, result) }
            }
        }
    }

It is also possible to implement the same function using a for-loop
instead of recursion. Here, we need the EVM opcodes ``lt`` (less-than)
and ``add`` to be available.

.. code::
    {
        function power(base, exponent) -> (result)
        {
            result := 1
            for { let i := 0 } lt(i, exponent) { i := add(i, 1) }
            {
                result := mul(result, base)
            }
        }
    }

Specification of JULIA
======================

Grammar::

    Block = '{' Statement* '}'
    Statement =
        Block |
        FunctionDefinition |
        VariableDeclaration |
        Assignment |
        Expression |
        Switch |
        ForLoop |
        BreakContinue |
        SubAssembly
    FunctionDefinition =
        'function' Identifier '(' IdentifierList? ')'
        ( '->' '(' IdentifierList ')' )? Block
    VariableDeclaration =
        'let' IdentifierOrList ':=' Expression
    Assignment =
        IdentifierOrList ':=' Expression
    Expression =
        FunctionCall | Identifier | Literal
    Switch =
        'switch' Expression Case* ( 'default' ':' Block )?
    Case =
        'case' Expression ':' Block
    ForLoop =
        'for' Block Expression Block Block
    BreakContinue =
        'break' | 'continue'
    SubAssembly =
        'assembly' Identifier Block
    FunctionCall =
        Identifier '(' ( Expression ( ',' Expression )* )? ')'
    IdentifierOrList = Identifier | '(' IdentifierList ')'
    Identifier = [a-zA-Z_$] [a-zA-Z_0-9]*
    IdentifierList = Identifier ( ',' Identifier)*
    Literal =
        NumberLiteral | StringLiteral | HexLiteral
    NumberLiteral = HexNumber | DecimalNumber
    HexLiteral = 'hex' ('"' ([0-9a-fA-F]{2})* '"' | '\'' ([0-9a-fA-F]{2})* '\'')
    StringLiteral = '"' ([^"\r\n\\] | '\\' .)* '"'
    HexNumber = '0x' [0-9a-fA-F]+
    DecimalNumber = [0-9]+

Restrictions on the Grammar
---------------------------

Scopes in JULIA are tied to Blocks and all declarations
(``FunctionDefinition``, ``VariableDeclaration`` and ``SubAssembly``)
introduce new identifiers into these scopes. Shadowing is disallowed

Talk about identifiers across functions etc


Restriction for Expression: Statements have to return empty tuple
Function arguments have to be single item

Restriction for VariableDeclaration and Assignment: Number of elements left and right needs to be the same
continue and break only in for loop

Literals have to fit 32 bytes



     | 'dataSize' '(' Identifier ')' |
        LinkerSymbol |
        'bytecodeSize' |


Formal Specification
--------------------

We formally specify JULIA by providing an evaluation function E overloaded
on the various nodes of the AST. Any functions can have side effects, so
E takes a state objects and the actual argument and also returns new
state objects and new arguments. There is a global state object
(which in the context of the EVM is the memory, storage and state of the
blockchain) and a local state object (the state of local variables, i.e. a
segment of the stack in the EVM).

The the evaluation function E takes a global state, a local state and
a node of the AST and returns a new global state, a new local state
and a value (if the AST node is an expression).

We use sequence numbers as a shorthand for the order of evaluation
and how state is forwarded. For example, ``E2(x), E1(y)`` is a shorthand
for

For ``(S1, z) = E(S, y)`` let ``(S2, w) = E(S1, x)``. TODO

.. code::
    E(G, L, <{St1, ..., Stn}>: Block) =
        let L' be a copy of L that adds a new inner scope which contains
        all functions and variables declared in the block (but not its sub-blocks)
        variables are marked inactive for now
        TODO: more formal
        G1, L'1 = E(G, L', St1)
        G2, L'2 = E(G1, L'1, St2)
        ...
        Gn, L'n = E(G(n-1), L'(n-1), Stn)
        let L'' be a copy of L'n where the innermost scope is removed
        Gn, L''
    E(G, L, <function fname (param1, ..., paramn) -> (ret1, ..., retm) block>: FunctionDefinition) =
        G, L
    E(G, L, <let (var1, ..., varn) := value>: VariableDeclaration) =
        E(G, L, <(var1, ..., varn) := value>: Assignment)
    E(G, L, <(var1, ..., varn) := value>: Assignment) =
        let G', L', v1, ..., vn = E(G, L, value)
        let L'' be a copy of L' where L'[vi] = vi for i = 1, ..., n
        G, L''
    E(G, L, name: Identifier) =
        G, L, L[name]
    E(G, L, fname(arg1, ..., argn): FunctionCall) =
        G1, L1, vn = E(G, L, argn)
        ...
        G(n-1), L(n-1), v2 = E(G(n-2), L(n-2), arg2)
        Gn, Ln, v1 = E(G(n-1), L(n-1), arg1)
        Let <function fname (param1, ..., paramn) -> (ret1, ..., retm) block>
        be the function L[fname].
        Let L' be a copy of L that does not contain any variables in any scope,
        but which has a new innermost scope such that
        L'[parami] = vi and L'[reti] = 0
        Let G'', L'', rv1, ..., rvm = E(Gn, L', block)
        G'', Ln, rv1, ..., rvm
    E(G, L, l: HexLiteral) = G, L, hexString(l),
        where hexString decodes l from hex and left-aligns in into 32 bytes
    E(G, L, l: StringLiteral) = G, L, utf8EncodeLeftAligned(l),
        where utf8EncodeLeftAligned performs a utf8 encoding of l
        and aligns it left into 32 bytes
    E(G, L, n: HexNumber) = G, L, hex(n)
        where hex is the hexadecimal decoding function
    E(G, L, n: DecimalNumber) = G, L, dec(n),
        where dec is the decimal decoding function

