aboutsummaryrefslogtreecommitdiffstats
path: root/swarm/storage/chunker.go
blob: 0454828b9cb87a612ca361861559be7f727c6b1b (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
// Copyright 2016 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.

package storage

import (
    "encoding/binary"
    "errors"
    "fmt"
    "io"
    "sync"
    "time"
)

/*
The distributed storage implemented in this package requires fix sized chunks of content.

Chunker is the interface to a component that is responsible for disassembling and assembling larger data.

TreeChunker implements a Chunker based on a tree structure defined as follows:

1 each node in the tree including the root and other branching nodes are stored as a chunk.

2 branching nodes encode data contents that includes the size of the dataslice covered by its entire subtree under the node as well as the hash keys of all its children :
data_{i} := size(subtree_{i}) || key_{j} || key_{j+1} .... || key_{j+n-1}

3 Leaf nodes encode an actual subslice of the input data.

4 if data size is not more than maximum chunksize, the data is stored in a single chunk
  key = hash(int64(size) + data)

5 if data size is more than chunksize*branches^l, but no more than chunksize*
  branches^(l+1), the data vector is split into slices of chunksize*
  branches^l length (except the last one).
  key = hash(int64(size) + key(slice0) + key(slice1) + ...)

 The underlying hash function is configurable
*/


/*
Tree chunker is a concrete implementation of data chunking.
This chunker works in a simple way, it builds a tree out of the document so that each node either represents a chunk of real data or a chunk of data representing an branching non-leaf node of the tree. In particular each such non-leaf chunk will represent is a concatenation of the hash of its respective children. This scheme simultaneously guarantees data integrity as well as self addressing. Abstract nodes are transparent since their represented size component is strictly greater than their maximum data size, since they encode a subtree.

If all is well it is possible to implement this by simply composing readers so that no extra allocation or buffering is necessary for the data splitting and joining. This means that in principle there can be direct IO between : memory, file system, network socket (bzz peers storage request is read from the socket). In practice there may be need for several stages of internal buffering.
The hashing itself does use extra copies and allocation though, since it does need it.
*/

var (
    errAppendOppNotSuported = errors.New("Append operation not supported")
    errOperationTimedOut = errors.New("operation timed out")
)

type TreeChunker struct {
    branches int64
    hashFunc SwarmHasher
    // calculated
    hashSize    int64 // self.hashFunc.New().Size()
    chunkSize   int64 // hashSize* branches
    workerCount int64 // the number of worker routines used
    workerLock  sync.RWMutex // lock for the worker count
}

func NewTreeChunker(params *ChunkerParams) (self *TreeChunker) {
    self = &TreeChunker{}
    self.hashFunc = MakeHashFunc(params.Hash)
    self.branches = params.Branches
    self.hashSize = int64(self.hashFunc().Size())
    self.chunkSize = self.hashSize * self.branches
    self.workerCount = 0

    return
}

// func (self *TreeChunker) KeySize() int64 {
//  return self.hashSize
// }

// String() for pretty printing
func (self *Chunk) String() string {
    return fmt.Sprintf("Key: %v TreeSize: %v Chunksize: %v", self.Key.Log(), self.Size, len(self.SData))
}

type hashJob struct {
    key      Key
    chunk    []byte
    size     int64
    parentWg *sync.WaitGroup
}

func (self *TreeChunker) incrementWorkerCount() {
    self.workerLock.Lock()
    defer self.workerLock.Unlock()
    self.workerCount += 1
}

func (self *TreeChunker) getWorkerCount() int64 {
    self.workerLock.RLock()
    defer self.workerLock.RUnlock()
    return self.workerCount
}

func (self *TreeChunker) decrementWorkerCount() {
    self.workerLock.Lock()
    defer self.workerLock.Unlock()
    self.workerCount -= 1
}

func (self *TreeChunker) Split(data io.Reader, size int64, chunkC chan *Chunk, swg, wwg *sync.WaitGroup) (Key, error) {
    if self.chunkSize <= 0 {
        panic("chunker must be initialised")
    }


    jobC := make(chan *hashJob, 2*ChunkProcessors)
    wg := &sync.WaitGroup{}
    errC := make(chan error)
    quitC := make(chan bool)

