aboutsummaryrefslogtreecommitdiffstats
path: root/swarm/bmt/bmt.go
blob: 835587020c393a3f8e6b2dcd4631be378f2db9e8 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
// Copyright 2018 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.

// Package bmt provides a binary merkle tree implementation
package bmt

import (
    "fmt"
    "hash"
    "strings"
    "sync"
    "sync/atomic"
)

/*
Binary Merkle Tree Hash is a hash function over arbitrary datachunks of limited size
It is defined as the root hash of the binary merkle tree built over fixed size segments
of the underlying chunk using any base hash function (e.g keccak 256 SHA3).
Chunk with data shorter than the fixed size are hashed as if they had zero padding

BMT hash is used as the chunk hash function in swarm which in turn is the basis for the
128 branching swarm hash http://swarm-guide.readthedocs.io/en/latest/architecture.html#swarm-hash

The BMT is optimal for providing compact inclusion proofs, i.e. prove that a
segment is a substring of a chunk starting at a particular offset
The size of the underlying segments is fixed to the size of the base hash (called the resolution
of the BMT hash), Using Keccak256 SHA3 hash is 32 bytes, the EVM word size to optimize for on-chain BMT verification
as well as the hash size optimal for inclusion proofs in the merkle tree of the swarm hash.

Two implementations are provided:

* RefHasher is optimized for code simplicity and meant as a reference implementation
  that is simple to understand
* Hasher is optimized for speed taking advantage of concurrency with minimalistic
  control structure to coordinate the concurrent routines
  It implements the following interfaces
    * standard golang hash.Hash
    * SwarmHash
    * io.Writer
    * TODO: SegmentWriter
*/

const (
    // SegmentCount is the maximum number of segments of the underlying chunk
    // Should be equal to max-chunk-data-size / hash-size
    SegmentCount = 128
    // PoolSize is the maximum number of bmt trees used by the hashers, i.e,
    // the maximum number of concurrent BMT hashing operations performed by the same hasher
    PoolSize = 8
)

// BaseHasherFunc is a hash.Hash constructor function used for the base hash of the BMT.
// implemented by Keccak256 SHA3 sha3.NewKeccak256
type BaseHasherFunc func() hash.Hash

// Hasher a reusable hasher for fixed maximum size chunks representing a BMT
// - implements the hash.Hash interface
// - reuses a pool of trees for amortised memory allocation and resource control
// - supports order-agnostic concurrent segment writes (TODO:)
//   as well as sequential read and write
// - the same hasher instance must not be called concurrently on more than one chunk
// - the same hasher instance is synchronously reuseable
// - Sum gives back the tree to the pool and guaranteed to leave
//   the tree and itself in a state reusable for hashing a new chunk
// - generates and verifies segment inclusion proofs (TODO:)
type Hasher struct {
    pool *TreePool // BMT resource pool
    bmt  *tree     // prebuilt BMT resource for flowcontrol and proofs
}

// New creates a reusable Hasher
// implements the hash.Hash interface
// pulls a new tree from a resource pool for hashing each chunk
func New(p *TreePool) *Hasher {
    return &Hasher{
        pool: p,
    }
}

// TreePool provides a pool of trees used as resources by Hasher
// a tree popped from the pool is guaranteed to have clean state
// for hashing a new chunk
type TreePool struct {
    lock         sync.Mutex
    c            chan *tree     // the channel to obtain a resource from the pool
    hasher       BaseHasherFunc // base hasher to use for the BMT levels
    SegmentSize  int            // size of leaf segments, stipulated to be = hash size
    SegmentCount int            // the number of segments on the base level of the BMT
    Capacity     int            // pool capacity, controls concurrency
    Depth        int            // depth of the bmt trees = int(log2(segmentCount))+1
    Datalength   int            // the total length of the data (count * size)
    count        int            // current count of (ever) allocated resources
    zerohashes   [][]byte       // lookup table for predictable padding subtrees for all levels
}

// NewTreePool creates a tree pool with hasher, segment size, segment count and capacity
// on Hasher.getTree it reuses free trees or creates a new one if capacity is not reached
func NewTreePool(hasher BaseHasherFunc, segmentCount, capacity int) *TreePool {
    // initialises the zerohashes lookup table
    depth := calculateDepthFor(segmentCount)
    segmentSize := hasher().Size()
    zerohashes := make([][]byte, depth)
    zeros := make([]byte, segmentSize)
    zerohashes[0] = zeros
    h := hasher()
    for i := 1; i < depth; i++ {
        zeros = doHash(h, nil, zeros, zeros)
        zerohashes[i] = zeros
    }
    return &TreePool{
        c:            make(chan *tree, capacity),
        hasher:       hasher,
        SegmentSize:  segmentSize,
        SegmentCount: segmentCount,
        Capacity:     capacity,
        Datalength:   segmentCount * segmentSize,
        Depth:        depth,
        zerohashes:   zerohashes,
    }
}

