aboutsummaryrefslogtreecommitdiffstats
path: root/swarm/bmt/bmt_test.go
blob: e074d90e73dd8e9db288879a2d5580b9d9378c7d (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
// Copyright 2017 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.

package bmt

import (
    "bytes"
    crand "crypto/rand"
    "encoding/binary"
    "fmt"
    "io"
    "math/rand"
    "sync"
    "sync/atomic"
    "testing"
    "time"

    "github.com/ethereum/go-ethereum/crypto/sha3"
)

// the actual data length generated (could be longer than max datalength of the BMT)
const BufferSize = 4128

func sha3hash(data ...[]byte) []byte {
    h := sha3.NewKeccak256()
    for _, v := range data {
        h.Write(v)
    }
    return h.Sum(nil)
}

// TestRefHasher tests that the RefHasher computes the expected BMT hash for
// all data lengths between 0 and 256 bytes
func TestRefHasher(t *testing.T) {

    // the test struct is used to specify the expected BMT hash for
    // segment counts between from and to and lengths from 1 to datalength
    type test struct {
        from     int
        to       int
        expected func([]byte) []byte
    }

    var tests []*test
    // all lengths in [0,64] should be:
    //
    //   sha3hash(data)
    //
    tests = append(tests, &test{
        from: 1,
        to:   2,
        expected: func(d []byte) []byte {
            data := make([]byte, 64)
            copy(data, d)
            return sha3hash(data)
        },
    })

    // all lengths in [3,4] should be:
    //
    //   sha3hash(
    //     sha3hash(data[:64])
    //     sha3hash(data[64:])
    //   )
    //
    tests = append(tests, &test{
        from: 3,
        to:   4,
        expected: func(d []byte) []byte {
            data := make([]byte, 128)
            copy(data, d)
            return sha3hash(sha3hash(data[:64]), sha3hash(data[64:]))
        },
    })

    // all segmentCounts in [5,8] should be:
    //
    //   sha3hash(
    //     sha3hash(
    //       sha3hash(data[:64])
    //       sha3hash(data[64:128])
    //     )
    //     sha3hash(
    //       sha3hash(data[128:192])
    //       sha3hash(data[192:])
    //     )
    //   )
    //
    tests = append(tests, &test{
        from: 5,
        to:   8,
        expected: func(d []byte) []byte {
            data := make([]byte, 256)
            copy(data, d)
            return sha3hash(sha3hash(sha3hash(data[:64]), sha3hash(data[64:128])), sha3hash(sha3hash(data[128:192]), sha3hash(data[192:])))
        },
    })

    // run the tests
    for _, x := range tests {
        for segmentCount := x.from; segmentCount <= x.to; segmentCount++ {
            for length := 1; length <= segmentCount*32; length++ {
                t.Run(fmt.Sprintf("%d_segments_%d_bytes", segmentCount, length), func(t *testing.T) {
                    data := make([]byte, length)
                    if _, err := io.ReadFull(crand.Reader, data); err != nil && err != io.EOF {
                        t.Fatal(err)
                    }
                    expected := x.expected(data)
                    actual := NewRefHasher(sha3.NewKeccak256, segmentCount).Hash(data)
                    if !bytes.Equal(actual, expected) {
                        t.Fatalf("expected %x, got %x", expected, actual)
                    }
                })
            }
        }
    }
}

func TestHasherCorrectness(t *testing.T) {
    err := testHasher(testBaseHasher)
    if err != nil {
        t.Fatal(err)
    }
}

func testHasher(f func(BaseHasherFunc, []byte, int, int) error) error {
    data := newData(BufferSize)
    hasher := sha3.NewKeccak256
    size := hasher().Size()
    counts := []int{1, 2, 3, 4, 5, 8, 16, 32, 64, 128}

    var err error
    for _, count := range counts {
        max := count * size
        incr := 1
        for n := 1; n <= max; n += incr {
            err = f(hasher, data, n, count)
            if err != nil {
                return err
            }
        }
    }
    return nil
}

// Tests that the BMT hasher can be synchronously reused with poolsizes 1 and PoolSize
func TestHasherReuse(t *testing.T) {
    t.Run(fmt.Sprintf("poolsize_%d", 1), func(t *testing.T) {
        testHasherReuse(1, t)
    })
    t.Run(fmt.Sprintf("poolsize_%d", PoolSize), func(t *testing.T) {
        testHasherReuse(PoolSize, t)
    })
}

func testHasherReuse(poolsize int, t *testing.T) {
    hasher := sha3.NewKeccak256
    pool := NewTreePool(hasher, SegmentCount, poolsize)
    defer pool.Drain(0)
    bmt := New(pool)

    for i := 0; i < 100; i++ {
        data := newData(BufferSize)
        n := rand.Intn(bmt.DataLength())
        err := testHasherCorrectness(bmt, hasher, data, n, SegmentCount)
        if err != nil {
            t.Fatal(err)
        }
    }
}

