aboutsummaryrefslogtreecommitdiffstats
path: root/doc/latex/classmeow_1_1TransformatePipeline.tex
blob: 87a4232951d914d44fd7ccc14495c337c9fb3275 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
\hypertarget{classmeow_1_1TransformatePipeline}{\section{meow\-:\-:Transformate\-Pipeline$<$ Scalar $>$ Class Template Reference}
\label{classmeow_1_1TransformatePipeline}\index{meow\-::\-Transformate\-Pipeline$<$ Scalar $>$@{meow\-::\-Transformate\-Pipeline$<$ Scalar $>$}}
}


a pipeline for transformations  




{\ttfamily \#include \char`\"{}Transformation.\-h\char`\"{}}

Inheritance diagram for meow\-:\-:Transformate\-Pipeline$<$ Scalar $>$\-:\begin{figure}[H]
\begin{center}
\leavevmode
\includegraphics[height=2.000000cm]{classmeow_1_1TransformatePipeline}
\end{center}
\end{figure}
\subsection*{Public Member Functions}
\begin{DoxyCompactItemize}
\item 
\hyperlink{classmeow_1_1TransformatePipeline_ac6ab080d88daaadaa1d25e673da5b33b}{Transformate\-Pipeline} ()
\begin{DoxyCompactList}\small\item\em constructor \end{DoxyCompactList}\item 
\hyperlink{classmeow_1_1TransformatePipeline_ae6c9f60e836fc48abb12dce4025fae20}{Transrormate\-Pipeline} (\hyperlink{classmeow_1_1TransformatePipeline}{Transformate\-Pipeline} const \&b)
\begin{DoxyCompactList}\small\item\em copy constructor \end{DoxyCompactList}\item 
\hyperlink{classmeow_1_1TransformatePipeline_aac96b1c183cec4ba8b16b09281108d09}{$\sim$\-Transformate\-Pipeline} ()
\begin{DoxyCompactList}\small\item\em destructor \end{DoxyCompactList}\item 
size\-\_\-t \hyperlink{classmeow_1_1TransformatePipeline_aa0b055af22eef651755af283feb8d45c}{input\-Rows} () const 
\begin{DoxyCompactList}\small\item\em return the number of rows of the input matrix \end{DoxyCompactList}\item 
size\-\_\-t \hyperlink{classmeow_1_1TransformatePipeline_aacb91bcfe8e35bd0cffc0ee71ea00dae}{input\-Cols} () const 
\begin{DoxyCompactList}\small\item\em return the number of columns of the input matrix \end{DoxyCompactList}\item 
size\-\_\-t \hyperlink{classmeow_1_1TransformatePipeline_a963050e6b1919534713c812aaa194b97}{output\-Rows} () const 
\begin{DoxyCompactList}\small\item\em return the number of rows of the output matrix \end{DoxyCompactList}\item 
size\-\_\-t \hyperlink{classmeow_1_1TransformatePipeline_ab13242986b383dc646c0093acca589ad}{output\-Cols} () const 
\begin{DoxyCompactList}\small\item\em return the number of columns of the output matrix \end{DoxyCompactList}\item 
bool \hyperlink{classmeow_1_1TransformatePipeline_a9bf648e2cd72cf49c625ba7190d33a1a}{front\-Add} (Transformate$<$ Scalar $>$ const $\ast$ptr, bool auto\-\_\-delete)
\begin{DoxyCompactList}\small\item\em add a transformation to the front of this pipeline \end{DoxyCompactList}\item 
bool \hyperlink{classmeow_1_1TransformatePipeline_a3f1ce65ee36ddc970c7ef851e805d5bb}{back\-Add} (Transformate$<$ Scalar $>$ const $\ast$ptr, bool auto\-\_\-delete)
\begin{DoxyCompactList}\small\item\em add a transformation to the front of this pipeline \end{DoxyCompactList}\item 
\hyperlink{classmeow_1_1Matrix}{Matrix}$<$ Scalar $>$ \hyperlink{classmeow_1_1TransformatePipeline_a32e82edbed6cebb49b9ebdf9addd08bb}{go\-Through} (\hyperlink{classmeow_1_1Matrix}{Matrix}$<$ Scalar $>$ const \&input) const 
\begin{DoxyCompactList}\small\item\em same as {\ttfamily transformate(input)} \end{DoxyCompactList}\item 
virtual \hyperlink{classmeow_1_1Matrix}{Matrix}$<$ Scalar $>$ \hyperlink{classmeow_1_1TransformatePipeline_a4c63df15f8033cc09664292ee7d01855}{transformate} (\hyperlink{classmeow_1_1Matrix}{Matrix}$<$ Scalar $>$ const \&input) const 
\begin{DoxyCompactList}\small\item\em Do a series of transformations. \end{DoxyCompactList}\item 
\hyperlink{classmeow_1_1Matrix}{Matrix}$<$ Scalar $>$ \hyperlink{classmeow_1_1TransformatePipeline_a432a32213f3d19262185de45d828883f}{jacobian} (\hyperlink{classmeow_1_1Matrix}{Matrix}$<$ Scalar $>$ const \&input, size\-\_\-t i) const 
\begin{DoxyCompactList}\small\item\em return the jacobian matrix of the transformations, which derivate by the {\ttfamily i} -\/th entry of the input vector \end{DoxyCompactList}\item 
\hyperlink{classmeow_1_1Matrix}{Matrix}$<$ Scalar $>$ \hyperlink{classmeow_1_1TransformatePipeline_a6299f8399a390371f4665c6800da0fc2}{jacobian} (\hyperlink{classmeow_1_1Matrix}{Matrix}$<$ Scalar $>$ const \&input, size\-\_\-t i, size\-\_\-t j) const 
\begin{DoxyCompactList}\small\item\em return the jacobian matrix of the transformations, which derivate by the {\ttfamily j} -\/th parameter of the {\ttfamily i} -\/th transformation. \end{DoxyCompactList}\end{DoxyCompactItemize}
\subsection*{Additional Inherited Members}