// Drain drains the pool until it has no more than n resources
func (p *TreePool) Drain(n int) {
    p.lock.Lock()
    defer p.lock.Unlock()
    for len(p.c) > n {
        <-p.c
        p.count--
    }
}

// Reserve is blocking until it returns an available tree
// it reuses free trees or creates a new one if size is not reached
// TODO: should use a context here
func (p *TreePool) reserve() *tree {
    p.lock.Lock()
    defer p.lock.Unlock()
    var t *tree
    if p.count == p.Capacity {
        return <-p.c
    }
    select {
    case t = <-p.c:
    default:
        t = newTree(p.SegmentSize, p.Depth)
        p.count++
    }
    return t
}

// release gives back a tree to the pool.
// this tree is guaranteed to be in reusable state
func (p *TreePool) release(t *tree) {
    p.c <- t // can never fail ...
}

// tree is a reusable control structure representing a BMT
// organised in a binary tree
// Hasher uses a TreePool to obtain a tree for each chunk hash
// the tree is 'locked' while not in the pool
type tree struct {
    leaves  []*node     // leaf nodes of the tree, other nodes accessible via parent links
    cur     int         // index of rightmost currently open segment
    offset  int         // offset (cursor position) within currently open segment
    segment []byte      // the rightmost open segment (not complete)
    section []byte      // the rightmost open section (double segment)
    depth   int         // number of levels
    result  chan []byte // result channel
    hash    []byte      // to record the result
    span    []byte      // The span of the data subsumed under the chunk
}

// node is a reuseable segment hasher representing a node in a BMT
type node struct {
    isLeft      bool   // whether it is left side of the parent double segment
    parent      *node  // pointer to parent node in the BMT
    state       int32  // atomic increment impl concurrent boolean toggle
    left, right []byte // this is where the content segment is set
}

// newNode constructs a segment hasher node in the BMT (used by newTree)
func newNode(index int, parent *node) *node {
    return &node{
        parent: parent,
        isLeft: index%2 == 0,
    }
}

// Draw draws the BMT (badly)
func (t *tree) draw(hash []byte) string {
    var left, right []string
    var anc []*node
    for i, n := range t.leaves {
        left = append(left, fmt.Sprintf("%v", hashstr(n.left)))
        if i%2 == 0 {
            anc = append(anc, n.parent)
        }
        right = append(right, fmt.Sprintf("%v", hashstr(n.right)))
    }
    anc = t.leaves
    var hashes [][]string
    for l := 0; len(anc) > 0; l++ {
        var nodes []*node
        hash := []string{""}
        for i, n := range anc {
            hash = append(hash, fmt.Sprintf("%v|%v", hashstr(n.left), hashstr(n.right)))
            if i%2 == 0 && n.parent != nil {
                nodes = append(nodes, n.parent)
            }
        }
        hash = append(hash, "")
        hashes = append(hashes, hash)
        anc = nodes
    }
    hashes = append(hashes, []string{"", fmt.Sprintf("%v", hashstr(hash)), ""})
    total := 60
    del := "                             "
    var rows []string
    for i := len(hashes) - 1; i >= 0; i-- {
        var textlen int
        hash := hashes[i]
        for _, s := range hash {
            textlen += len(s)
        }
        if total < textlen {
            total = textlen + len(hash)
        }
        delsize := (total - textlen) / (len(hash) - 1)
        if delsize > len(del) {
            delsize = len(del)
        }
        row := fmt.Sprintf("%v: %v", len(hashes)-i-1, strings.Join(hash, del[:delsize]))
        rows = append(rows, row)

    }
    rows = append(rows, strings.Join(left, "  "))
    rows = append(rows, strings.Join(right, "  "))
    return strings.Join(rows, "\n") + "\n"
}

