aboutsummaryrefslogtreecommitdiffstats
path: root/core/tx_pool_test.go
blob: 63e0144bdb71d898af1d004935a112c7f9c90d2f (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
// Copyright 2015 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.

package core

import (
    "crypto/ecdsa"
    "math/big"
    "math/rand"
    "testing"
    "time"

    "github.com/ethereum/go-ethereum/common"
    "github.com/ethereum/go-ethereum/core/state"
    "github.com/ethereum/go-ethereum/core/types"
    "github.com/ethereum/go-ethereum/crypto"
    "github.com/ethereum/go-ethereum/ethdb"
    "github.com/ethereum/go-ethereum/event"
    "github.com/ethereum/go-ethereum/params"
)

func transaction(nonce uint64, gaslimit *big.Int, key *ecdsa.PrivateKey) *types.Transaction {
    return pricedTransaction(nonce, gaslimit, big.NewInt(1), key)
}

func pricedTransaction(nonce uint64, gaslimit, gasprice *big.Int, key *ecdsa.PrivateKey) *types.Transaction {
    tx, _ := types.SignTx(types.NewTransaction(nonce, common.Address{}, big.NewInt(100), gaslimit, gasprice, nil), types.HomesteadSigner{}, key)
    return tx
}

func setupTxPool() (*TxPool, *ecdsa.PrivateKey) {
    db, _ := ethdb.NewMemDatabase()
    statedb, _ := state.New(common.Hash{}, db)

    key, _ := crypto.GenerateKey()
    newPool := NewTxPool(DefaultTxPoolConfig, params.TestChainConfig, new(event.TypeMux), func() (*state.StateDB, error) { return statedb, nil }, func() *big.Int { return big.NewInt(1000000) })
    newPool.resetState()

    return newPool, key
}

func deriveSender(tx *types.Transaction) (common.Address, error) {
    return types.Sender(types.HomesteadSigner{}, tx)
}

// This test simulates a scenario where a new block is imported during a
// state reset and tests whether the pending state is in sync with the
// block head event that initiated the resetState().
func TestStateChangeDuringPoolReset(t *testing.T) {
    var (
        db, _      = ethdb.NewMemDatabase()
        key, _     = crypto.GenerateKey()
        address    = crypto.PubkeyToAddress(key.PublicKey)
        mux        = new(event.TypeMux)
        statedb, _ = state.New(common.Hash{}, db)
        trigger    = false
    )

    // setup pool with 2 transaction in it
    statedb.SetBalance(address, new(big.Int).SetUint64(params.Ether))

    tx0 := transaction(0, big.NewInt(100000), key)
    tx1 := transaction(1, big.NewInt(100000), key)

    // stateFunc is used multiple times to reset the pending state.
    // when simulate is true it will create a state that indicates
    // that tx0 and tx1 are included in the chain.
    stateFunc := func() (*state.StateDB, error) {
        // delay "state change" by one. The tx pool fetches the
        // state multiple times and by delaying it a bit we simulate
        // a state change between those fetches.
        stdb := statedb
        if trigger {
            statedb, _ = state.New(common.Hash{}, db)
            // simulate that the new head block included tx0 and tx1
            statedb.SetNonce(address, 2)
            statedb.SetBalance(address, new(big.Int).SetUint64(params.Ether))
            trigger = false
        }
        return stdb, nil
    }

    gasLimitFunc := func() *big.Int { return big.NewInt(1000000000) }

    txpool := NewTxPool(DefaultTxPoolConfig, params.TestChainConfig, mux, stateFunc, gasLimitFunc)
    txpool.resetState()

    nonce := txpool.State().GetNonce(address)
    if nonce != 0 {
        t.Fatalf("Invalid nonce, want 0, got %d", nonce)
    }

    txpool.AddBatch(types.Transactions{tx0, tx1})

    nonce = txpool.State().GetNonce(address)
    if nonce != 2 {
        t.Fatalf("Invalid nonce, want 2, got %d", nonce)
    }

    // trigger state change in the background
    trigger = true

    txpool.resetState()

    pendingTx, err := txpool.Pending()
    if err != nil {
        t.Fatalf("Could not fetch pending transactions: %v", err)
    }

    for addr, txs := range pendingTx {
        t.Logf("%0x: %d\n", addr, len(txs))
    }

    nonce = txpool.State().GetNonce(address)
    if nonce != 2 {
        t.Fatalf("Invalid nonce, want 2, got %d", nonce)
    }
}

func TestInvalidTransactions(t *testing.T) {
    pool, key := setupTxPool()

    tx := transaction(0, big.NewInt(100), key)
    from, _ := deriveSender(tx)
    currentState, _ := pool.currentState()
    currentState.AddBalance(from, big.NewInt(1))
    if err := pool.Add(tx); err != ErrInsufficientFunds {
        t.Error("expected", ErrInsufficientFunds)
    }

    balance := new(big.Int).Add(tx.Value(), new(big.Int).Mul(tx.Gas(), tx.GasPrice()))
    currentState.AddBalance(from, balance)
    if err := pool.Add(tx); err != ErrIntrinsicGas {
        t.Error("expected", ErrIntrinsicGas, "got", err)
    }

    currentState.SetNonce(from, 1)
    currentState.AddBalance(from, big.NewInt(0xffffffffffffff))
    tx = transaction(0, big.NewInt(100000), key)
    if err := pool.Add(tx); err != ErrNonce {
        t.Error("expected", ErrNonce)
    }

    tx = transaction(1, big.NewInt(100000), key)
    pool.gasPrice = big.NewInt(1000)
    if err := pool.Add(tx); err != ErrUnderpriced {
        t.Error("expected", ErrUnderpriced, "got", err)
    }

    pool.SetLocal(tx)
    if err := pool.Add(tx); err != nil {
        t.Error("expected", nil, "got", err)
    }
}

func TestTransactionQueue(t *testing.T) {
    pool, key := setupTxPool()
    tx := transaction(0, big.NewInt(100), key)
    from, _ := deriveSender(tx)
    currentState, _ := pool.currentState()
    currentState.AddBalance(from, big.NewInt(1000))
    pool.resetState()
    pool.enqueueTx(tx.Hash(), tx)