.. _inline-assembly:

Inline Assembly
===============

For more fine-grained control especially in order to enhance the language by writing libraries,
it is possible to interleave Solidity statements with inline assembly in a language close
to the one of the virtual machine. Due to the fact that the EVM is a stack machine, it is
often hard to address the correct stack slot and provide arguments to opcodes at the correct
point on the stack. Solidity's inline assembly tries to facilitate that and other issues
arising when writing manual assembly by the following features:

* functional-style opcodes: ``mul(1, add(2, 3))`` instead of ``push1 3 push1 2 add push1 1 mul``
* assembly-local variables: ``let x := add(2, 3)  let y := mload(0x40)  x := add(x, y)``
* access to external variables: ``function f(uint x) { assembly { x := sub(x, 1) } }``
* labels: ``let x := 10  repeat: x := sub(x, 1) jumpi(repeat, eq(x, 0))``
* loops: ``for { let i := 0 } lt(i, x) { i := add(i, 1) } { y := mul(2, y) }``
* switch statements: ``switch x case 0 { y := mul(x, 2) } default { y := 0 }``
* function calls: ``function f(x) -> y { switch x case 0 { y := 1 } default { y := mul(x, f(sub(x, 1))) }   }``

We now want to describe the inline assembly language in detail.

.. warning::
    Inline assembly is a way to access the Ethereum Virtual Machine
    at a low level. This discards several important safety
    features of Solidity.

.. note::
    TODO: Write about how scoping rules of inline assembly are a bit different
    and the complications that arise when for example using internal functions
    of libraries. Furthermore, write about the symbols defined by the compiler.

Example
-------

The following example provides library code to access the code of another contract and
load it into a ``bytes`` variable. This is not possible at all with "plain Solidity" and the
idea is that assembly libraries will be used to enhance the language in such ways.

.. code::

    pragma solidity ^0.4.0;

    library GetCode {
        function at(address _addr) returns (bytes o_code) {
            assembly {
                // retrieve the size of the code, this needs assembly
                let size := extcodesize(_addr)
                // allocate output byte array - this could also be done without assembly
                // by using o_code = new bytes(size)
                o_code := mload(0x40)
                // new "memory end" including padding
                mstore(0x40, add(o_code, and(add(add(size, 0x20), 0x1f), not(0x1f))))
                // store length in memory
                mstore(o_code, size)
                // actually retrieve the code, this needs assembly
                extcodecopy(_addr, add(o_code, 0x20), 0, size)
            }
        }
    }

Inline assembly could also be beneficial in cases where the optimizer fails to produce
efficient code. Please be aware that assembly is much more difficult to write because
the compiler does not perform checks, so you should use it for complex things only if
you really know what you are doing.

.. code::

    pragma solidity ^0.4.12;

    library VectorSum {
        // This function is less efficient because the optimizer currently fails to
        // remove the bounds checks in array access.
        function sumSolidity(uint[] _data) returns (uint o_sum) {
            for (uint i = 0; i < _data.length; ++i)
                o_sum += _data[i];
        }

        // We know that we only access the array in bounds, so we can avoid the check.
        // 0x20 needs to be added to an array because the first slot contains the
        // array length.
        function sumAsm(uint[] _data) returns (uint o_sum) {
            for (uint i = 0; i < _data.length; ++i) {
                assembly {
                    o_sum := add(o_sum, mload(add(add(_data, 0x20), mul(i, 0x20))))
                }
            }
        }

        // Same as above, but accomplish the entire code within inline assembly.
        function sumPureAsm(uint[] _data) returns (uint o_sum) {
            assembly {
               // Load the length (first 32 bytes)
               let len := mload(_data)

               // Skip over the length field.
               //
               // Keep temporary variable so it can be incremented in place.
               //
               // NOTE: incrementing _data would result in an unusable
               //       _data variable after this assembly block
               let data := add(_data, 0x20)

               // Iterate until the bound is not met.
               for
                   { let end := add(data, len) }
                   lt(data, end)
                   { data := add(data, 0x20) }
               {
                   o_sum := add(o_sum, mload(data))
               }
            }
        }
    }


Syntax
------

Assembly parses comments, literals and identifiers exactly as Solidity, so you can use the
usual ``//`` and ``/* */`` comments. Inline assembly is marked by ``assembly { ... }`` and inside
these curly braces, the following can be used (see the later sections for more details)

 - literals, i.e. ``0x123``, ``42`` or ``"abc"`` (strings up to 32 characters)
 - opcodes (in "instruction style"), e.g. ``mload sload dup1 sstore``, for a list see below
 - opcodes in functional style, e.g. ``add(1, mlod(0))``
 - labels, e.g. ``name:``
 - variable declarations, e.g. ``let x := 7``, ``let x := add(y, 3)`` or ``let x`` (initial value of empty (0) is assigned)
 - identifiers (labels or assembly-local variables and externals if used as inline assembly), e.g. ``jump(name)``, ``3 x add``
 - assignments (in "instruction style"), e.g. ``3 =: x``
 - assignments in functional style, e.g. ``x := add(y, 3)``
 - blocks where local variables are scoped inside, e.g. ``{ let x := 3 { let y := add(x, 1) } }``

Opcodes
-------

This document does not want to be a full description of the Ethereum virtual machine, but the
following list can be used as a reference of its opcodes.

If an opcode takes arguments (always from the top of the stack), they are given in parentheses.
Note that the order of arguments can be seen to be reversed in non-functional style (explained below).
Opcodes marked with ``-`` do not push an item onto the stack, those marked with ``*`` are
special and all others push exactly one item onto the stack.

In the following, ``mem[a...b)`` signifies the bytes of memory starting at position ``a`` up to
(excluding) position ``b`` and ``storage[p]`` signifies the storage contents at position ``p``.

The opcodes ``pushi`` and ``jumpdest`` cannot be used directly.