    // wwg = workers waitgroup keeps track of hashworkers spawned by this split call
    if wwg != nil {
        wwg.Add(1)
    }

    self.incrementWorkerCount()
    go self.hashWorker(jobC, chunkC, errC, quitC, swg, wwg)

    depth := 0
    treeSize := self.chunkSize

    // takes lowest depth such that chunksize*HashCount^(depth+1) > size
    // power series, will find the order of magnitude of the data size in base hashCount or numbers of levels of branching in the resulting tree.
    for ; treeSize < size; treeSize *= self.branches {
        depth++
    }

    key := make([]byte, self.hashFunc().Size())
    // this waitgroup member is released after the root hash is calculated
    wg.Add(1)
    //launch actual recursive function passing the waitgroups
    go self.split(depth, treeSize/self.branches, key, data, size, jobC, chunkC, errC, quitC, wg, swg, wwg)

    // closes internal error channel if all subprocesses in the workgroup finished
    go func() {
        // waiting for all threads to finish
        wg.Wait()
        // if storage waitgroup is non-nil, we wait for storage to finish too
        if swg != nil {
            swg.Wait()
        }
        close(errC)
    }()


    defer close(quitC)
    select {
    case err := <-errC:
        if err != nil {
            return nil, err
        }
    case <-time.NewTimer(splitTimeout).C:
        return nil,errOperationTimedOut
    }

    return key, nil
}

func (self *TreeChunker) split(depth int, treeSize int64, key Key, data io.Reader, size int64, jobC chan *hashJob, chunkC chan *Chunk, errC chan error, quitC chan bool, parentWg, swg, wwg *sync.WaitGroup) {

    //

    for depth > 0 && size < treeSize {
        treeSize /= self.branches
        depth--
    }

    if depth == 0 {
        // leaf nodes -> content chunks
        chunkData := make([]byte, size+8)
        binary.LittleEndian.PutUint64(chunkData[0:8], uint64(size))
        var readBytes int64
        for readBytes < size {
            n, err := data.Read(chunkData[8+readBytes:])
            readBytes += int64(n)
            if err != nil && !(err == io.EOF && readBytes == size) {
                errC <- err
                return
            }
        }
        select {
        case jobC <- &hashJob{key, chunkData, size, parentWg}:
        case <-quitC:
        }
        return
    }
    // dept > 0
    // intermediate chunk containing child nodes hashes
    branchCnt := int64((size + treeSize - 1) / treeSize)

    var chunk []byte = make([]byte, branchCnt*self.hashSize+8)
    var pos, i int64

    binary.LittleEndian.PutUint64(chunk[0:8], uint64(size))

    childrenWg := &sync.WaitGroup{}
    var secSize int64
    for i < branchCnt {
        // the last item can have shorter data
        if size-pos < treeSize {
            secSize = size - pos
        } else {
            secSize = treeSize
        }
        // the hash of that data
        subTreeKey := chunk[8+i*self.hashSize : 8+(i+1)*self.hashSize]

        childrenWg.Add(1)
        self.split(depth-1, treeSize/self.branches, subTreeKey, data, secSize, jobC, chunkC, errC, quitC, childrenWg, swg, wwg)

        i++
        pos += treeSize
    }
    // wait for all the children to complete calculating their hashes and copying them onto sections of the chunk
    // parentWg.Add(1)
    // go func() {
    childrenWg.Wait()

    worker := self.getWorkerCount()
    if int64(len(jobC)) > worker && worker < ChunkProcessors {
        if wwg != nil {
            wwg.Add(1)
        }
        self.incrementWorkerCount()
        go self.hashWorker(jobC, chunkC, errC, quitC, swg, wwg)