    pool.promoteExecutables(currentState)
    if len(pool.pending) != 1 {
        t.Error("expected valid txs to be 1 is", len(pool.pending))
    }

    tx = transaction(1, big.NewInt(100), key)
    from, _ = deriveSender(tx)
    currentState.SetNonce(from, 2)
    pool.enqueueTx(tx.Hash(), tx)
    pool.promoteExecutables(currentState)
    if _, ok := pool.pending[from].txs.items[tx.Nonce()]; ok {
        t.Error("expected transaction to be in tx pool")
    }

    if len(pool.queue) > 0 {
        t.Error("expected transaction queue to be empty. is", len(pool.queue))
    }

    pool, key = setupTxPool()
    tx1 := transaction(0, big.NewInt(100), key)
    tx2 := transaction(10, big.NewInt(100), key)
    tx3 := transaction(11, big.NewInt(100), key)
    from, _ = deriveSender(tx1)
    currentState, _ = pool.currentState()
    currentState.AddBalance(from, big.NewInt(1000))
    pool.resetState()

    pool.enqueueTx(tx1.Hash(), tx1)
    pool.enqueueTx(tx2.Hash(), tx2)
    pool.enqueueTx(tx3.Hash(), tx3)

    pool.promoteExecutables(currentState)

    if len(pool.pending) != 1 {
        t.Error("expected tx pool to be 1, got", len(pool.pending))
    }
    if pool.queue[from].Len() != 2 {
        t.Error("expected len(queue) == 2, got", pool.queue[from].Len())
    }
}

func TestRemoveTx(t *testing.T) {
    pool, key := setupTxPool()
    tx := transaction(0, big.NewInt(100), key)
    from, _ := deriveSender(tx)
    currentState, _ := pool.currentState()
    currentState.AddBalance(from, big.NewInt(1))

    pool.enqueueTx(tx.Hash(), tx)
    pool.promoteTx(from, tx.Hash(), tx)
    if len(pool.queue) != 1 {
        t.Error("expected queue to be 1, got", len(pool.queue))
    }
    if len(pool.pending) != 1 {
        t.Error("expected pending to be 1, got", len(pool.pending))
    }
    pool.Remove(tx.Hash())
    if len(pool.queue) > 0 {
        t.Error("expected queue to be 0, got", len(pool.queue))
    }
    if len(pool.pending) > 0 {
        t.Error("expected pending to be 0, got", len(pool.pending))
    }
}

func TestNegativeValue(t *testing.T) {
    pool, key := setupTxPool()

    tx, _ := types.SignTx(types.NewTransaction(0, common.Address{}, big.NewInt(-1), big.NewInt(100), big.NewInt(1), nil), types.HomesteadSigner{}, key)
    from, _ := deriveSender(tx)
    currentState, _ := pool.currentState()
    currentState.AddBalance(from, big.NewInt(1))
    if err := pool.Add(tx); err != ErrNegativeValue {
        t.Error("expected", ErrNegativeValue, "got", err)
    }
}

func TestTransactionChainFork(t *testing.T) {
    pool, key := setupTxPool()
    addr := crypto.PubkeyToAddress(key.PublicKey)
    resetState := func() {
        db, _ := ethdb.NewMemDatabase()
        statedb, _ := state.New(common.Hash{}, db)
        pool.currentState = func() (*state.StateDB, error) { return statedb, nil }
        currentState, _ := pool.currentState()
        currentState.AddBalance(addr, big.NewInt(100000000000000))
        pool.resetState()
    }
    resetState()

    tx := transaction(0, big.NewInt(100000), key)
    if _, err := pool.add(tx); err != nil {
        t.Error("didn't expect error", err)
    }
    pool.RemoveBatch([]*types.Transaction{tx})

    // reset the pool's internal state
    resetState()
    if _, err := pool.add(tx); err != nil {
        t.Error("didn't expect error", err)
    }
}

func TestTransactionDoubleNonce(t *testing.T) {
    pool, key := setupTxPool()
    addr := crypto.PubkeyToAddress(key.PublicKey)
    resetState := func() {
        db, _ := ethdb.NewMemDatabase()
        statedb, _ := state.New(common.Hash{}, db)
        pool.currentState = func() (*state.StateDB, error) { return statedb, nil }
        currentState, _ := pool.currentState()
        currentState.AddBalance(addr, big.NewInt(100000000000000))
        pool.resetState()
    }
    resetState()

    signer := types.HomesteadSigner{}
    tx1, _ := types.SignTx(types.NewTransaction(0, common.Address{}, big.NewInt(100), big.NewInt(100000), big.NewInt(1), nil), signer, key)
    tx2, _ := types.SignTx(types.NewTransaction(0, common.Address{}, big.NewInt(100), big.NewInt(1000000), big.NewInt(2), nil), signer, key)
    tx3, _ := types.SignTx(types.NewTransaction(0, common.Address{}, big.NewInt(100), big.NewInt(1000000), big.NewInt(1), nil), signer, key)

    // Add the first two transaction, ensure higher priced stays only
    if replace, err := pool.add(tx1); err != nil || replace {
        t.Errorf("first transaction insert failed (%v) or reported replacement (%v)", err, replace)
    }
    if replace, err := pool.add(tx2); err != nil || !replace {
        t.Errorf("second transaction insert failed (%v) or not reported replacement (%v)", err, replace)
    }
    state, _ := pool.currentState()
    pool.promoteExecutables(state)
    if pool.pending[addr].Len() != 1 {
        t.Error("expected 1 pending transactions, got", pool.pending[addr].Len())
    }
    if tx := pool.pending[addr].txs.items[0]; tx.Hash() != tx2.Hash() {
        t.Errorf("transaction mismatch: have %x, want %x", tx.Hash(), tx2.Hash())
    }
    // Add the thid transaction and ensure it's not saved (smaller price)
    pool.add(tx3)
    pool.promoteExecutables(state)
    if pool.pending[addr].Len() != 1 {
        t.Error("expected 1 pending transactions, got", pool.pending[addr].Len())
    }
    if tx := pool.pending[addr].txs.items[0]; tx.Hash() != tx2.Hash() {
        t.Errorf("transaction mismatch: have %x, want %x", tx.Hash(), tx2.Hash())
    }
    // Ensure the total transaction count is correct
    if len(pool.all) != 1 {
        t.Error("expected 1 total transactions, got", len(pool.all))
    }
}