In the grammar, opcodes are represented as pre-defined identifiers.

+-------------------------+------+-----------------------------------------------------------------+
| stop                    + `-`  | stop execution, identical to return(0,0)                        |
+-------------------------+------+-----------------------------------------------------------------+
| add(x, y)               |      | x + y                                                           |
+-------------------------+------+-----------------------------------------------------------------+
| sub(x, y)               |      | x - y                                                           |
+-------------------------+------+-----------------------------------------------------------------+
| mul(x, y)               |      | x * y                                                           |
+-------------------------+------+-----------------------------------------------------------------+
| div(x, y)               |      | x / y                                                           |
+-------------------------+------+-----------------------------------------------------------------+
| sdiv(x, y)              |      | x / y, for signed numbers in two's complement                   |
+-------------------------+------+-----------------------------------------------------------------+
| mod(x, y)               |      | x % y                                                           |
+-------------------------+------+-----------------------------------------------------------------+
| smod(x, y)              |      | x % y, for signed numbers in two's complement                   |
+-------------------------+------+-----------------------------------------------------------------+
| exp(x, y)               |      | x to the power of y                                             |
+-------------------------+------+-----------------------------------------------------------------+
| not(x)                  |      | ~x, every bit of x is negated                                   |
+-------------------------+------+-----------------------------------------------------------------+
| lt(x, y)                |      | 1 if x < y, 0 otherwise                                         |
+-------------------------+------+-----------------------------------------------------------------+
| gt(x, y)                |      | 1 if x > y, 0 otherwise                                         |
+-------------------------+------+-----------------------------------------------------------------+
| slt(x, y)               |      | 1 if x < y, 0 otherwise, for signed numbers in two's complement |
+-------------------------+------+-----------------------------------------------------------------+
| sgt(x, y)               |      | 1 if x > y, 0 otherwise, for signed numbers in two's complement |
+-------------------------+------+-----------------------------------------------------------------+
| eq(x, y)                |      | 1 if x == y, 0 otherwise                                        |
+-------------------------+------+-----------------------------------------------------------------+
| iszero(x)               |      | 1 if x == 0, 0 otherwise                                        |
+-------------------------+------+-----------------------------------------------------------------+
| and(x, y)               |      | bitwise and of x and y                                          |
+-------------------------+------+-----------------------------------------------------------------+
| or(x, y)                |      | bitwise or of x and y                                           |
+-------------------------+------+-----------------------------------------------------------------+
| xor(x, y)               |      | bitwise xor of x and y                                          |
+-------------------------+------+-----------------------------------------------------------------+
| byte(n, x)              |      | nth byte of x, where the most significant byte is the 0th byte  |
+-------------------------+------+-----------------------------------------------------------------+
| addmod(x, y, m)         |      | (x + y) % m with arbitrary precision arithmetics                |
+-------------------------+------+-----------------------------------------------------------------+
| mulmod(x, y, m)         |      | (x * y) % m with arbitrary precision arithmetics                |
+-------------------------+------+-----------------------------------------------------------------+
| signextend(i, x)        |      | sign extend from (i*8+7)th bit counting from least significant  |
+-------------------------+------+-----------------------------------------------------------------+
| keccak256(p, n)         |      | keccak(mem[p...(p+n)))                                          |
+-------------------------+------+-----------------------------------------------------------------+
| sha3(p, n)              |      | keccak(mem[p...(p+n)))                                          |
+-------------------------+------+-----------------------------------------------------------------+
| jump(label)             | `-`  | jump to label / code position                                   |
+-------------------------+------+-----------------------------------------------------------------+
| jumpi(label, cond)      | `-`  | jump to label if cond is nonzero                                |
+-------------------------+------+-----------------------------------------------------------------+
| pc                      |      | current position in code                                        |
+-------------------------+------+-----------------------------------------------------------------+
| pop(x)                  | `-`  | remove the element pushed by x                                  |
+-------------------------+------+-----------------------------------------------------------------+
| dup1 ... dup16          |      | copy ith stack slot to the top (counting from top)              |
+-------------------------+------+-----------------------------------------------------------------+
| swap1 ... swap16        | `*`  | swap topmost and ith stack slot below it                        |
+-------------------------+------+-----------------------------------------------------------------+
| mload(p)                |      | mem[p..(p+32))                                                  |
+-------------------------+------+-----------------------------------------------------------------+
| mstore(p, v)            | `-`  | mem[p..(p+32)) := v                                             |
+-------------------------+------+-----------------------------------------------------------------+
| mstore8(p, v)           | `-`  | mem[p] := v & 0xff    - only modifies a single byte             |
+-------------------------+------+-----------------------------------------------------------------+
| sload(p)                |      | storage[p]                                                      |
+-------------------------+------+-----------------------------------------------------------------+
| sstore(p, v)            | `-`  | storage[p] := v                                                 |
+-------------------------+------+-----------------------------------------------------------------+
| msize                   |      | size of memory, i.e. largest accessed memory index              |
+-------------------------+------+-----------------------------------------------------------------+
| gas                     |      | gas still available to execution                                |
+-------------------------+------+-----------------------------------------------------------------+
| address                 |      | address of the current contract / execution context             |
+-------------------------+------+-----------------------------------------------------------------+