    }
    select {
    case jobC <- &hashJob{key, chunk, size, parentWg}:
    case <-quitC:
    }
}

func (self *TreeChunker) hashWorker(jobC chan *hashJob, chunkC chan *Chunk, errC chan error, quitC chan bool, swg, wwg *sync.WaitGroup) {
    defer self.decrementWorkerCount()

    hasher := self.hashFunc()
    if wwg != nil {
        defer wwg.Done()
    }
    for {
        select {

        case job, ok := <-jobC:
            if !ok {
                return
            }
            // now we got the hashes in the chunk, then hash the chunks
            self.hashChunk(hasher, job, chunkC, swg)
        case <-quitC:
            return
        }
    }
}

// The treeChunkers own Hash hashes together
// - the size (of the subtree encoded in the Chunk)
// - the Chunk, ie. the contents read from the input reader
func (self *TreeChunker) hashChunk(hasher SwarmHash, job *hashJob, chunkC chan *Chunk, swg *sync.WaitGroup) {
    hasher.ResetWithLength(job.chunk[:8]) // 8 bytes of length
    hasher.Write(job.chunk[8:])           // minus 8 []byte length
    h := hasher.Sum(nil)

    newChunk := &Chunk{
        Key:   h,
        SData: job.chunk,
        Size:  job.size,
        wg:    swg,
    }

    // report hash of this chunk one level up (keys corresponds to the proper subslice of the parent chunk)
    copy(job.key, h)
    // send off new chunk to storage
    if chunkC != nil {
        if swg != nil {
            swg.Add(1)
        }
    }
    job.parentWg.Done()

    if chunkC != nil {
        chunkC <- newChunk
    }
}

func (self *TreeChunker) Append(key Key, data io.Reader, chunkC chan *Chunk, swg, wwg *sync.WaitGroup) (Key, error) {
    return nil, errAppendOppNotSuported
}

// LazyChunkReader implements LazySectionReader
type LazyChunkReader struct {
    key       Key         // root key
    chunkC    chan *Chunk // chunk channel to send retrieve requests on
    chunk     *Chunk      // size of the entire subtree
    off       int64       // offset
    chunkSize int64       // inherit from chunker
    branches  int64       // inherit from chunker
    hashSize  int64       // inherit from chunker
}

// implements the Joiner interface
func (self *TreeChunker) Join(key Key, chunkC chan *Chunk) LazySectionReader {
    return &LazyChunkReader{
        key:       key,
        chunkC:    chunkC,
        chunkSize: self.chunkSize,
        branches:  self.branches,
        hashSize:  self.hashSize,
    }
}

// Size is meant to be called on the LazySectionReader
func (self *LazyChunkReader) Size(quitC chan bool) (n int64, err error) {
    if self.chunk != nil {
        return self.chunk.Size, nil
    }
    chunk := retrieve(self.key, self.chunkC, quitC)
    if chunk == nil {
        select {
        case <-quitC:
            return 0, errors.New("aborted")
        default:
            return 0, fmt.Errorf("root chunk not found for %v", self.key.Hex())
        }
    }
    self.chunk = chunk
    return chunk.Size, nil
}

// read at can be called numerous times
// concurrent reads are allowed
// Size() needs to be called synchronously on the LazyChunkReader first
func (self *LazyChunkReader) ReadAt(b []byte, off int64) (read int, err error) {
    // this is correct, a swarm doc cannot be zero length, so no EOF is expected
    if len(b) == 0 {
        return 0, nil
    }
    quitC := make(chan bool)
    size, err := self.Size(quitC)
    if err != nil {
        return 0, err
    }

    errC := make(chan error)

    // }
    var treeSize int64
    var depth int
    // calculate depth and max treeSize
    treeSize = self.chunkSize
    for ; treeSize < size; treeSize *= self.branches {
        depth++
    }
    wg := sync.WaitGroup{}
    wg.Add(1)
    go self.join(b, off, off+int64(len(b)), depth, treeSize/self.branches, self.chunk, &wg, errC, quitC)
    go func() {
        wg.Wait()
        close(errC)
    }()

    err = <-errC
    if err != nil {
        close(quitC)

        return 0, err
    }
    if off+int64(len(b)) >= size {
        return len(b), io.EOF
    }
    return len(b), nil
}

func (self *LazyChunkReader) join(b []byte, off int64, eoff int64, depth int, treeSize int64, chunk *Chunk, parentWg *sync.WaitGroup, errC chan error, quitC chan bool) {
    defer parentWg.Done()
    // return NewDPA(&LocalStore{})