func TestMissingNonce(t *testing.T) {
    pool, key := setupTxPool()
    addr := crypto.PubkeyToAddress(key.PublicKey)
    currentState, _ := pool.currentState()
    currentState.AddBalance(addr, big.NewInt(100000000000000))
    tx := transaction(1, big.NewInt(100000), key)
    if _, err := pool.add(tx); err != nil {
        t.Error("didn't expect error", err)
    }
    if len(pool.pending) != 0 {
        t.Error("expected 0 pending transactions, got", len(pool.pending))
    }
    if pool.queue[addr].Len() != 1 {
        t.Error("expected 1 queued transaction, got", pool.queue[addr].Len())
    }
    if len(pool.all) != 1 {
        t.Error("expected 1 total transactions, got", len(pool.all))
    }
}

func TestNonceRecovery(t *testing.T) {
    const n = 10
    pool, key := setupTxPool()
    addr := crypto.PubkeyToAddress(key.PublicKey)
    currentState, _ := pool.currentState()
    currentState.SetNonce(addr, n)
    currentState.AddBalance(addr, big.NewInt(100000000000000))
    pool.resetState()
    tx := transaction(n, big.NewInt(100000), key)
    if err := pool.Add(tx); err != nil {
        t.Error(err)
    }
    // simulate some weird re-order of transactions and missing nonce(s)
    currentState.SetNonce(addr, n-1)
    pool.resetState()
    if fn := pool.pendingState.GetNonce(addr); fn != n+1 {
        t.Errorf("expected nonce to be %d, got %d", n+1, fn)
    }
}

func TestRemovedTxEvent(t *testing.T) {
    pool, key := setupTxPool()
    tx := transaction(0, big.NewInt(1000000), key)
    from, _ := deriveSender(tx)
    currentState, _ := pool.currentState()
    currentState.AddBalance(from, big.NewInt(1000000000000))
    pool.resetState()
    pool.eventMux.Post(RemovedTransactionEvent{types.Transactions{tx}})
    pool.eventMux.Post(ChainHeadEvent{nil})
    if pool.pending[from].Len() != 1 {
        t.Error("expected 1 pending tx, got", pool.pending[from].Len())
    }
    if len(pool.all) != 1 {
        t.Error("expected 1 total transactions, got", len(pool.all))
    }
}

// Tests that if an account runs out of funds, any pending and queued transactions
// are dropped.
func TestTransactionDropping(t *testing.T) {
    // Create a test account and fund it
    pool, key := setupTxPool()
    account, _ := deriveSender(transaction(0, big.NewInt(0), key))

    state, _ := pool.currentState()
    state.AddBalance(account, big.NewInt(1000))

    // Add some pending and some queued transactions
    var (
        tx0  = transaction(0, big.NewInt(100), key)
        tx1  = transaction(1, big.NewInt(200), key)
        tx10 = transaction(10, big.NewInt(100), key)
        tx11 = transaction(11, big.NewInt(200), key)
    )
    pool.promoteTx(account, tx0.Hash(), tx0)
    pool.promoteTx(account, tx1.Hash(), tx1)
    pool.enqueueTx(tx10.Hash(), tx10)
    pool.enqueueTx(tx11.Hash(), tx11)

    // Check that pre and post validations leave the pool as is
    if pool.pending[account].Len() != 2 {
        t.Errorf("pending transaction mismatch: have %d, want %d", pool.pending[account].Len(), 2)
    }
    if pool.queue[account].Len() != 2 {
        t.Errorf("queued transaction mismatch: have %d, want %d", pool.queue[account].Len(), 2)
    }
    if len(pool.all) != 4 {
        t.Errorf("total transaction mismatch: have %d, want %d", len(pool.all), 4)
    }
    pool.resetState()
    if pool.pending[account].Len() != 2 {
        t.Errorf("pending transaction mismatch: have %d, want %d", pool.pending[account].Len(), 2)
    }
    if pool.queue[account].Len() != 2 {
        t.Errorf("queued transaction mismatch: have %d, want %d", pool.queue[account].Len(), 2)
    }
    if len(pool.all) != 4 {
        t.Errorf("total transaction mismatch: have %d, want %d", len(pool.all), 4)
    }
    // Reduce the balance of the account, and check that invalidated transactions are dropped
    state.AddBalance(account, big.NewInt(-750))
    pool.resetState()

    if _, ok := pool.pending[account].txs.items[tx0.Nonce()]; !ok {
        t.Errorf("funded pending transaction missing: %v", tx0)
    }
    if _, ok := pool.pending[account].txs.items[tx1.Nonce()]; ok {
        t.Errorf("out-of-fund pending transaction present: %v", tx1)
    }
    if _, ok := pool.queue[account].txs.items[tx10.Nonce()]; !ok {
        t.Errorf("funded queued transaction missing: %v", tx10)
    }
    if _, ok := pool.queue[account].txs.items[tx11.Nonce()]; ok {
        t.Errorf("out-of-fund queued transaction present: %v", tx11)
    }
    if len(pool.all) != 2 {
        t.Errorf("total transaction mismatch: have %d, want %d", len(pool.all), 2)
    }
}

// Tests that if a transaction is dropped from the current pending pool (e.g. out
// of fund), all consecutive (still valid, but not executable) transactions are
// postponed back into the future queue to prevent broadcasting them.
func TestTransactionPostponing(t *testing.T) {
    // Create a test account and fund it
    pool, key := setupTxPool()
    account, _ := deriveSender(transaction(0, big.NewInt(0), key))

    state, _ := pool.currentState()
    state.AddBalance(account, big.NewInt(1000))