| balance(a)              |      | wei balance at address a                                        |
+-------------------------+------+-----------------------------------------------------------------+
| caller                  |      | call sender (excluding delegatecall)                            |
+-------------------------+------+-----------------------------------------------------------------+
| callvalue               |      | wei sent together with the current call                         |
+-------------------------+------+-----------------------------------------------------------------+
| calldataload(p)         |      | call data starting from position p (32 bytes)                   |
+-------------------------+------+-----------------------------------------------------------------+
| calldatasize            |      | size of call data in bytes                                      |
+-------------------------+------+-----------------------------------------------------------------+
| calldatacopy(t, f, s)   | `-`  | copy s bytes from calldata at position f to mem at position t   |
+-------------------------+------+-----------------------------------------------------------------+
| codesize                |      | size of the code of the current contract / execution context    |
+-------------------------+------+-----------------------------------------------------------------+
| codecopy(t, f, s)       | `-`  | copy s bytes from code at position f to mem at position t       |
+-------------------------+------+-----------------------------------------------------------------+
| extcodesize(a)          |      | size of the code at address a                                   |
+-------------------------+------+-----------------------------------------------------------------+
| extcodecopy(a, t, f, s) | `-`  | like codecopy(t, f, s) but take code at address a               |
+-------------------------+------+-----------------------------------------------------------------+
| returndatasize          |      | size of the last returndata                                     |
+-------------------------+------+-----------------------------------------------------------------+
| returndatacopy(t, f, s) | `-`  | copy s bytes from returndata at position f to mem at position t |
+-------------------------+------+-----------------------------------------------------------------+
| create(v, p, s)         |      | create new contract with code mem[p..(p+s)) and send v wei      |
|                         |      | and return the new address                                      |
+-------------------------+------+-----------------------------------------------------------------+
| create2(v, n, p, s)     |      | create new contract with code mem[p..(p+s)) at address          |
|                         |      | keccak256(<address> . n . keccak256(mem[p..(p+s))) and send v   |
|                         |      | wei and return the new address                                  |
+-------------------------+------+-----------------------------------------------------------------+
| call(g, a, v, in,       |      | call contract at address a with input mem[in..(in+insize))      |
| insize, out, outsize)   |      | providing g gas and v wei and output area                       |
|                         |      | mem[out..(out+outsize)) returning 0 on error (eg. out of gas)   |
|                         |      | and 1 on success                                                |
+-------------------------+------+-----------------------------------------------------------------+
| callcode(g, a, v, in,   |      | identical to `call` but only use the code from a and stay       |
| insize, out, outsize)   |      | in the context of the current contract otherwise                |
+-------------------------+------+-----------------------------------------------------------------+
| delegatecall(g, a, in,  |      | identical to `callcode` but also keep ``caller``                |
| insize, out, outsize)   |      | and ``callvalue``                                               |
+-------------------------+------+-----------------------------------------------------------------+
| staticcall(g, a, in,    |      | identical to `call(g, a, 0, in, insize, out, outsize)` but do   |
| insize, out, outsize)   |      | not allow state modifications                                   |
+-------------------------+------+-----------------------------------------------------------------+
| return(p, s)            | `-`  | end execution, return data mem[p..(p+s))                        |
+-------------------------+------+-----------------------------------------------------------------+
| revert(p, s)            | `-`  | end execution, revert state changes, return data mem[p..(p+s))  |
+-------------------------+------+-----------------------------------------------------------------+
| selfdestruct(a)         | `-`  | end execution, destroy current contract and send funds to a     |
+-------------------------+------+-----------------------------------------------------------------+
| invalid                 | `-`  | end execution with invalid instruction                          |
+-------------------------+------+-----------------------------------------------------------------+
| log0(p, s)              | `-`  | log without topics and data mem[p..(p+s))                       |
+-------------------------+------+-----------------------------------------------------------------+
| log1(p, s, t1)          | `-`  | log with topic t1 and data mem[p..(p+s))                        |
+-------------------------+------+-----------------------------------------------------------------+
| log2(p, s, t1, t2)      | `-`  | log with topics t1, t2 and data mem[p..(p+s))                   |
+-------------------------+------+-----------------------------------------------------------------+
| log3(p, s, t1, t2, t3)  | `-`  | log with topics t1, t2, t3 and data mem[p..(p+s))               |
+-------------------------+------+-----------------------------------------------------------------+
| log4(p, s, t1, t2, t3,  | `-`  | log with topics t1, t2, t3, t4 and data mem[p..(p+s))           |
| t4)                     |      |                                                                 |
+-------------------------+------+-----------------------------------------------------------------+
| origin                  |      | transaction sender                                              |
+-------------------------+------+-----------------------------------------------------------------+
| gasprice                |      | gas price of the transaction                                    |
+-------------------------+------+-----------------------------------------------------------------+
| blockhash(b)            |      | hash of block nr b - only for last 256 blocks excluding current |
+-------------------------+------+-----------------------------------------------------------------+
| coinbase                |      | current mining beneficiary                                      |
+-------------------------+------+-----------------------------------------------------------------+
| timestamp               |      | timestamp of the current block in seconds since the epoch       |
+-------------------------+------+-----------------------------------------------------------------+
| number                  |      | current block number                                            |
+-------------------------+------+-----------------------------------------------------------------+
| difficulty              |      | difficulty of the current block                                 |
+-------------------------+------+-----------------------------------------------------------------+
| gaslimit                |      | block gas limit of the current block                            |
+-------------------------+------+-----------------------------------------------------------------+