\subsection{Detailed Description}
\subsubsection*{template$<$class Scalar$>$class meow\-::\-Transformate\-Pipeline$<$ Scalar $>$}

a pipeline for transformations 

\subsection{Constructor \& Destructor Documentation}
\hypertarget{classmeow_1_1TransformatePipeline_ac6ab080d88daaadaa1d25e673da5b33b}{\index{meow\-::\-Transformate\-Pipeline@{meow\-::\-Transformate\-Pipeline}!Transformate\-Pipeline@{Transformate\-Pipeline}}
\index{Transformate\-Pipeline@{Transformate\-Pipeline}!meow::TransformatePipeline@{meow\-::\-Transformate\-Pipeline}}
\subsubsection[{Transformate\-Pipeline}]{\setlength{\rightskip}{0pt plus 5cm}template$<$class Scalar $>$ {\bf meow\-::\-Transformate\-Pipeline}$<$ Scalar $>$\-::{\bf Transformate\-Pipeline} (
\begin{DoxyParamCaption}
{}
\end{DoxyParamCaption}
)\hspace{0.3cm}{\ttfamily [inline]}}}\label{classmeow_1_1TransformatePipeline_ac6ab080d88daaadaa1d25e673da5b33b}


constructor 

\hypertarget{classmeow_1_1TransformatePipeline_aac96b1c183cec4ba8b16b09281108d09}{\index{meow\-::\-Transformate\-Pipeline@{meow\-::\-Transformate\-Pipeline}!$\sim$\-Transformate\-Pipeline@{$\sim$\-Transformate\-Pipeline}}
\index{$\sim$\-Transformate\-Pipeline@{$\sim$\-Transformate\-Pipeline}!meow::TransformatePipeline@{meow\-::\-Transformate\-Pipeline}}
\subsubsection[{$\sim$\-Transformate\-Pipeline}]{\setlength{\rightskip}{0pt plus 5cm}template$<$class Scalar $>$ {\bf meow\-::\-Transformate\-Pipeline}$<$ Scalar $>$\-::$\sim${\bf Transformate\-Pipeline} (
\begin{DoxyParamCaption}
{}
\end{DoxyParamCaption}
)\hspace{0.3cm}{\ttfamily [inline]}}}\label{classmeow_1_1TransformatePipeline_aac96b1c183cec4ba8b16b09281108d09}