    // Add a batch consecutive pending transactions for validation
    txns := []*types.Transaction{}
    for i := 0; i < 100; i++ {
        var tx *types.Transaction
        if i%2 == 0 {
            tx = transaction(uint64(i), big.NewInt(100), key)
        } else {
            tx = transaction(uint64(i), big.NewInt(500), key)
        }
        pool.promoteTx(account, tx.Hash(), tx)
        txns = append(txns, tx)
    }
    // Check that pre and post validations leave the pool as is
    if pool.pending[account].Len() != len(txns) {
        t.Errorf("pending transaction mismatch: have %d, want %d", pool.pending[account].Len(), len(txns))
    }
    if len(pool.queue) != 0 {
        t.Errorf("queued transaction mismatch: have %d, want %d", pool.queue[account].Len(), 0)
    }
    if len(pool.all) != len(txns) {
        t.Errorf("total transaction mismatch: have %d, want %d", len(pool.all), len(txns))
    }
    pool.resetState()
    if pool.pending[account].Len() != len(txns) {
        t.Errorf("pending transaction mismatch: have %d, want %d", pool.pending[account].Len(), len(txns))
    }
    if len(pool.queue) != 0 {
        t.Errorf("queued transaction mismatch: have %d, want %d", pool.queue[account].Len(), 0)
    }
    if len(pool.all) != len(txns) {
        t.Errorf("total transaction mismatch: have %d, want %d", len(pool.all), len(txns))
    }
    // Reduce the balance of the account, and check that transactions are reorganised
    state.AddBalance(account, big.NewInt(-750))
    pool.resetState()

    if _, ok := pool.pending[account].txs.items[txns[0].Nonce()]; !ok {
        t.Errorf("tx %d: valid and funded transaction missing from pending pool: %v", 0, txns[0])
    }
    if _, ok := pool.queue[account].txs.items[txns[0].Nonce()]; ok {
        t.Errorf("tx %d: valid and funded transaction present in future queue: %v", 0, txns[0])
    }
    for i, tx := range txns[1:] {
        if i%2 == 1 {
            if _, ok := pool.pending[account].txs.items[tx.Nonce()]; ok {
                t.Errorf("tx %d: valid but future transaction present in pending pool: %v", i+1, tx)
            }
            if _, ok := pool.queue[account].txs.items[tx.Nonce()]; !ok {
                t.Errorf("tx %d: valid but future transaction missing from future queue: %v", i+1, tx)
            }
        } else {
            if _, ok := pool.pending[account].txs.items[tx.Nonce()]; ok {
                t.Errorf("tx %d: out-of-fund transaction present in pending pool: %v", i+1, tx)
            }
            if _, ok := pool.queue[account].txs.items[tx.Nonce()]; ok {
                t.Errorf("tx %d: out-of-fund transaction present in future queue: %v", i+1, tx)
            }
        }
    }
    if len(pool.all) != len(txns)/2 {
        t.Errorf("total transaction mismatch: have %d, want %d", len(pool.all), len(txns)/2)
    }
}

// Tests that if the transaction count belonging to a single account goes above
// some threshold, the higher transactions are dropped to prevent DOS attacks.
func TestTransactionQueueAccountLimiting(t *testing.T) {
    // Create a test account and fund it
    pool, key := setupTxPool()
    account, _ := deriveSender(transaction(0, big.NewInt(0), key))

    state, _ := pool.currentState()
    state.AddBalance(account, big.NewInt(1000000))
    pool.resetState()

    // Keep queuing up transactions and make sure all above a limit are dropped
    for i := uint64(1); i <= DefaultTxPoolConfig.AccountQueue+5; i++ {
        if err := pool.Add(transaction(i, big.NewInt(100000), key)); err != nil {
            t.Fatalf("tx %d: failed to add transaction: %v", i, err)
        }
        if len(pool.pending) != 0 {
            t.Errorf("tx %d: pending pool size mismatch: have %d, want %d", i, len(pool.pending), 0)
        }
        if i <= DefaultTxPoolConfig.AccountQueue {
            if pool.queue[account].Len() != int(i) {
                t.Errorf("tx %d: queue size mismatch: have %d, want %d", i, pool.queue[account].Len(), i)
            }
        } else {
            if pool.queue[account].Len() != int(DefaultTxPoolConfig.AccountQueue) {
                t.Errorf("tx %d: queue limit mismatch: have %d, want %d", i, pool.queue[account].Len(), DefaultTxPoolConfig.AccountQueue)
            }
        }
    }
    if len(pool.all) != int(DefaultTxPoolConfig.AccountQueue) {
        t.Errorf("total transaction mismatch: have %d, want %d", len(pool.all), DefaultTxPoolConfig.AccountQueue)
    }
}

// Tests that if the transaction count belonging to multiple accounts go above
// some threshold, the higher transactions are dropped to prevent DOS attacks.
func TestTransactionQueueGlobalLimiting(t *testing.T) {
    // Reduce the queue limits to shorten test time
    defer func(old uint64) { DefaultTxPoolConfig.GlobalQueue = old }(DefaultTxPoolConfig.GlobalQueue)
    DefaultTxPoolConfig.GlobalQueue = DefaultTxPoolConfig.AccountQueue * 3

    // Create the pool to test the limit enforcement with
    db, _ := ethdb.NewMemDatabase()
    statedb, _ := state.New(common.Hash{}, db)

    pool := NewTxPool(DefaultTxPoolConfig, params.TestChainConfig, new(event.TypeMux), func() (*state.StateDB, error) { return statedb, nil }, func() *big.Int { return big.NewInt(1000000) })
    pool.resetState()

    // Create a number of test accounts and fund them
    state, _ := pool.currentState()

    keys := make([]*ecdsa.PrivateKey, 5)
    for i := 0; i < len(keys); i++ {
        keys[i], _ = crypto.GenerateKey()
        state.AddBalance(crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(1000000))
    }
    // Generate and queue a batch of transactions
    nonces := make(map[common.Address]uint64)

    txs := make(types.Transactions, 0, 3*DefaultTxPoolConfig.GlobalQueue)
    for len(txs) < cap(txs) {
        key := keys[rand.Intn(len(keys))]
        addr := crypto.PubkeyToAddress(key.PublicKey)

        txs = append(txs, transaction(nonces[addr]+1, big.NewInt(100000), key))
        nonces[addr]++
    }
    // Import the batch and verify that limits have been enforced
    pool.AddBatch(txs)

    queued := 0
    for addr, list := range pool.queue {
        if list.Len() > int(DefaultTxPoolConfig.AccountQueue) {
            t.Errorf("addr %x: queued accounts overflown allowance: %d > %d", addr, list.Len(), DefaultTxPoolConfig.AccountQueue)
        }
        queued += list.Len()
    }
    if queued > int(DefaultTxPoolConfig.GlobalQueue) {
        t.Fatalf("total transactions overflow allowance: %d > %d", queued, DefaultTxPoolConfig.GlobalQueue)
    }
}