    // chunk.Size = int64(binary.LittleEndian.Uint64(chunk.SData[0:8]))

    // find appropriate block level
    for chunk.Size < treeSize && depth > 0 {
        treeSize /= self.branches
        depth--
    }

    // leaf chunk found
    if depth == 0 {
        extra := 8 + eoff - int64(len(chunk.SData))
        if extra > 0 {
            eoff -= extra
        }
        copy(b, chunk.SData[8+off:8+eoff])
        return // simply give back the chunks reader for content chunks
    }

    // subtree
    start := off / treeSize
    end := (eoff + treeSize - 1) / treeSize

    wg := &sync.WaitGroup{}
    defer wg.Wait()

    for i := start; i < end; i++ {
        soff := i * treeSize
        roff := soff
        seoff := soff + treeSize

        if soff < off {
            soff = off
        }
        if seoff > eoff {
            seoff = eoff
        }
        if depth > 1 {
            wg.Wait()
        }
        wg.Add(1)
        go func(j int64) {
            childKey := chunk.SData[8+j*self.hashSize : 8+(j+1)*self.hashSize]
            chunk := retrieve(childKey, self.chunkC, quitC)
            if chunk == nil {
                select {
                case errC <- fmt.Errorf("chunk %v-%v not found", off, off+treeSize):
                case <-quitC:
                }
                return
            }
            if soff < off {
                soff = off
            }
            self.join(b[soff-off:seoff-off], soff-roff, seoff-roff, depth-1, treeSize/self.branches, chunk, wg, errC, quitC)
        }(i)
    } //for
}

// the helper method submits chunks for a key to a oueue (DPA) and
// block until they time out or arrive
// abort if quitC is readable
func retrieve(key Key, chunkC chan *Chunk, quitC chan bool) *Chunk {
    chunk := &Chunk{
        Key: key,
        C:   make(chan bool), // close channel to signal data delivery
    }
    // submit chunk for retrieval
    select {
    case chunkC <- chunk: // submit retrieval request, someone should be listening on the other side (or we will time out globally)
    case <-quitC:
        return nil
    }
    // waiting for the chunk retrieval
    select { // chunk.Size = int64(binary.LittleEndian.Uint64(chunk.SData[0:8]))

    case <-quitC:
        // this is how we control process leakage (quitC is closed once join is finished (after timeout))
        return nil
    case <-chunk.C: // bells are ringing, data have been delivered
    }
    if len(chunk.SData) == 0 {
        return nil // chunk.Size = int64(binary.LittleEndian.Uint64(chunk.SData[0:8]))

    }
    return chunk
}

// Read keeps a cursor so cannot be called simulateously, see ReadAt
func (self *LazyChunkReader) Read(b []byte) (read int, err error) {
    read, err = self.ReadAt(b, self.off)

    self.off += int64(read)
    return
}

// completely analogous to standard SectionReader implementation
var errWhence = errors.New("Seek: invalid whence")
var errOffset = errors.New("Seek: invalid offset")

func (s *LazyChunkReader) Seek(offset int64, whence int) (int64, error) {
    switch whence {
    default:
        return 0, errWhence
    case 0:
        offset += 0
    case 1:
        offset += s.off
    case 2:
        if s.chunk == nil { //seek from the end requires rootchunk for size. call Size first
            _, err := s.Size(nil)
            if err != nil {
                return 0, fmt.Errorf("can't get size: %v", err)
            }
        }
        offset += s.chunk.Size
    }

    if offset < 0 {
        return 0, errOffset
    }
    s.off = offset
    return offset, nil
}