destructor 



\subsection{Member Function Documentation}
\hypertarget{classmeow_1_1TransformatePipeline_a3f1ce65ee36ddc970c7ef851e805d5bb}{\index{meow\-::\-Transformate\-Pipeline@{meow\-::\-Transformate\-Pipeline}!back\-Add@{back\-Add}}
\index{back\-Add@{back\-Add}!meow::TransformatePipeline@{meow\-::\-Transformate\-Pipeline}}
\subsubsection[{back\-Add}]{\setlength{\rightskip}{0pt plus 5cm}template$<$class Scalar $>$ bool {\bf meow\-::\-Transformate\-Pipeline}$<$ Scalar $>$\-::back\-Add (
\begin{DoxyParamCaption}
\item[{Transformate$<$ Scalar $>$ const $\ast$}]{ptr, }
\item[{bool}]{auto\-\_\-delete}
\end{DoxyParamCaption}
)\hspace{0.3cm}{\ttfamily [inline]}, {\ttfamily [virtual]}}}\label{classmeow_1_1TransformatePipeline_a3f1ce65ee36ddc970c7ef851e805d5bb}


add a transformation to the front of this pipeline 

It will test if the shape of the output matrix of the gived transformation is equal to the shape of the input matrix of the last transformation of the pipeline now. If they are not equal, the method will immediate return {\ttfamily false}.


\begin{DoxyParams}[1]{Parameters}
\mbox{\tt in}  & {\em ptr} & Pointer to the transformation \\
\hline
\mbox{\tt in}  & {\em auto\-\_\-delete} & Indicate whether the given transformation should be {\ttfamily delete} when destruct event occured. \\
\hline
\end{DoxyParams}
\begin{DoxyReturn}{Returns}
successful or not. 
\end{DoxyReturn}


Reimplemented from \hyperlink{classmeow_1_1Pipeline_a1bc72f0b75abb48b8c5212813b8dc8f4}{meow\-::\-Pipeline$<$ Matrix$<$ Scalar $>$, Matrix$<$ Scalar $>$, Transformate$<$ Scalar $>$ $>$}.

\hypertarget{classmeow_1_1TransformatePipeline_a9bf648e2cd72cf49c625ba7190d33a1a}{\index{meow\-::\-Transformate\-Pipeline@{meow\-::\-Transformate\-Pipeline}!front\-Add@{front\-Add}}
\index{front\-Add@{front\-Add}!meow::TransformatePipeline@{meow\-::\-Transformate\-Pipeline}}
\subsubsection[{front\-Add}]{\setlength{\rightskip}{0pt plus 5cm}template$<$class Scalar $>$ bool {\bf meow\-::\-Transformate\-Pipeline}$<$ Scalar $>$\-::front\-Add (
\begin{DoxyParamCaption}
\item[{Transformate$<$ Scalar $>$ const $\ast$}]{ptr, }
\item[{bool}]{auto\-\_\-delete}
\end{DoxyParamCaption}
)\hspace{0.3cm}{\ttfamily [inline]}, {\ttfamily [virtual]}}}\label{classmeow_1_1TransformatePipeline_a9bf648e2cd72cf49c625ba7190d33a1a}


add a transformation to the front of this pipeline 

It will test if the shape of the output matrix of the gived transformation is equal to the shape of the input matrix of the first transformation of the pipeline now. If they are not equal, the method will immediate return {\ttfamily false}.


\begin{DoxyParams}[1]{Parameters}
\mbox{\tt in}  & {\em ptr} & Pointer to the transformation \\
\hline
\mbox{\tt in}  & {\em auto\-\_\-delete} & Indicate whether the given transformation should be {\ttfamily delete} when destruct event occured. \\
\hline
\end{DoxyParams}
\begin{DoxyReturn}{Returns}
successful or not. 
\end{DoxyReturn}


Reimplemented from \hyperlink{classmeow_1_1Pipeline_ad68f17ba679781f8d8996de3f742584c}{meow\-::\-Pipeline$<$ Matrix$<$ Scalar $>$, Matrix$<$ Scalar $>$, Transformate$<$ Scalar $>$ $>$}.