// Tests that if an account remains idle for a prolonged amount of time, any
// non-executable transactions queued up are dropped to prevent wasting resources
// on shuffling them around.
func TestTransactionQueueTimeLimiting(t *testing.T) {
    // Reduce the queue limits to shorten test time
    defer func(old time.Duration) { DefaultTxPoolConfig.Lifetime = old }(DefaultTxPoolConfig.Lifetime)
    defer func(old time.Duration) { evictionInterval = old }(evictionInterval)
    DefaultTxPoolConfig.Lifetime = time.Second
    evictionInterval = time.Second

    // Create a test account and fund it
    pool, key := setupTxPool()
    account, _ := deriveSender(transaction(0, big.NewInt(0), key))

    state, _ := pool.currentState()
    state.AddBalance(account, big.NewInt(1000000))

    // Queue up a batch of transactions
    for i := uint64(1); i <= DefaultTxPoolConfig.AccountQueue; i++ {
        if err := pool.Add(transaction(i, big.NewInt(100000), key)); err != nil {
            t.Fatalf("tx %d: failed to add transaction: %v", i, err)
        }
    }
    // Wait until at least two expiration cycles hit and make sure the transactions are gone
    time.Sleep(2 * evictionInterval)
    if len(pool.queue) > 0 {
        t.Fatalf("old transactions remained after eviction")
    }
}

// Tests that even if the transaction count belonging to a single account goes
// above some threshold, as long as the transactions are executable, they are
// accepted.
func TestTransactionPendingLimiting(t *testing.T) {
    // Create a test account and fund it
    pool, key := setupTxPool()
    account, _ := deriveSender(transaction(0, big.NewInt(0), key))

    state, _ := pool.currentState()
    state.AddBalance(account, big.NewInt(1000000))
    pool.resetState()

    // Keep queuing up transactions and make sure all above a limit are dropped
    for i := uint64(0); i < DefaultTxPoolConfig.AccountQueue+5; i++ {
        if err := pool.Add(transaction(i, big.NewInt(100000), key)); err != nil {
            t.Fatalf("tx %d: failed to add transaction: %v", i, err)
        }
        if pool.pending[account].Len() != int(i)+1 {
            t.Errorf("tx %d: pending pool size mismatch: have %d, want %d", i, pool.pending[account].Len(), i+1)
        }
        if len(pool.queue) != 0 {
            t.Errorf("tx %d: queue size mismatch: have %d, want %d", i, pool.queue[account].Len(), 0)
        }
    }
    if len(pool.all) != int(DefaultTxPoolConfig.AccountQueue+5) {
        t.Errorf("total transaction mismatch: have %d, want %d", len(pool.all), DefaultTxPoolConfig.AccountQueue+5)
    }
}

// Tests that the transaction limits are enforced the same way irrelevant whether
// the transactions are added one by one or in batches.
func TestTransactionQueueLimitingEquivalency(t *testing.T)   { testTransactionLimitingEquivalency(t, 1) }
func TestTransactionPendingLimitingEquivalency(t *testing.T) { testTransactionLimitingEquivalency(t, 0) }

func testTransactionLimitingEquivalency(t *testing.T, origin uint64) {
    // Add a batch of transactions to a pool one by one
    pool1, key1 := setupTxPool()
    account1, _ := deriveSender(transaction(0, big.NewInt(0), key1))
    state1, _ := pool1.currentState()
    state1.AddBalance(account1, big.NewInt(1000000))

    for i := uint64(0); i < DefaultTxPoolConfig.AccountQueue+5; i++ {
        if err := pool1.Add(transaction(origin+i, big.NewInt(100000), key1)); err != nil {
            t.Fatalf("tx %d: failed to add transaction: %v", i, err)
        }
    }
    // Add a batch of transactions to a pool in one big batch
    pool2, key2 := setupTxPool()
    account2, _ := deriveSender(transaction(0, big.NewInt(0), key2))
    state2, _ := pool2.currentState()
    state2.AddBalance(account2, big.NewInt(1000000))

    txns := []*types.Transaction{}
    for i := uint64(0); i < DefaultTxPoolConfig.AccountQueue+5; i++ {
        txns = append(txns, transaction(origin+i, big.NewInt(100000), key2))
    }
    pool2.AddBatch(txns)

    // Ensure the batch optimization honors the same pool mechanics
    if len(pool1.pending) != len(pool2.pending) {
        t.Errorf("pending transaction count mismatch: one-by-one algo: %d, batch algo: %d", len(pool1.pending), len(pool2.pending))
    }
    if len(pool1.queue) != len(pool2.queue) {
        t.Errorf("queued transaction count mismatch: one-by-one algo: %d, batch algo: %d", len(pool1.queue), len(pool2.queue))
    }
    if len(pool1.all) != len(pool2.all) {
        t.Errorf("total transaction count mismatch: one-by-one algo %d, batch algo %d", len(pool1.all), len(pool2.all))
    }
}

// Tests that if the transaction count belonging to multiple accounts go above
// some hard threshold, the higher transactions are dropped to prevent DOS
// attacks.
func TestTransactionPendingGlobalLimiting(t *testing.T) {
    // Reduce the queue limits to shorten test time
    defer func(old uint64) { DefaultTxPoolConfig.GlobalSlots = old }(DefaultTxPoolConfig.GlobalSlots)
    DefaultTxPoolConfig.GlobalSlots = DefaultTxPoolConfig.AccountSlots * 10