// newTree initialises a tree by building up the nodes of a BMT
// - segment size is stipulated to be the size of the hash
func newTree(segmentSize, depth int) *tree {
    n := newNode(0, nil)
    prevlevel := []*node{n}
    // iterate over levels and creates 2^(depth-level) nodes
    count := 2
    for level := depth - 2; level >= 0; level-- {
        nodes := make([]*node, count)
        for i := 0; i < count; i++ {
            parent := prevlevel[i/2]
            nodes[i] = newNode(i, parent)
        }
        prevlevel = nodes
        count *= 2
    }
    // the datanode level is the nodes on the last level
    return &tree{
        leaves:  prevlevel,
        result:  make(chan []byte, 1),
        segment: make([]byte, segmentSize),
        section: make([]byte, 2*segmentSize),
    }
}

// methods needed by hash.Hash

// Size returns the size
func (h *Hasher) Size() int {
    return h.pool.SegmentSize
}

// BlockSize returns the block size
func (h *Hasher) BlockSize() int {
    return h.pool.SegmentSize
}

// Hash hashes the data and the span using the bmt hasher
func Hash(h *Hasher, span, data []byte) []byte {
    h.ResetWithLength(span)
    h.Write(data)
    return h.Sum(nil)
}

// Datalength returns the maximum data size that is hashed by the hasher =
// segment count times segment size
func (h *Hasher) DataLength() int {
    return h.pool.Datalength
}

// Sum returns the hash of the buffer
// hash.Hash interface Sum method appends the byte slice to the underlying
// data before it calculates and returns the hash of the chunk
// caller must make sure Sum is not called concurrently with Write, writeSection
// and WriteSegment (TODO:)
func (h *Hasher) Sum(b []byte) (r []byte) {
    return h.sum(b, true, true)
}

// sum implements Sum taking parameters
// * if the tree is released right away
// * if sequential write is used (can read sections)
func (h *Hasher) sum(b []byte, release, section bool) (r []byte) {
    t := h.bmt
    bh := h.pool.hasher()
    go h.writeSection(t.cur, t.section, true)
    bmtHash := <-t.result
    span := t.span
    // fmt.Println(t.draw(bmtHash))
    if release {
        h.releaseTree()
    }
    // b + sha3(span + BMT(pure_chunk))
    if span == nil {
        return append(b, bmtHash...)
    }
    return doHash(bh, b, span, bmtHash)
}

// Hasher implements the SwarmHash interface

// Hasher implements the io.Writer interface

// Write fills the buffer to hash,
// with every full segment calls writeSection
func (h *Hasher) Write(b []byte) (int, error) {
    l := len(b)
    if l <= 0 {
        return 0, nil
    }
    t := h.bmt
    secsize := 2 * h.pool.SegmentSize
    // calculate length of missing bit to complete current open section
    smax := secsize - t.offset
    // if at the beginning of chunk or middle of the section
    if t.offset < secsize {
        // fill up current segment from buffer
        copy(t.section[t.offset:], b)
        // if input buffer consumed and open section not complete, then
        // advance offset and return
        if smax == 0 {
            smax = secsize
        }
        if l <= smax {
            t.offset += l
            return l, nil
        }
    } else {
        if t.cur == h.pool.SegmentCount*2 {
            return 0, nil
        }
    }
    // read full segments and the last possibly partial segment from the input buffer
    for smax < l {
        // section complete; push to tree asynchronously
        go h.writeSection(t.cur, t.section, false)
        // reset section
        t.section = make([]byte, secsize)
        // copy from imput buffer at smax to right half of section
        copy(t.section, b[smax:])
        // advance cursor
        t.cur++
        // smax here represents successive offsets in the input buffer
        smax += secsize
    }
    t.offset = l - smax + secsize
    return l, nil
}

// Reset needs to be called before writing to the hasher
func (h *Hasher) Reset() {
    h.getTree()
}

// Hasher implements the SwarmHash interface

// ResetWithLength needs to be called before writing to the hasher
// the argument is supposed to be the byte slice binary representation of
// the length of the data subsumed under the hash, i.e., span
func (h *Hasher) ResetWithLength(span []byte) {
    h.Reset()
    h.bmt.span = span
}

// releaseTree gives back the Tree to the pool whereby it unlocks
// it resets tree, segment and index
func (h *Hasher) releaseTree() {
    t := h.bmt
    if t != nil {
        t.cur = 0
        t.offset = 0
        t.span = nil
        t.hash = nil
        h.bmt = nil
        t.section = make([]byte, h.pool.SegmentSize*2)
        t.segment = make([]byte, h.pool.SegmentSize)
        h.pool.release(t)
    }
}