\hypertarget{classmeow_1_1TransformatePipeline_a32e82edbed6cebb49b9ebdf9addd08bb}{\index{meow\-::\-Transformate\-Pipeline@{meow\-::\-Transformate\-Pipeline}!go\-Through@{go\-Through}}
\index{go\-Through@{go\-Through}!meow::TransformatePipeline@{meow\-::\-Transformate\-Pipeline}}
\subsubsection[{go\-Through}]{\setlength{\rightskip}{0pt plus 5cm}template$<$class Scalar $>$ {\bf Matrix}$<$Scalar$>$ {\bf meow\-::\-Transformate\-Pipeline}$<$ Scalar $>$\-::go\-Through (
\begin{DoxyParamCaption}
\item[{{\bf Matrix}$<$ Scalar $>$ const \&}]{input}
\end{DoxyParamCaption}
) const\hspace{0.3cm}{\ttfamily [inline]}, {\ttfamily [virtual]}}}\label{classmeow_1_1TransformatePipeline_a32e82edbed6cebb49b9ebdf9addd08bb}


same as {\ttfamily transformate(input)} 



Implements \hyperlink{classmeow_1_1Pipeline_a41613bf7d08d61043b8791665bdb2395}{meow\-::\-Pipeline$<$ Matrix$<$ Scalar $>$, Matrix$<$ Scalar $>$, Transformate$<$ Scalar $>$ $>$}.

\hypertarget{classmeow_1_1TransformatePipeline_aacb91bcfe8e35bd0cffc0ee71ea00dae}{\index{meow\-::\-Transformate\-Pipeline@{meow\-::\-Transformate\-Pipeline}!input\-Cols@{input\-Cols}}
\index{input\-Cols@{input\-Cols}!meow::TransformatePipeline@{meow\-::\-Transformate\-Pipeline}}
\subsubsection[{input\-Cols}]{\setlength{\rightskip}{0pt plus 5cm}template$<$class Scalar $>$ size\-\_\-t {\bf meow\-::\-Transformate\-Pipeline}$<$ Scalar $>$\-::input\-Cols (
\begin{DoxyParamCaption}
{}
\end{DoxyParamCaption}
) const\hspace{0.3cm}{\ttfamily [inline]}}}\label{classmeow_1_1TransformatePipeline_aacb91bcfe8e35bd0cffc0ee71ea00dae}


return the number of columns of the input matrix 

\hypertarget{classmeow_1_1TransformatePipeline_aa0b055af22eef651755af283feb8d45c}{\index{meow\-::\-Transformate\-Pipeline@{meow\-::\-Transformate\-Pipeline}!input\-Rows@{input\-Rows}}
\index{input\-Rows@{input\-Rows}!meow::TransformatePipeline@{meow\-::\-Transformate\-Pipeline}}
\subsubsection[{input\-Rows}]{\setlength{\rightskip}{0pt plus 5cm}template$<$class Scalar $>$ size\-\_\-t {\bf meow\-::\-Transformate\-Pipeline}$<$ Scalar $>$\-::input\-Rows (
\begin{DoxyParamCaption}
{}
\end{DoxyParamCaption}
) const\hspace{0.3cm}{\ttfamily [inline]}}}\label{classmeow_1_1TransformatePipeline_aa0b055af22eef651755af283feb8d45c}


return the number of rows of the input matrix 

\hypertarget{classmeow_1_1TransformatePipeline_a432a32213f3d19262185de45d828883f}{\index{meow\-::\-Transformate\-Pipeline@{meow\-::\-Transformate\-Pipeline}!jacobian@{jacobian}}
\index{jacobian@{jacobian}!meow::TransformatePipeline@{meow\-::\-Transformate\-Pipeline}}
\subsubsection[{jacobian}]{\setlength{\rightskip}{0pt plus 5cm}template$<$class Scalar $>$ {\bf Matrix}$<$Scalar$>$ {\bf meow\-::\-Transformate\-Pipeline}$<$ Scalar $>$\-::jacobian (
\begin{DoxyParamCaption}
\item[{{\bf Matrix}$<$ Scalar $>$ const \&}]{input, }
\item[{size\-\_\-t}]{i}
\end{DoxyParamCaption}
) const\hspace{0.3cm}{\ttfamily [inline]}}}\label{classmeow_1_1TransformatePipeline_a432a32213f3d19262185de45d828883f}


return the jacobian matrix of the transformations, which derivate by the {\ttfamily i} -\/th entry of the input vector 