Literals
--------

You can use integer constants by typing them in decimal or hexadecimal notation and an
appropriate ``PUSHi`` instruction will automatically be generated. The following creates code
to add 2 and 3 resulting in 5 and then computes the bitwise and with the string "abc".
Strings are stored left-aligned and cannot be longer than 32 bytes.

.. code::

    assembly { 2 3 add "abc" and }

Functional Style
-----------------

You can type opcode after opcode in the same way they will end up in bytecode. For example
adding ``3`` to the contents in memory at position ``0x80`` would be

.. code::

    3 0x80 mload add 0x80 mstore

As it is often hard to see what the actual arguments for certain opcodes are,
Solidity inline assembly also provides a "functional style" notation where the same code
would be written as follows

.. code::

    mstore(0x80, add(mload(0x80), 3))

Functional style expressions cannot use instructional style internally, i.e.
``1 2 mstore(0x80, add)`` is not valid assembly, it has to be written as
``mstore(0x80, add(2, 1))``. For opcodes that do not take arguments, the
parentheses can be omitted.

Note that the order of arguments is reversed in functional-style as opposed to the instruction-style
way. If you use functional-style, the first argument will end up on the stack top.


Access to External Variables and Functions
------------------------------------------

Solidity variables and other identifiers can be accessed by simply using their name.
For memory variables, this will push the address and not the value onto the
stack. Storage variables are different: Values in storage might not occupy a
full storage slot, so their "address" is composed of a slot and a byte-offset
inside that slot. To retrieve the slot pointed to by the variable ``x``, you
used ``x_slot`` and to retrieve the byte-offset you used ``x_offset``.

In assignments (see below), we can even use local Solidity variables to assign to.

Functions external to inline assembly can also be accessed: The assembly will
push their entry label (with virtual function resolution applied). The calling semantics
in solidity are:

 - the caller pushes return label, arg1, arg2, ..., argn
 - the call returns with ret1, ret2, ..., retm

This feature is still a bit cumbersome to use, because the stack offset essentially
changes during the call, and thus references to local variables will be wrong.

.. code::

    pragma solidity ^0.4.11;

    contract C {
        uint b;
        function f(uint x) returns (uint r) {
            assembly {
                r := mul(x, sload(b_slot)) // ignore the offset, we know it is zero
            }
        }
    }

Labels
------

Another problem in EVM assembly is that ``jump`` and ``jumpi`` use absolute addresses
which can change easily. Solidity inline assembly provides labels to make the use of
jumps easier. Note that labels are a low-level feature and it is possible to write
efficient assembly without labels, just using assembly functions, loops and switch instructions
(see below). The following code computes an element in the Fibonacci series.

.. code::

    {
        let n := calldataload(4)
        let a := 1
        let b := a
    loop:
        jumpi(loopend, eq(n, 0))
        a add swap1
        n := sub(n, 1)
        jump(loop)
    loopend:
        mstore(0, a)
        return(0, 0x20)
    }

Please note that automatically accessing stack variables can only work if the
assembler knows the current stack height. This fails to work if the jump source
and target have different stack heights. It is still fine to use such jumps, but
you should just not access any stack variables (even assembly variables) in that case.

Furthermore, the stack height analyser goes through the code opcode by opcode
(and not according to control flow), so in the following case, the assembler
will have a wrong impression about the stack height at label ``two``:

.. code::

    {
        let x := 8
        jump(two)
        one:
            // Here the stack height is 2 (because we pushed x and 7),
            // but the assembler thinks it is 1 because it reads
            // from top to bottom.
            // Accessing the stack variable x here will lead to errors.
            x := 9
            jump(three)
        two:
            7 // push something onto the stack
            jump(one)
        three:
    }

This problem can be fixed by manually adjusting the stack height for the
assembler - you can provide a stack height delta that is added
to the stack height just prior to the label.
Note that you will not have to care about these things if you just use
loops and assembly-level functions.

As an example how this can be done in extreme cases, please see the following.

.. code::

    {
        let x := 8
        jump(two)
        0 // This code is unreachable but will adjust the stack height correctly
        one:
            x := 9 // Now x can be accessed properly.
            jump(three)
            pop // Similar negative correction.
        two:
            7 // push something onto the stack
            jump(one)
        three:
        pop // We have to pop the manually pushed value here again.
    }

Declaring Assembly-Local Variables
----------------------------------

You can use the ``let`` keyword to declare variables that are only visible in
inline assembly and actually only in the current ``{...}``-block. What happens
is that the ``let`` instruction will create a new stack slot that is reserved
for the variable and automatically removed again when the end of the block
is reached. You need to provide an initial value for the variable which can
be just ``0``, but it can also be a complex functional-style expression.

.. code::

    pragma solidity ^0.4.0;

    contract C {
        function f(uint x) returns (uint b) {
            assembly {
                let v := add(x, 1)
                mstore(0x80, v)
                {
                    let y := add(sload(v), 1)
                    b := y
                } // y is "deallocated" here
                b := add(b, v)
            } // v is "deallocated" here
        }
    }


Assignments
-----------

Assignments are possible to assembly-local variables and to function-local
variables. Take care that when you assign to variables that point to
memory or storage, you will only change the pointer and not the data.

There are two kinds of assignments: functional-style and instruction-style.
For functional-style assignments (``variable := value``), you need to provide a value in a
functional-style expression that results in exactly one stack value
and for instruction-style (``=: variable``), the value is just taken from the stack top.
For both ways, the colon points to the name of the variable. The assignment
is performed by replacing the variable's value on the stack by the new value.

.. code::

    {
        let v := 0 // functional-style assignment as part of variable declaration
        let g := add(v, 2)
        sload(10)
        =: v // instruction style assignment, puts the result of sload(10) into v
    }

Switch
------

You can use a switch statement as a very basic version of "if/else".
It takes the value of an expression and compares it to several constants.
The branch corresponding to the matching constant is taken. Contrary to the
error-prone behaviour of some programming languages, control flow does
not continue from one case to the next. There can be a fallback or default
case called ``default``.

.. code::

    {
        let x := 0
        switch calldataload(4)
        case 0 {
            x := calldataload(0x24)
        }
        default {
            x := calldataload(0x44)
        }
        sstore(0, div(x, 2))
    }

The list of cases does not require curly braces, but the body of a
case does require them.

Loops
-----

Assembly supports a simple for-style loop. For-style loops have
a header containing an initializing part, a condition and a post-iteration
part. The condition has to be a functional-style expression, while
the other two are blocks. If the initializing part
declares any variables, the scope of these variables is extended into the
body (including the condition and the post-iteration part).

The following example computes the sum of an area in memory.