    // Create the pool to test the limit enforcement with
    db, _ := ethdb.NewMemDatabase()
    statedb, _ := state.New(common.Hash{}, db)

    pool := NewTxPool(DefaultTxPoolConfig, params.TestChainConfig, new(event.TypeMux), func() (*state.StateDB, error) { return statedb, nil }, func() *big.Int { return big.NewInt(1000000) })
    pool.resetState()

    // Create a number of test accounts and fund them
    state, _ := pool.currentState()

    keys := make([]*ecdsa.PrivateKey, 5)
    for i := 0; i < len(keys); i++ {
        keys[i], _ = crypto.GenerateKey()
        state.AddBalance(crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(1000000))
    }
    // Generate and queue a batch of transactions
    nonces := make(map[common.Address]uint64)

    txs := types.Transactions{}
    for _, key := range keys {
        addr := crypto.PubkeyToAddress(key.PublicKey)
        for j := 0; j < int(DefaultTxPoolConfig.GlobalSlots)/len(keys)*2; j++ {
            txs = append(txs, transaction(nonces[addr], big.NewInt(100000), key))
            nonces[addr]++
        }
    }
    // Import the batch and verify that limits have been enforced
    pool.AddBatch(txs)

    pending := 0
    for _, list := range pool.pending {
        pending += list.Len()
    }
    if pending > int(DefaultTxPoolConfig.GlobalSlots) {
        t.Fatalf("total pending transactions overflow allowance: %d > %d", pending, DefaultTxPoolConfig.GlobalSlots)
    }
}

// Tests that if the transaction count belonging to multiple accounts go above
// some hard threshold, if they are under the minimum guaranteed slot count then
// the transactions are still kept.
func TestTransactionPendingMinimumAllowance(t *testing.T) {
    // Reduce the queue limits to shorten test time
    defer func(old uint64) { DefaultTxPoolConfig.GlobalSlots = old }(DefaultTxPoolConfig.GlobalSlots)
    DefaultTxPoolConfig.GlobalSlots = 0

    // Create the pool to test the limit enforcement with
    db, _ := ethdb.NewMemDatabase()
    statedb, _ := state.New(common.Hash{}, db)

    pool := NewTxPool(DefaultTxPoolConfig, params.TestChainConfig, new(event.TypeMux), func() (*state.StateDB, error) { return statedb, nil }, func() *big.Int { return big.NewInt(1000000) })
    pool.resetState()

    // Create a number of test accounts and fund them
    state, _ := pool.currentState()

    keys := make([]*ecdsa.PrivateKey, 5)
    for i := 0; i < len(keys); i++ {
        keys[i], _ = crypto.GenerateKey()
        state.AddBalance(crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(1000000))
    }
    // Generate and queue a batch of transactions
    nonces := make(map[common.Address]uint64)

    txs := types.Transactions{}
    for _, key := range keys {
        addr := crypto.PubkeyToAddress(key.PublicKey)
        for j := 0; j < int(DefaultTxPoolConfig.AccountSlots)*2; j++ {
            txs = append(txs, transaction(nonces[addr], big.NewInt(100000), key))
            nonces[addr]++
        }
    }
    // Import the batch and verify that limits have been enforced
    pool.AddBatch(txs)

    for addr, list := range pool.pending {
        if list.Len() != int(DefaultTxPoolConfig.AccountSlots) {
            t.Errorf("addr %x: total pending transactions mismatch: have %d, want %d", addr, list.Len(), DefaultTxPoolConfig.AccountSlots)
        }
    }
}

// Tests that setting the transaction pool gas price to a higher value correctly
// discards everything cheaper than that and moves any gapped transactions back
// from the pending pool to the queue.
//
// Note, local transactions are never allowed to be dropped.
func TestTransactionPoolRepricing(t *testing.T) {
    // Create the pool to test the pricing enforcement with
    db, _ := ethdb.NewMemDatabase()
    statedb, _ := state.New(common.Hash{}, db)

    pool := NewTxPool(DefaultTxPoolConfig, params.TestChainConfig, new(event.TypeMux), func() (*state.StateDB, error) { return statedb, nil }, func() *big.Int { return big.NewInt(1000000) })
    pool.resetState()

    // Create a number of test accounts and fund them
    state, _ := pool.currentState()

    keys := make([]*ecdsa.PrivateKey, 3)
    for i := 0; i < len(keys); i++ {
        keys[i], _ = crypto.GenerateKey()
        state.AddBalance(crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(1000000))
    }
    // Generate and queue a batch of transactions, both pending and queued
    txs := types.Transactions{}

    txs = append(txs, pricedTransaction(0, big.NewInt(100000), big.NewInt(2), keys[0]))
    txs = append(txs, pricedTransaction(1, big.NewInt(100000), big.NewInt(1), keys[0]))
    txs = append(txs, pricedTransaction(2, big.NewInt(100000), big.NewInt(2), keys[0]))

    txs = append(txs, pricedTransaction(1, big.NewInt(100000), big.NewInt(2), keys[1]))
    txs = append(txs, pricedTransaction(2, big.NewInt(100000), big.NewInt(1), keys[1]))
    txs = append(txs, pricedTransaction(3, big.NewInt(100000), big.NewInt(2), keys[1]))

    txs = append(txs, pricedTransaction(0, big.NewInt(100000), big.NewInt(1), keys[2]))
    pool.SetLocal(txs[len(txs)-1]) // prevent this one from ever being dropped

    // Import the batch and that both pending and queued transactions match up
    pool.AddBatch(txs)

    pending, queued := pool.stats()
    if pending != 4 {
        t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 4)
    }
    if queued != 3 {
        t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 3)
    }
    // Reprice the pool and check that underpriced transactions get dropped
    pool.SetGasPrice(big.NewInt(2))

    pending, queued = pool.stats()
    if pending != 2 {
        t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 2)
    }
    if queued != 3 {
        t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 3)
    }
    // Check that we can't add the old transactions back
    if err := pool.Add(pricedTransaction(1, big.NewInt(100000), big.NewInt(1), keys[0])); err != ErrUnderpriced {
        t.Fatalf("adding underpriced pending transaction error mismatch: have %v, want %v", err, ErrUnderpriced)
    }
    if err := pool.Add(pricedTransaction(2, big.NewInt(100000), big.NewInt(1), keys[1])); err != ErrUnderpriced {
        t.Fatalf("adding underpriced queued transaction error mismatch: have %v, want %v", err, ErrUnderpriced)
    }
    // However we can add local underpriced transactions
    tx := pricedTransaction(1, big.NewInt(100000), big.NewInt(1), keys[2])

    pool.SetLocal(tx) // prevent this one from ever being dropped
    if err := pool.Add(tx); err != nil {
        t.Fatalf("failed to add underpriced local transaction: %v", err)
    }
    if pending, _ = pool.stats(); pending != 3 {
        t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 3)
    }
}