Assume that the pipeline is like below\-: \[ v_{output} = H(h_1, h_2, G(g_1, g_2, g_3, F(f_1, v_{input}))) \] Where
\begin{DoxyItemize}
\item $ f_1, g_1, g_2, g_3, h_1, h_2 $ is the parameters of the transformations $ F, G, H $
\item $ v_{input}(x,y,z), v_{output} $ is the input/output vector of the whole pipeline.
\end{DoxyItemize}Then according to the chain rule, the jacobian matrix(derivate by $ y $) is\-: \[ M_{jacobian} = \frac{\partial H(h_1, h_2, G(g_1, g_2, g_3, F(f_1, v_{input})))} {\partial G(g_1, g_2, g_3, F(f_1, v_{input})) } \frac{\partial G(g_1, g_2, g_3, F(f_1, v_{input})) } {\partial F(f_1, v_{input}) } \frac{\partial F(f_1, v_{input}) } {\partial v_{input} } \frac{\partial v_{input} } {\partial y } \] Where \[ \frac{\partial v_{input}}{\partial y} = \left[ \begin{array}{c} 0 \\ 1 \\ 0 \\ \end{array} \right] \]


\begin{DoxyParams}[1]{Parameters}
\mbox{\tt in}  & {\em input} & the input matrix \\
\hline
\mbox{\tt in}  & {\em i} & the index of the derivate scalar \\
\hline
\end{DoxyParams}
\begin{DoxyReturn}{Returns}
a jacobian matrix 
\end{DoxyReturn}
\hypertarget{classmeow_1_1TransformatePipeline_a6299f8399a390371f4665c6800da0fc2}{\index{meow\-::\-Transformate\-Pipeline@{meow\-::\-Transformate\-Pipeline}!jacobian@{jacobian}}
\index{jacobian@{jacobian}!meow::TransformatePipeline@{meow\-::\-Transformate\-Pipeline}}
\subsubsection[{jacobian}]{\setlength{\rightskip}{0pt plus 5cm}template$<$class Scalar $>$ {\bf Matrix}$<$Scalar$>$ {\bf meow\-::\-Transformate\-Pipeline}$<$ Scalar $>$\-::jacobian (
\begin{DoxyParamCaption}
\item[{{\bf Matrix}$<$ Scalar $>$ const \&}]{input, }
\item[{size\-\_\-t}]{i, }
\item[{size\-\_\-t}]{j}
\end{DoxyParamCaption}
) const\hspace{0.3cm}{\ttfamily [inline]}}}\label{classmeow_1_1TransformatePipeline_a6299f8399a390371f4665c6800da0fc2}


return the jacobian matrix of the transformations, which derivate by the {\ttfamily j} -\/th parameter of the {\ttfamily i} -\/th transformation. 

Assume that the pipeline is like below\-: \[ v_{output} = I(i_1,i_2, H(h_1,h_2, G(g_1,g_2,g_3, F(f_1, v_{input})))) \]
\begin{DoxyItemize}
\item $ f_1, g_1, g_2, g_3, h_1, h_2, i_1, i_2 $ is the parameters of the transformations $ F, G, H, I $
\item $ v_{input}(x,y,z), v_{output} $ is the input/output vector of the whole pipeline.
\end{DoxyItemize}Then according to the chain rule, the jacobian matrix(derivate by $ g_2 $) is\-: \[ M_{jacobian} = \frac{\partial I(i_1,i_2, H(h_1,h_2, G(g_1,g_2,g_3, F(f_1, v_{input}))))} {\partial H(h_1,h_2, G(g_1,g_2,g_3, F(f_1, v_{input}))) } \frac{\partial H(h_1,h_2, G(g_1,g_2,g_3, F(f_1, v_{input}))) } {\partial G(g_1,g_2,g_3, F(f_1, v_{input})) } \frac{\partial G(g_1,g_2,g_3, F(f_1, v_{input})) } {\partial g_2 } \]