// Tests if pool can be cleanly reused even in concurrent use
func TestBMTHasherConcurrentUse(t *testing.T) {
    hasher := sha3.NewKeccak256
    pool := NewTreePool(hasher, SegmentCount, PoolSize)
    defer pool.Drain(0)
    cycles := 100
    errc := make(chan error)

    for i := 0; i < cycles; i++ {
        go func() {
            bmt := New(pool)
            data := newData(BufferSize)
            n := rand.Intn(bmt.DataLength())
            errc <- testHasherCorrectness(bmt, hasher, data, n, 128)
        }()
    }
LOOP:
    for {
        select {
        case <-time.NewTimer(5 * time.Second).C:
            t.Fatal("timed out")
        case err := <-errc:
            if err != nil {
                t.Fatal(err)
            }
            cycles--
            if cycles == 0 {
                break LOOP
            }
        }
    }
}

// helper function that creates  a tree pool
func testBaseHasher(hasher BaseHasherFunc, d []byte, n, count int) error {
    pool := NewTreePool(hasher, count, 1)
    defer pool.Drain(0)
    bmt := New(pool)
    return testHasherCorrectness(bmt, hasher, d, n, count)
}

// helper function that compares reference and optimised implementations on
// correctness
func testHasherCorrectness(bmt *Hasher, hasher BaseHasherFunc, d []byte, n, count int) (err error) {
    span := make([]byte, 8)
    if len(d) < n {
        n = len(d)
    }
    binary.BigEndian.PutUint64(span, uint64(n))
    data := d[:n]
    rbmt := NewRefHasher(hasher, count)
    exp := sha3hash(span, rbmt.Hash(data))
    got := Hash(bmt, span, data)
    if !bytes.Equal(got, exp) {
        return fmt.Errorf("wrong hash: expected %x, got %x", exp, got)
    }
    return err
}

func BenchmarkSHA3_4k(t *testing.B)   { benchmarkSHA3(4096, t) }
func BenchmarkSHA3_2k(t *testing.B)   { benchmarkSHA3(4096/2, t) }
func BenchmarkSHA3_1k(t *testing.B)   { benchmarkSHA3(4096/4, t) }
func BenchmarkSHA3_512b(t *testing.B) { benchmarkSHA3(4096/8, t) }
func BenchmarkSHA3_256b(t *testing.B) { benchmarkSHA3(4096/16, t) }
func BenchmarkSHA3_128b(t *testing.B) { benchmarkSHA3(4096/32, t) }

func BenchmarkBMTBaseline_4k(t *testing.B)   { benchmarkBMTBaseline(4096, t) }
func BenchmarkBMTBaseline_2k(t *testing.B)   { benchmarkBMTBaseline(4096/2, t) }
func BenchmarkBMTBaseline_1k(t *testing.B)   { benchmarkBMTBaseline(4096/4, t) }
func BenchmarkBMTBaseline_512b(t *testing.B) { benchmarkBMTBaseline(4096/8, t) }
func BenchmarkBMTBaseline_256b(t *testing.B) { benchmarkBMTBaseline(4096/16, t) }
func BenchmarkBMTBaseline_128b(t *testing.B) { benchmarkBMTBaseline(4096/32, t) }

func BenchmarkRefHasher_4k(t *testing.B)   { benchmarkRefHasher(4096, t) }
func BenchmarkRefHasher_2k(t *testing.B)   { benchmarkRefHasher(4096/2, t) }
func BenchmarkRefHasher_1k(t *testing.B)   { benchmarkRefHasher(4096/4, t) }
func BenchmarkRefHasher_512b(t *testing.B) { benchmarkRefHasher(4096/8, t) }
func BenchmarkRefHasher_256b(t *testing.B) { benchmarkRefHasher(4096/16, t) }
func BenchmarkRefHasher_128b(t *testing.B) { benchmarkRefHasher(4096/32, t) }

func BenchmarkBMTHasher_4k(t *testing.B)   { benchmarkBMTHasher(4096, t) }
func BenchmarkBMTHasher_2k(t *testing.B)   { benchmarkBMTHasher(4096/2, t) }
func BenchmarkBMTHasher_1k(t *testing.B)   { benchmarkBMTHasher(4096/4, t) }
func BenchmarkBMTHasher_512b(t *testing.B) { benchmarkBMTHasher(4096/8, t) }
func BenchmarkBMTHasher_256b(t *testing.B) { benchmarkBMTHasher(4096/16, t) }
func BenchmarkBMTHasher_128b(t *testing.B) { benchmarkBMTHasher(4096/32, t) }

