aboutsummaryrefslogtreecommitdiffstats
path: root/core/vm/common.go
blob: 2878b92d2a01548085412eb003e9944da062676d (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
// Copyright 2014 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.

package vm

import (
    "math"
    "math/big"

    "github.com/ethereum/go-ethereum/common"
    "github.com/ethereum/go-ethereum/params"
)

// Type is the VM type accepted by **NewVm**
type Type byte

const (
    StdVmTy Type = iota // Default standard VM
    JitVmTy             // LLVM JIT VM
    MaxVmTy
)

var (
    Pow256 = common.BigPow(2, 256) // Pow256 is 2**256

    U256 = common.U256 // Shortcut to common.U256
    S256 = common.S256 // Shortcut to common.S256

    Zero = common.Big0 // Shortcut to common.Big0
    One  = common.Big1 // Shortcut to common.Big1

    max = big.NewInt(math.MaxInt64) // Maximum 64 bit integer
)

// calculates the memory size required for a step
func calcMemSize(off, l *big.Int) *big.Int {
    if l.Cmp(common.Big0) == 0 {
        return common.Big0
    }

    return new(big.Int).Add(off, l)
}

// calculates the quadratic gas
func quadMemGas(mem *Memory, newMemSize, gas *big.Int) {
    if newMemSize.Cmp(common.Big0) > 0 {
        newMemSizeWords := toWordSize(newMemSize)
        newMemSize.Mul(newMemSizeWords, u256(32))

        if newMemSize.Cmp(u256(int64(mem.Len()))) > 0 {
            // be careful reusing variables here when changing.
            // The order has been optimised to reduce allocation
            oldSize := toWordSize(big.NewInt(int64(mem.Len())))
            pow := new(big.Int).Exp(oldSize, common.Big2, Zero)
            linCoef := oldSize.Mul(oldSize, params.MemoryGas)
            quadCoef := new(big.Int).Div(pow, params.QuadCoeffDiv)
            oldTotalFee := new(big.Int).Add(linCoef, quadCoef)

            pow.Exp(newMemSizeWords, common.Big2, Zero)
            linCoef = linCoef.Mul(newMemSizeWords, params.MemoryGas)
            quadCoef = quadCoef.Div(pow, params.QuadCoeffDiv)
            newTotalFee := linCoef.Add(linCoef, quadCoef)

            fee := newTotalFee.Sub(newTotalFee, oldTotalFee)
            gas.Add(gas, fee)
        }
    }
}

// Simple helper
func u256(n int64) *big.Int {
    return big.NewInt(n)
}

// Mainly used for print variables and passing to Print*
func toValue(val *big.Int) interface{} {
    // Let's assume a string on right padded zero's
    b := val.Bytes()
    if b[0] != 0 && b[len(b)-1] == 0x0 && b[len(b)-2] == 0x0 {
        return string(b)
    }

    return val
}

// getData returns a slice from the data based on the start and size and pads
// up to size with zero's. This function is overflow safe.
func getData(data []byte, start, size *big.Int) []byte {
    dlen := big.NewInt(int64(len(data)))

    s := common.BigMin(start, dlen)
    e := common.BigMin(new(big.Int).Add(s, size), dlen)
    return common.RightPadBytes(data[s.Uint64():e.Uint64()], int(size.Uint64()))
}

// useGas attempts to subtract the amount of gas and returns whether it was
// successful
func useGas(gas, amount *big.Int) bool {
    if gas.Cmp(amount) < 0 {
        return false
    }

    // Sub the amount of gas from the remaining
    gas.Sub(gas, amount)
    return true
}