// Tests that when the pool reaches its global transaction limit, underpriced
// transactions are gradually shifted out for more expensive ones and any gapped
// pending transactions are moved into te queue.
//
// Note, local transactions are never allowed to be dropped.
func TestTransactionPoolUnderpricing(t *testing.T) {
    // Reduce the queue limits to shorten test time
    defer func(old uint64) { DefaultTxPoolConfig.GlobalSlots = old }(DefaultTxPoolConfig.GlobalSlots)
    DefaultTxPoolConfig.GlobalSlots = 2

    defer func(old uint64) { DefaultTxPoolConfig.GlobalQueue = old }(DefaultTxPoolConfig.GlobalQueue)
    DefaultTxPoolConfig.GlobalQueue = 2

    // Create the pool to test the pricing enforcement with
    db, _ := ethdb.NewMemDatabase()
    statedb, _ := state.New(common.Hash{}, db)

    pool := NewTxPool(DefaultTxPoolConfig, params.TestChainConfig, new(event.TypeMux), func() (*state.StateDB, error) { return statedb, nil }, func() *big.Int { return big.NewInt(1000000) })
    pool.resetState()

    // Create a number of test accounts and fund them
    state, _ := pool.currentState()

    keys := make([]*ecdsa.PrivateKey, 3)
    for i := 0; i < len(keys); i++ {
        keys[i], _ = crypto.GenerateKey()
        state.AddBalance(crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(1000000))
    }
    // Generate and queue a batch of transactions, both pending and queued
    txs := types.Transactions{}

    txs = append(txs, pricedTransaction(0, big.NewInt(100000), big.NewInt(1), keys[0]))
    txs = append(txs, pricedTransaction(1, big.NewInt(100000), big.NewInt(2), keys[0]))

    txs = append(txs, pricedTransaction(1, big.NewInt(100000), big.NewInt(1), keys[1]))

    txs = append(txs, pricedTransaction(0, big.NewInt(100000), big.NewInt(1), keys[2]))
    pool.SetLocal(txs[len(txs)-1]) // prevent this one from ever being dropped

    // Import the batch and that both pending and queued transactions match up
    pool.AddBatch(txs)

    pending, queued := pool.stats()
    if pending != 3 {
        t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 3)
    }
    if queued != 1 {
        t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 1)
    }
    // Ensure that adding an underpriced transaction on block limit fails
    if err := pool.Add(pricedTransaction(0, big.NewInt(100000), big.NewInt(1), keys[1])); err != ErrUnderpriced {
        t.Fatalf("adding underpriced pending transaction error mismatch: have %v, want %v", err, ErrUnderpriced)
    }
    // Ensure that adding high priced transactions drops cheap ones, but not own
    if err := pool.Add(pricedTransaction(0, big.NewInt(100000), big.NewInt(3), keys[1])); err != nil {
        t.Fatalf("failed to add well priced transaction: %v", err)
    }
    if err := pool.Add(pricedTransaction(2, big.NewInt(100000), big.NewInt(4), keys[1])); err != nil {
        t.Fatalf("failed to add well priced transaction: %v", err)
    }
    if err := pool.Add(pricedTransaction(3, big.NewInt(100000), big.NewInt(5), keys[1])); err != nil {
        t.Fatalf("failed to add well priced transaction: %v", err)
    }
    pending, queued = pool.stats()
    if pending != 2 {
        t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 2)
    }
    if queued != 2 {
        t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 2)
    }
    // Ensure that adding local transactions can push out even higher priced ones
    tx := pricedTransaction(1, big.NewInt(100000), big.NewInt(0), keys[2])

    pool.SetLocal(tx) // prevent this one from ever being dropped
    if err := pool.Add(tx); err != nil {
        t.Fatalf("failed to add underpriced local transaction: %v", err)
    }
    pending, queued = pool.stats()
    if pending != 2 {
        t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 2)
    }
    if queued != 2 {
        t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 2)
    }
}

// Tests that the pool rejects replacement transactions that don't meet the minimum
// price bump required.
func TestTransactionReplacement(t *testing.T) {
    // Create the pool to test the pricing enforcement with
    db, _ := ethdb.NewMemDatabase()
    statedb, _ := state.New(common.Hash{}, db)

    pool := NewTxPool(DefaultTxPoolConfig, params.TestChainConfig, new(event.TypeMux), func() (*state.StateDB, error) { return statedb, nil }, func() *big.Int { return big.NewInt(1000000) })
    pool.resetState()

    // Create a a test account to add transactions with
    key, _ := crypto.GenerateKey()

    state, _ := pool.currentState()
    state.AddBalance(crypto.PubkeyToAddress(key.PublicKey), big.NewInt(1000000000))

    // Add pending transactions, ensuring the minimum price bump is enforced for replacement (for ultra low prices too)
    price := int64(100)
    threshold := (price * (100 + int64(DefaultTxPoolConfig.PriceBump))) / 100

    if err := pool.Add(pricedTransaction(0, big.NewInt(100000), big.NewInt(1), key)); err != nil {
        t.Fatalf("failed to add original cheap pending transaction: %v", err)
    }
    if err := pool.Add(pricedTransaction(0, big.NewInt(100001), big.NewInt(1), key)); err != ErrReplaceUnderpriced {
        t.Fatalf("original cheap pending transaction replacement error mismatch: have %v, want %v", err, ErrReplaceUnderpriced)
    }
    if err := pool.Add(pricedTransaction(0, big.NewInt(100000), big.NewInt(2), key)); err != nil {
        t.Fatalf("failed to replace original cheap pending transaction: %v", err)
    }