\begin{DoxyParams}[1]{Parameters}
\mbox{\tt in}  & {\em input} & the input matrix \\
\hline
\mbox{\tt in}  & {\em i} & the index of the transformation \\
\hline
\mbox{\tt in}  & {\em j} & the index of the derivate parameter \\
\hline
\end{DoxyParams}
\begin{DoxyReturn}{Returns}
a jacobian matrix 
\end{DoxyReturn}
\hypertarget{classmeow_1_1TransformatePipeline_ab13242986b383dc646c0093acca589ad}{\index{meow\-::\-Transformate\-Pipeline@{meow\-::\-Transformate\-Pipeline}!output\-Cols@{output\-Cols}}
\index{output\-Cols@{output\-Cols}!meow::TransformatePipeline@{meow\-::\-Transformate\-Pipeline}}
\subsubsection[{output\-Cols}]{\setlength{\rightskip}{0pt plus 5cm}template$<$class Scalar $>$ size\-\_\-t {\bf meow\-::\-Transformate\-Pipeline}$<$ Scalar $>$\-::output\-Cols (
\begin{DoxyParamCaption}
{}
\end{DoxyParamCaption}
) const\hspace{0.3cm}{\ttfamily [inline]}}}\label{classmeow_1_1TransformatePipeline_ab13242986b383dc646c0093acca589ad}


return the number of columns of the output matrix 

\hypertarget{classmeow_1_1TransformatePipeline_a963050e6b1919534713c812aaa194b97}{\index{meow\-::\-Transformate\-Pipeline@{meow\-::\-Transformate\-Pipeline}!output\-Rows@{output\-Rows}}
\index{output\-Rows@{output\-Rows}!meow::TransformatePipeline@{meow\-::\-Transformate\-Pipeline}}
\subsubsection[{output\-Rows}]{\setlength{\rightskip}{0pt plus 5cm}template$<$class Scalar $>$ size\-\_\-t {\bf meow\-::\-Transformate\-Pipeline}$<$ Scalar $>$\-::output\-Rows (
\begin{DoxyParamCaption}
{}
\end{DoxyParamCaption}
) const\hspace{0.3cm}{\ttfamily [inline]}}}\label{classmeow_1_1TransformatePipeline_a963050e6b1919534713c812aaa194b97}


return the number of rows of the output matrix 

\hypertarget{classmeow_1_1TransformatePipeline_a4c63df15f8033cc09664292ee7d01855}{\index{meow\-::\-Transformate\-Pipeline@{meow\-::\-Transformate\-Pipeline}!transformate@{transformate}}
\index{transformate@{transformate}!meow::TransformatePipeline@{meow\-::\-Transformate\-Pipeline}}
\subsubsection[{transformate}]{\setlength{\rightskip}{0pt plus 5cm}template$<$class Scalar $>$ virtual {\bf Matrix}$<$Scalar$>$ {\bf meow\-::\-Transformate\-Pipeline}$<$ Scalar $>$\-::transformate (
\begin{DoxyParamCaption}
\item[{{\bf Matrix}$<$ Scalar $>$ const \&}]{input}
\end{DoxyParamCaption}
) const\hspace{0.3cm}{\ttfamily [inline]}, {\ttfamily [virtual]}}}\label{classmeow_1_1TransformatePipeline_a4c63df15f8033cc09664292ee7d01855}


Do a series of transformations. 


\begin{DoxyParams}[1]{Parameters}
\mbox{\tt in}  & {\em input} & the input matrix \\
\hline
\end{DoxyParams}
\begin{DoxyReturn}{Returns}
the result 
\end{DoxyReturn}
\hypertarget{classmeow_1_1TransformatePipeline_ae6c9f60e836fc48abb12dce4025fae20}{\index{meow\-::\-Transformate\-Pipeline@{meow\-::\-Transformate\-Pipeline}!Transrormate\-Pipeline@{Transrormate\-Pipeline}}
\index{Transrormate\-Pipeline@{Transrormate\-Pipeline}!meow::TransformatePipeline@{meow\-::\-Transformate\-Pipeline}}
\subsubsection[{Transrormate\-Pipeline}]{\setlength{\rightskip}{0pt plus 5cm}template$<$class Scalar $>$ {\bf meow\-::\-Transformate\-Pipeline}$<$ Scalar $>$\-::Transrormate\-Pipeline (
\begin{DoxyParamCaption}
\item[{{\bf Transformate\-Pipeline}$<$ Scalar $>$ const \&}]{b}
\end{DoxyParamCaption}
)\hspace{0.3cm}{\ttfamily [inline]}}}\label{classmeow_1_1TransformatePipeline_ae6c9f60e836fc48abb12dce4025fae20}


copy constructor 



The documentation for this class was generated from the following file\-:\begin{DoxyCompactItemize}
\item 
meowpp/math/\hyperlink{Transformation_8h}{Transformation.\-h}\end{DoxyCompactItemize}