func BenchmarkBMTHasherNoPool_4k(t *testing.B)   { benchmarkBMTHasherPool(1, 4096, t) }
func BenchmarkBMTHasherNoPool_2k(t *testing.B)   { benchmarkBMTHasherPool(1, 4096/2, t) }
func BenchmarkBMTHasherNoPool_1k(t *testing.B)   { benchmarkBMTHasherPool(1, 4096/4, t) }
func BenchmarkBMTHasherNoPool_512b(t *testing.B) { benchmarkBMTHasherPool(1, 4096/8, t) }
func BenchmarkBMTHasherNoPool_256b(t *testing.B) { benchmarkBMTHasherPool(1, 4096/16, t) }
func BenchmarkBMTHasherNoPool_128b(t *testing.B) { benchmarkBMTHasherPool(1, 4096/32, t) }

func BenchmarkBMTHasherPool_4k(t *testing.B)   { benchmarkBMTHasherPool(PoolSize, 4096, t) }
func BenchmarkBMTHasherPool_2k(t *testing.B)   { benchmarkBMTHasherPool(PoolSize, 4096/2, t) }
func BenchmarkBMTHasherPool_1k(t *testing.B)   { benchmarkBMTHasherPool(PoolSize, 4096/4, t) }
func BenchmarkBMTHasherPool_512b(t *testing.B) { benchmarkBMTHasherPool(PoolSize, 4096/8, t) }
func BenchmarkBMTHasherPool_256b(t *testing.B) { benchmarkBMTHasherPool(PoolSize, 4096/16, t) }
func BenchmarkBMTHasherPool_128b(t *testing.B) { benchmarkBMTHasherPool(PoolSize, 4096/32, t) }

// benchmarks simple sha3 hash on chunks
func benchmarkSHA3(n int, t *testing.B) {
    data := newData(n)
    hasher := sha3.NewKeccak256
    h := hasher()

    t.ReportAllocs()
    t.ResetTimer()
    for i := 0; i < t.N; i++ {
        h.Reset()
        h.Write(data)
        h.Sum(nil)
    }
}

// benchmarks the minimum hashing time for a balanced (for simplicity) BMT
// by doing count/segmentsize parallel hashings of 2*segmentsize bytes
// doing it on n PoolSize each reusing the base hasher
// the premise is that this is the minimum computation needed for a BMT
// therefore this serves as a theoretical optimum for concurrent implementations
func benchmarkBMTBaseline(n int, t *testing.B) {
    hasher := sha3.NewKeccak256
    hashSize := hasher().Size()
    data := newData(hashSize)

    t.ReportAllocs()
    t.ResetTimer()
    for i := 0; i < t.N; i++ {
        count := int32((n-1)/hashSize + 1)
        wg := sync.WaitGroup{}
        wg.Add(PoolSize)
        var i int32
        for j := 0; j < PoolSize; j++ {
            go func() {
                defer wg.Done()
                h := hasher()
                for atomic.AddInt32(&i, 1) < count {
                    h.Reset()
                    h.Write(data)
                    h.Sum(nil)
                }
            }()
        }
        wg.Wait()
    }
}

// benchmarks BMT Hasher
func benchmarkBMTHasher(n int, t *testing.B) {
    data := newData(n)
    hasher := sha3.NewKeccak256
    pool := NewTreePool(hasher, SegmentCount, PoolSize)

    t.ReportAllocs()
    t.ResetTimer()
    for i := 0; i < t.N; i++ {
        bmt := New(pool)
        Hash(bmt, nil, data)
    }
}

// benchmarks 100 concurrent bmt hashes with pool capacity
func benchmarkBMTHasherPool(poolsize, n int, t *testing.B) {
    data := newData(n)
    hasher := sha3.NewKeccak256
    pool := NewTreePool(hasher, SegmentCount, poolsize)
    cycles := 100

    t.ReportAllocs()
    t.ResetTimer()
    wg := sync.WaitGroup{}
    for i := 0; i < t.N; i++ {
        wg.Add(cycles)
        for j := 0; j < cycles; j++ {
            go func() {
                defer wg.Done()
                bmt := New(pool)
                Hash(bmt, nil, data)
            }()
        }
        wg.Wait()
    }
}

// benchmarks the reference hasher
func benchmarkRefHasher(n int, t *testing.B) {
    data := newData(n)
    hasher := sha3.NewKeccak256
    rbmt := NewRefHasher(hasher, 128)

    t.ReportAllocs()
    t.ResetTimer()
    for i := 0; i < t.N; i++ {
        rbmt.Hash(data)
    }
}

func newData(bufferSize int) []byte {
    data := make([]byte, bufferSize)
    _, err := io.ReadFull(crand.Reader, data)
    if err != nil {
        panic(err.Error())
    }
    return data
}