.. code::

    {
        let x := 0
        for { let i := 0 } lt(i, 0x100) { i := add(i, 0x20) } {
            x := add(x, mload(i))
        }
    }

For loops can also be written so that they behave like while loops:
Simply leave the initialization and post-iteration parts empty.

.. code::

    {
        let x := 0
        let i := 0
        for { } lt(i, 0x100) { } {     // while(i < 0x100)
            x := add(x, mload(i))
            i := add(i, 0x20)
        }
    } 

Functions
---------

Assembly allows the definition of low-level functions. These take their
arguments (and a return PC) from the stack and also put the results onto the
stack. Calling a function looks the same way as executing a functional-style
opcode.

Functions can be defined anywhere and are visible in the block they are
declared in. Inside a function, you cannot access local variables
defined outside of that function. There is no explicit ``return``
statement.

If you call a function that returns multiple values, you have to assign
them to a tuple using ``a, b := f(x)`` or ``let a, b := f(x)``.

The following example implements the power function by square-and-multiply.

.. code::

    {
        function power(base, exponent) -> result {
            switch exponent
            case 0 { result := 1 }
            case 1 { result := base }
            default {
                result := power(mul(base, base), div(exponent, 2))
                switch mod(exponent, 2)
                    case 1 { result := mul(base, result) }
            }
        }
    }

Things to Avoid
---------------

Inline assembly might have a quite high-level look, but it actually is extremely
low-level. Function calls, loops and switches are converted by simple
rewriting rules and after that, the only thing the assembler does for you is re-arranging
functional-style opcodes, managing jump labels, counting stack height for
variable access and removing stack slots for assembly-local variables when the end
of their block is reached. Especially for those two last cases, it is important
to know that the assembler only counts stack height from top to bottom, not
necessarily following control flow. Furthermore, operations like swap will only
swap the contents of the stack but not the location of variables.

Conventions in Solidity
-----------------------

In contrast to EVM assembly, Solidity knows types which are narrower than 256 bits,
e.g. ``uint24``. In order to make them more efficient, most arithmetic operations just
treat them as 256-bit numbers and the higher-order bits are only cleaned at the
point where it is necessary, i.e. just shortly before they are written to memory
or before comparisons are performed. This means that if you access such a variable
from within inline assembly, you might have to manually clean the higher order bits
first.

Solidity manages memory in a very simple way: There is a "free memory pointer"
at position ``0x40`` in memory. If you want to allocate memory, just use the memory
from that point on and update the pointer accordingly.

Elements in memory arrays in Solidity always occupy multiples of 32 bytes (yes, this is
even true for ``byte[]``, but not for ``bytes`` and ``string``). Multi-dimensional memory
arrays are pointers to memory arrays. The length of a dynamic array is stored at the
first slot of the array and then only the array elements follow.

.. warning::
    Statically-sized memory arrays do not have a length field, but it will be added soon
    to allow better convertibility between statically- and dynamically-sized arrays, so
    please do not rely on that.


Standalone Assembly
===================

The assembly language described as inline assembly above can also be used
standalone and in fact, the plan is to use it as an intermediate language
for the Solidity compiler. In this form, it tries to achieve several goals:

1. Programs written in it should be readable, even if the code is generated by a compiler from Solidity.
2. The translation from assembly to bytecode should contain as few "surprises" as possible.
3. Control flow should be easy to detect to help in formal verification and optimization.

In order to achieve the first and last goal, assembly provides high-level constructs
like ``for`` loops, ``switch`` statements and function calls. It should be possible
to write assembly programs that do not make use of explicit ``SWAP``, ``DUP``,
``JUMP`` and ``JUMPI`` statements, because the first two obfuscate the data flow
and the last two obfuscate control flow. Furthermore, functional statements of
the form ``mul(add(x, y), 7)`` are preferred over pure opcode statements like
``7 y x add mul`` because in the first form, it is much easier to see which
operand is used for which opcode.

The second goal is achieved by introducing a desugaring phase that only removes
the higher level constructs in a very regular way and still allows inspecting
the generated low-level assembly code. The only non-local operation performed
by the assembler is name lookup of user-defined identifiers (functions, variables, ...),
which follow very simple and regular scoping rules and cleanup of local variables from the stack.

Scoping: An identifier that is declared (label, variable, function, assembly)
is only visible in the block where it was declared (including nested blocks
inside the current block). It is not legal to access local variables across
function borders, even if they would be in scope. Shadowing is not allowed.
Local variables cannot be accessed before they were declared, but labels,
functions and assemblies can. Assemblies are special blocks that are used
for e.g. returning runtime code or creating contracts. No identifier from an
outer assembly is visible in a sub-assembly.

If control flow passes over the end of a block, pop instructions are inserted
that match the number of local variables declared in that block.
Whenever a local variable is referenced, the code generator needs
to know its current relative position in the stack and thus it needs to
keep track of the current so-called stack height. Since all local variables
are removed at the end of a block, the stack height before and after the block
should be the same. If this is not the case, a warning is issued.

Why do we use higher-level constructs like ``switch``, ``for`` and functions:

Using ``switch``, ``for`` and functions, it should be possible to write
complex code without using ``jump`` or ``jumpi`` manually. This makes it much
easier to analyze the control flow, which allows for improved formal
verification and optimization.

Furthermore, if manual jumps are allowed, computing the stack height is rather complicated.
The position of all local variables on the stack needs to be known, otherwise
neither references to local variables nor removing local variables automatically
from the stack at the end of a block will work properly. The desugaring
mechanism correctly inserts operations at unreachable blocks that adjust the
stack height properly in case of jumps that do not have a continuing control flow.