// TODO: writeSegment writes the ith segment into the BMT tree
// func (h *Hasher) writeSegment(i int, s []byte) {
//  go h.run(h.bmt.leaves[i/2], h.pool.hasher(), i%2 == 0, s)
// }

// writeSection writes the hash of i-th section into level 1 node of the BMT tree
func (h *Hasher) writeSection(i int, section []byte, final bool) {
    // select the leaf node for the section
    n := h.bmt.leaves[i]
    isLeft := n.isLeft
    n = n.parent
    bh := h.pool.hasher()
    // hash the section
    s := doHash(bh, nil, section)
    // write hash into parent node
    if final {
        // for the last segment use writeFinalNode
        h.writeFinalNode(1, n, bh, isLeft, s)
    } else {
        h.writeNode(n, bh, isLeft, s)
    }
}

// writeNode pushes the data to the node
// if it is the first of 2 sisters written the routine returns
// if it is the second, it calculates the hash and writes it
// to the parent node recursively
func (h *Hasher) writeNode(n *node, bh hash.Hash, isLeft bool, s []byte) {
    level := 1
    for {
        // at the root of the bmt just write the result to the result channel
        if n == nil {
            h.bmt.result <- s
            return
        }
        // otherwise assign child hash to branc
        if isLeft {
            n.left = s
        } else {
            n.right = s
        }
        // the child-thread first arriving will quit
        if n.toggle() {
            return
        }
        // the thread coming later now can be sure both left and right children are written
        // it calculates the hash of left|right and pushes it to the parent
        s = doHash(bh, nil, n.left, n.right)
        isLeft = n.isLeft
        n = n.parent
        level++
    }
}

// writeFinalNode is following the path starting from the final datasegment to the
// BMT root via parents
// for unbalanced trees it fills in the missing right sister nodes using
// the pool's lookup table for BMT subtree root hashes for all-zero sections
// otherwise behaves like `writeNode`
func (h *Hasher) writeFinalNode(level int, n *node, bh hash.Hash, isLeft bool, s []byte) {

    for {
        // at the root of the bmt just write the result to the result channel
        if n == nil {
            if s != nil {
                h.bmt.result <- s
            }
            return
        }
        var noHash bool
        if isLeft {
            // coming from left sister branch
            // when the final section's path is going via left child node
            // we include an all-zero subtree hash for the right level and toggle the node.
            // when the path is going through right child node, nothing to do
            n.right = h.pool.zerohashes[level]
            if s != nil {
                n.left = s
                // if a left final node carries a hash, it must be the first (and only thread)
                // so the toggle is already in passive state no need no call
                // yet thread needs to carry on pushing hash to parent
            } else {
                // if again first thread then propagate nil and calculate no hash
                noHash = n.toggle()
            }
        } else {
            // right sister branch
            // if s is nil, then thread arrived first at previous node and here there will be two,
            // so no need to do anything
            if s != nil {
                n.right = s
                noHash = n.toggle()
            } else {
                noHash = true
            }
        }
        // the child-thread first arriving will just continue resetting s to nil
        // the second thread now can be sure both left and right children are written
        // it calculates the hash of left|right and pushes it to the parent
        if noHash {
            s = nil
        } else {
            s = doHash(bh, nil, n.left, n.right)
        }
        isLeft = n.isLeft
        n = n.parent
        level++
    }
}

// getTree obtains a BMT resource by reserving one from the pool
func (h *Hasher) getTree() *tree {
    if h.bmt != nil {
        return h.bmt
    }
    t := h.pool.reserve()
    h.bmt = t
    return t
}

// atomic bool toggle implementing a concurrent reusable 2-state object
// atomic addint with %2 implements atomic bool toggle
// it returns true if the toggler just put it in the active/waiting state
func (n *node) toggle() bool {
    return atomic.AddInt32(&n.state, 1)%2 == 1
}

// calculates the hash of the data using hash.Hash
func doHash(h hash.Hash, b []byte, data ...[]byte) []byte {
    h.Reset()
    for _, v := range data {
        h.Write(v)
    }
    return h.Sum(b)
}

func hashstr(b []byte) string {
    end := len(b)
    if end > 4 {
        end = 4
    }
    return fmt.Sprintf("%x", b[:end])
}

// calculateDepthFor calculates the depth (number of levels) in the BMT tree
func calculateDepthFor(n int) (d int) {
    c := 2
    for ; c < n; c *= 2 {
        d++
    }
    return d + 1
}