    if err := pool.Add(pricedTransaction(0, big.NewInt(100000), big.NewInt(price), key)); err != nil {
        t.Fatalf("failed to add original proper pending transaction: %v", err)
    }
    if err := pool.Add(pricedTransaction(0, big.NewInt(100000), big.NewInt(threshold), key)); err != ErrReplaceUnderpriced {
        t.Fatalf("original proper pending transaction replacement error mismatch: have %v, want %v", err, ErrReplaceUnderpriced)
    }
    if err := pool.Add(pricedTransaction(0, big.NewInt(100000), big.NewInt(threshold+1), key)); err != nil {
        t.Fatalf("failed to replace original proper pending transaction: %v", err)
    }
    // Add queued transactions, ensuring the minimum price bump is enforced for replacement (for ultra low prices too)
    if err := pool.Add(pricedTransaction(2, big.NewInt(100000), big.NewInt(1), key)); err != nil {
        t.Fatalf("failed to add original queued transaction: %v", err)
    }
    if err := pool.Add(pricedTransaction(2, big.NewInt(100001), big.NewInt(1), key)); err != ErrReplaceUnderpriced {
        t.Fatalf("original queued transaction replacement error mismatch: have %v, want %v", err, ErrReplaceUnderpriced)
    }
    if err := pool.Add(pricedTransaction(2, big.NewInt(100000), big.NewInt(2), key)); err != nil {
        t.Fatalf("failed to replace original queued transaction: %v", err)
    }

    if err := pool.Add(pricedTransaction(2, big.NewInt(100000), big.NewInt(price), key)); err != nil {
        t.Fatalf("failed to add original queued transaction: %v", err)
    }
    if err := pool.Add(pricedTransaction(2, big.NewInt(100001), big.NewInt(threshold), key)); err != ErrReplaceUnderpriced {
        t.Fatalf("original queued transaction replacement error mismatch: have %v, want %v", err, ErrReplaceUnderpriced)
    }
    if err := pool.Add(pricedTransaction(2, big.NewInt(100000), big.NewInt(threshold+1), key)); err != nil {
        t.Fatalf("failed to replace original queued transaction: %v", err)
    }
}

// Benchmarks the speed of validating the contents of the pending queue of the
// transaction pool.
func BenchmarkPendingDemotion100(b *testing.B)   { benchmarkPendingDemotion(b, 100) }
func BenchmarkPendingDemotion1000(b *testing.B)  { benchmarkPendingDemotion(b, 1000) }
func BenchmarkPendingDemotion10000(b *testing.B) { benchmarkPendingDemotion(b, 10000) }

func benchmarkPendingDemotion(b *testing.B, size int) {
    // Add a batch of transactions to a pool one by one
    pool, key := setupTxPool()
    account, _ := deriveSender(transaction(0, big.NewInt(0), key))
    state, _ := pool.currentState()
    state.AddBalance(account, big.NewInt(1000000))

    for i := 0; i < size; i++ {
        tx := transaction(uint64(i), big.NewInt(100000), key)
        pool.promoteTx(account, tx.Hash(), tx)
    }
    // Benchmark the speed of pool validation
    b.ResetTimer()
    for i := 0; i < b.N; i++ {
        pool.demoteUnexecutables(state)
    }
}

// Benchmarks the speed of scheduling the contents of the future queue of the
// transaction pool.
func BenchmarkFuturePromotion100(b *testing.B)   { benchmarkFuturePromotion(b, 100) }
func BenchmarkFuturePromotion1000(b *testing.B)  { benchmarkFuturePromotion(b, 1000) }
func BenchmarkFuturePromotion10000(b *testing.B) { benchmarkFuturePromotion(b, 10000) }

func benchmarkFuturePromotion(b *testing.B, size int) {
    // Add a batch of transactions to a pool one by one
    pool, key := setupTxPool()
    account, _ := deriveSender(transaction(0, big.NewInt(0), key))
    state, _ := pool.currentState()
    state.AddBalance(account, big.NewInt(1000000))

    for i := 0; i < size; i++ {
        tx := transaction(uint64(1+i), big.NewInt(100000), key)
        pool.enqueueTx(tx.Hash(), tx)
    }
    // Benchmark the speed of pool validation
    b.ResetTimer()
    for i := 0; i < b.N; i++ {
        pool.promoteExecutables(state)
    }
}

// Benchmarks the speed of iterative transaction insertion.
func BenchmarkPoolInsert(b *testing.B) {
    // Generate a batch of transactions to enqueue into the pool
    pool, key := setupTxPool()
    account, _ := deriveSender(transaction(0, big.NewInt(0), key))
    state, _ := pool.currentState()
    state.AddBalance(account, big.NewInt(1000000))

    txs := make(types.Transactions, b.N)
    for i := 0; i < b.N; i++ {
        txs[i] = transaction(uint64(i), big.NewInt(100000), key)
    }
    // Benchmark importing the transactions into the queue
    b.ResetTimer()
    for _, tx := range txs {
        pool.Add(tx)
    }
}

// Benchmarks the speed of batched transaction insertion.
func BenchmarkPoolBatchInsert100(b *testing.B)   { benchmarkPoolBatchInsert(b, 100) }
func BenchmarkPoolBatchInsert1000(b *testing.B)  { benchmarkPoolBatchInsert(b, 1000) }
func BenchmarkPoolBatchInsert10000(b *testing.B) { benchmarkPoolBatchInsert(b, 10000) }

func benchmarkPoolBatchInsert(b *testing.B, size int) {
    // Generate a batch of transactions to enqueue into the pool
    pool, key := setupTxPool()
    account, _ := deriveSender(transaction(0, big.NewInt(0), key))
    state, _ := pool.currentState()
    state.AddBalance(account, big.NewInt(1000000))

    batches := make([]types.Transactions, b.N)
    for i := 0; i < b.N; i++ {
        batches[i] = make(types.Transactions, size)
        for j := 0; j < size; j++ {
            batches[i][j] = transaction(uint64(size*i+j), big.NewInt(100000), key)
        }
    }
    // Benchmark importing the transactions into the queue
    b.ResetTimer()
    for _, batch := range batches {
        pool.AddBatch(batch)
    }
}