Example:

We will follow an example compilation from Solidity to desugared assembly.
We consider the runtime bytecode of the following Solidity program::

    pragma solidity ^0.4.0;

    contract C {
      function f(uint x) returns (uint y) {
        y = 1;
        for (uint i = 0; i < x; i++)
          y = 2 * y;
      }
    }

The following assembly will be generated::

    {
      mstore(0x40, 0x60) // store the "free memory pointer"
      // function dispatcher
      switch div(calldataload(0), exp(2, 226))
      case 0xb3de648b {
        let (r) = f(calldataload(4))
        let ret := $allocate(0x20)
        mstore(ret, r)
        return(ret, 0x20)
      }
      default { revert(0, 0) }
      // memory allocator
      function $allocate(size) -> pos {
        pos := mload(0x40)
        mstore(0x40, add(pos, size))
      }
      // the contract function
      function f(x) -> y {
        y := 1
        for { let i := 0 } lt(i, x) { i := add(i, 1) } {
          y := mul(2, y)
        }
      }
    }

After the desugaring phase it looks as follows::

    {
      mstore(0x40, 0x60)
      {
        let $0 := div(calldataload(0), exp(2, 226))
        jumpi($case1, eq($0, 0xb3de648b))
        jump($caseDefault)
        $case1:
        {
          // the function call - we put return label and arguments on the stack
          $ret1 calldataload(4) jump(f)
          // This is unreachable code. Opcodes are added that mirror the
          // effect of the function on the stack height: Arguments are
          // removed and return values are introduced.
          pop pop
          let r := 0
          $ret1: // the actual return point
          $ret2 0x20 jump($allocate)
          pop pop let ret := 0
          $ret2:
          mstore(ret, r)
          return(ret, 0x20)
          // although it is useless, the jump is automatically inserted,
          // since the desugaring process is a purely syntactic operation that
          // does not analyze control-flow
          jump($endswitch)
        }
        $caseDefault:
        {
          revert(0, 0)
          jump($endswitch)
        }
        $endswitch:
      }
      jump($afterFunction)
      allocate:
      {
        // we jump over the unreachable code that introduces the function arguments
        jump($start)
        let $retpos := 0 let size := 0
        $start:
        // output variables live in the same scope as the arguments and is
        // actually allocated.
        let pos := 0
        {
          pos := mload(0x40)
          mstore(0x40, add(pos, size))
        }
        // This code replaces the arguments by the return values and jumps back.
        swap1 pop swap1 jump
        // Again unreachable code that corrects stack height.
        0 0
      }
      f:
      {
        jump($start)
        let $retpos := 0 let x := 0
        $start:
        let y := 0
        {
          let i := 0
          $for_begin:
          jumpi($for_end, iszero(lt(i, x)))
          {
            y := mul(2, y)
          }
          $for_continue:
          { i := add(i, 1) }
          jump($for_begin)
          $for_end:
        } // Here, a pop instruction will be inserted for i
        swap1 pop swap1 jump
        0 0
      }
      $afterFunction:
      stop
    }


Assembly happens in four stages:

1. Parsing
2. Desugaring (removes switch, for and functions)
3. Opcode stream generation
4. Bytecode generation

We will specify steps one to three in a pseudo-formal way. More formal
specifications will follow.


Parsing / Grammar
-----------------

The tasks of the parser are the following:

- Turn the byte stream into a token stream, discarding C++-style comments
  (a special comment exists for source references, but we will not explain it here).
- Turn the token stream into an AST according to the grammar below
- Register identifiers with the block they are defined in (annotation to the
  AST node) and note from which point on, variables can be accessed.

The assembly lexer follows the one defined by Solidity itself.

Whitespace is used to delimit tokens and it consists of the characters
Space, Tab and Linefeed. Comments are regular JavaScript/C++ comments and
are interpreted in the same way as Whitespace.

Grammar::

    AssemblyBlock = '{' AssemblyItem* '}'
    AssemblyItem =
        Identifier |
        AssemblyBlock |
        FunctionalAssemblyExpression |
        AssemblyLocalDefinition |
        FunctionalAssemblyAssignment |
        AssemblyAssignment |
        LabelDefinition |
        AssemblySwitch |
        AssemblyFunctionDefinition |
        AssemblyFor |
        'break' | 'continue' |
        SubAssembly | 'dataSize' '(' Identifier ')' |
        LinkerSymbol |
        'errorLabel' | 'bytecodeSize' |
        NumberLiteral | StringLiteral | HexLiteral
    Identifier = [a-zA-Z_$] [a-zA-Z_0-9]*
    FunctionalAssemblyExpression = Identifier '(' ( AssemblyItem ( ',' AssemblyItem )* )? ')'
    AssemblyLocalDefinition = 'let' IdentifierOrList ':=' FunctionalAssemblyExpression
    FunctionalAssemblyAssignment = IdentifierOrList ':=' FunctionalAssemblyExpression
    IdentifierOrList = Identifier | '(' IdentifierList ')'
    IdentifierList = Identifier ( ',' Identifier)*
    AssemblyAssignment = '=:' Identifier
    LabelDefinition = Identifier ':'
    AssemblySwitch = 'switch' FunctionalAssemblyExpression AssemblyCase*
        ( 'default' AssemblyBlock )?
    AssemblyCase = 'case' FunctionalAssemblyExpression AssemblyBlock
    AssemblyFunctionDefinition = 'function' Identifier '(' IdentifierList? ')'
        ( '->' '(' IdentifierList ')' )? AssemblyBlock
    AssemblyFor = 'for' ( AssemblyBlock | FunctionalAssemblyExpression)
        FunctionalAssemblyExpression ( AssemblyBlock | FunctionalAssemblyExpression) AssemblyBlock
    SubAssembly = 'assembly' Identifier AssemblyBlock
    LinkerSymbol = 'linkerSymbol' '(' StringLiteral ')'
    NumberLiteral = HexNumber | DecimalNumber
    HexLiteral = 'hex' ('"' ([0-9a-fA-F]{2})* '"' | '\'' ([0-9a-fA-F]{2})* '\'')
    StringLiteral = '"' ([^"\r\n\\] | '\\' .)* '"'
    HexNumber = '0x' [0-9a-fA-F]+
    DecimalNumber = [0-9]+


Desugaring
----------

An AST transformation removes for, switch and function constructs. The result
is still parseable by the same parser, but it will not use certain constructs.
If jumpdests are added that are only jumped to and not continued at, information
about the stack content is added, unless no local variables of outer scopes are
accessed or the stack height is the same as for the previous instruction.

Pseudocode::

    desugar item: AST -> AST =
    match item {
    AssemblyFunctionDefinition('function' name '(' arg1, ..., argn ')' '->' ( '(' ret1, ..., retm ')' body) ->
      <name>:
      {
        jump($<name>_start)
        let $retPC := 0 let argn := 0 ... let arg1 := 0
        $<name>_start:
        let ret1 := 0 ... let retm := 0
        { desugar(body) }
        swap and pop items so that only ret1, ... retm, $retPC are left on the stack
        jump
        0 (1 + n times) to compensate removal of arg1, ..., argn and $retPC
      }
    AssemblyFor('for' { init } condition post body) ->
      {
        init // cannot be its own block because we want variable scope to extend into the body
        // find I such that there are no labels $forI_*
        $forI_begin:
        jumpi($forI_end, iszero(condition))
        { body }
        $forI_continue:
        { post }
        jump($forI_begin)
        $forI_end:
      }
    'break' ->
      {
        // find nearest enclosing scope with label $forI_end
        pop all local variables that are defined at the current point
        but not at $forI_end
        jump($forI_end)
        0 (as many as variables were removed above)
      }
    'continue' ->
      {
        // find nearest enclosing scope with label $forI_continue
        pop all local variables that are defined at the current point
        but not at $forI_continue
        jump($forI_continue)
        0 (as many as variables were removed above)
      }
    AssemblySwitch(switch condition cases ( default: defaultBlock )? ) ->
      {
        // find I such that there is no $switchI* label or variable
        let $switchI_value := condition
        for each of cases match {
          case val: -> jumpi($switchI_caseJ, eq($switchI_value, val))
        }
        if default block present: ->
          { defaultBlock jump($switchI_end) }
        for each of cases match {
          case val: { body } -> $switchI_caseJ: { body jump($switchI_end) }
        }
        $switchI_end:
      }
    FunctionalAssemblyExpression( identifier(arg1, arg2, ..., argn) ) ->
      {
        if identifier is function <name> with n args and m ret values ->
          {
            // find I such that $funcallI_* does not exist
            $funcallI_return argn  ... arg2 arg1 jump(<name>)
            pop (n + 1 times)
            if the current context is `let (id1, ..., idm) := f(...)` ->
              let id1 := 0 ... let idm := 0
              $funcallI_return:
            else ->
              0 (m times)
              $funcallI_return:
              turn the functional expression that leads to the function call
              into a statement stream
          }
        else -> desugar(children of node)
      }
    default node ->
      desugar(children of node)
    }

Opcode Stream Generation
------------------------

During opcode stream generation, we keep track of the current stack height
in a counter,
so that accessing stack variables by name is possible. The stack height is modified with every opcode
that modifies the stack and with every label that is annotated with a stack
adjustment. Every time a new
local variable is introduced, it is registered together with the current
stack height. If a variable is accessed (either for copying its value or for
assignment), the appropriate ``DUP`` or ``SWAP`` instruction is selected depending
on the difference between the current stack height and the
stack height at the point the variable was introduced.

Pseudocode::

    codegen item: AST -> opcode_stream =
    match item {
    AssemblyBlock({ items }) ->
      join(codegen(item) for item in items)
      if last generated opcode has continuing control flow:
        POP for all local variables registered at the block (including variables
        introduced by labels)
        warn if the stack height at this point is not the same as at the start of the block
    Identifier(id) ->
      lookup id in the syntactic stack of blocks
      match type of id
        Local Variable ->
          DUPi where i = 1 + stack_height - stack_height_of_identifier(id)
        Label ->
          // reference to be resolved during bytecode generation
          PUSH<bytecode position of label>
        SubAssembly ->
          PUSH<bytecode position of subassembly data>
    FunctionalAssemblyExpression(id ( arguments ) ) ->
      join(codegen(arg) for arg in arguments.reversed())
      id (which has to be an opcode, might be a function name later)
    AssemblyLocalDefinition(let (id1, ..., idn) := expr) ->
      register identifiers id1, ..., idn as locals in current block at current stack height
      codegen(expr) - assert that expr returns n items to the stack
    FunctionalAssemblyAssignment((id1, ..., idn) := expr) ->
      lookup id1, ..., idn in the syntactic stack of blocks, assert that they are variables
      codegen(expr)
      for j = n, ..., i:
      SWAPi where i = 1 + stack_height - stack_height_of_identifier(idj)
      POP
    AssemblyAssignment(=: id) ->
      look up id in the syntactic stack of blocks, assert that it is a variable
      SWAPi where i = 1 + stack_height - stack_height_of_identifier(id)
      POP
    LabelDefinition(name:) ->
      JUMPDEST
    NumberLiteral(num) ->
      PUSH<num interpreted as decimal and right-aligned>
    HexLiteral(lit) ->
      PUSH32<lit interpreted as hex and left-aligned>
    StringLiteral(lit) ->
      PUSH32<lit utf-8 encoded and left-aligned>
    SubAssembly(assembly <name> block) ->
      append codegen(block) at the end of the code
    dataSize(<name>) ->
      assert that <name> is a subassembly ->
      PUSH32<size of code generated from subassembly <name>>
    linkerSymbol(<lit>) ->
      PUSH32<zeros> and append position to linker table
    }