aboutsummaryrefslogtreecommitdiffstats
path: root/core/asm/compiler.go
blob: c7a5440701363a7b0be9a80c7cc8c9a70d4d8755 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
// Copyright 2017 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.

package asm

import (
    "fmt"
    "math/big"
    "os"
    "strings"

    "github.com/ethereum/go-ethereum/common/math"
    "github.com/ethereum/go-ethereum/core/vm"
)

// Compiler contains information about the parsed source
// and holds the tokens for the program.
type Compiler struct {
    tokens []token
    binary []interface{}

    labels map[string]int

    pc, pos int

    debug bool
}

// newCompiler returns a new allocated compiler.
func NewCompiler(debug bool) *Compiler {
    return &Compiler{
        labels: make(map[string]int),
        debug:  debug,
    }
}

// Feed feeds tokens in to ch and are interpreted by
// the compiler.
//
// feed is the first pass in the compile stage as it
// collects the used labels in the program and keeps a
// program counter which is used to determine the locations
// of the jump dests. The labels can than be used in the
// second stage to push labels and determine the right
// position.
func (c *Compiler) Feed(ch <-chan token) {
    for i := range ch {
        switch i.typ {
        case number:
            num := math.MustParseBig256(i.text).Bytes()
            if len(num) == 0 {
                num = []byte{0}
            }
            c.pc += len(num)
        case stringValue:
            c.pc += len(i.text) - 2
        case element:
            c.pc++
        case labelDef:
            c.labels[i.text] = c.pc
            c.pc++
        case label:
            c.pc += 5
        }

        c.tokens = append(c.tokens, i)
    }
    if c.debug {
        fmt.Fprintln(os.Stderr, "found", len(c.labels), "labels")
    }
}

// Compile compiles the current tokens and returns a
// binary string that can be interpreted by the EVM
// and an error if it failed.
//
// compile is the second stage in the compile phase
// which compiles the tokens to EVM instructions.
func (c *Compiler) Compile() (string, []error) {
    var errors []error
    // continue looping over the tokens until
    // the stack has been exhausted.
    for c.pos < len(c.tokens) {
        if err := c.compileLine(); err != nil {
            errors = append(errors, err)
        }
    }

    // turn the binary to hex
    var bin string
    for _, v := range c.binary {
        switch v := v.(type) {
        case vm.OpCode:
            bin += fmt.Sprintf("%x", []byte{byte(v)})
        case []byte:
            bin += fmt.Sprintf("%x", v)
        }
    }
    return bin, errors
}

// next returns the next token and increments the
// position.
func (c *Compiler) next() token {
    token := c.tokens[c.pos]
    c.pos++
    return token
}

// compileLine compiles a single line instruction e.g.
// "push 1", "jump @label".
func (c *Compiler) compileLine() error {
    n := c.next()
    if n.typ != lineStart {
        return compileErr(n, n.typ.String(), lineStart.String())
    }

    lvalue := c.next()
    switch lvalue.typ {
    case eof:
        return nil
    case element:
        if err := c.compileElement(lvalue); err != nil {
            return err
        }
    case labelDef:
        c.compileLabel()
    case lineEnd:
        return nil
    default:
        return compileErr(lvalue, lvalue.text, fmt.Sprintf("%v or %v", labelDef, element))
    }

    if n := c.next(); n.typ != lineEnd {
        return compileErr(n, n.text, lineEnd.String())
    }

    return nil
}

// compileNumber compiles the number to bytes
func (c *Compiler) compileNumber(element token) (int, error) {
    num := math.MustParseBig256(element.text).Bytes()
    if len(num) == 0 {
        num = []byte{0}
    }
    c.pushBin(num)
    return len(num), nil
}

// compileElement compiles the element (push & label or both)
// to a binary representation and may error if incorrect statements
// where fed.
func (c *Compiler) compileElement(element token) error {
    // check for a jump. jumps must be read and compiled
    // from right to left.
    if isJump(element.text) {
        rvalue := c.next()
        switch rvalue.typ {
        case number:
            // TODO figure out how to return the error properly
            c.compileNumber(rvalue)
        case stringValue:
            // strings are quoted, remove them.
            c.pushBin(rvalue.text[1 : len(rvalue.text)-2])
        case label:
            c.pushBin(vm.PUSH4)
            pos := big.NewInt(int64(c.labels[rvalue.text])).Bytes()
            pos = append(make([]byte, 4-len(pos)), pos...)
            c.pushBin(pos)
        default:
            return compileErr(rvalue, rvalue.text, "number, string or label")
        }
        // push the operation
        c.pushBin(toBinary(element.text))
        return nil
    } else if isPush(element.text) {
        // handle pushes. pushes are read from left to right.
        var value []byte

        rvalue := c.next()
        switch rvalue.typ {
        case number:
            value = math.MustParseBig256(rvalue.text).Bytes()
            if len(value) == 0 {
                value = []byte{0}
            }
        case stringValue:
            value = []byte(rvalue.text[1 : len(rvalue.text)-1])
        case label:
            value = make([]byte, 4)
            copy(value, big.NewInt(int64(c.labels[rvalue.text])).Bytes())
        default:
            return compileErr(rvalue, rvalue.text, "number, string or label")
        }

        if len(value) > 32 {
            return fmt.Errorf("%d type error: unsupported string or number with size > 32", rvalue.lineno)
        }

        c.pushBin(vm.OpCode(int(vm.PUSH1) - 1 + len(value)))
        c.pushBin(value)
    } else {
        c.pushBin(toBinary(element.text))
    }

    return nil
}

// compileLabel pushes a jumpdest to the binary slice.
func (c *Compiler) compileLabel() {
    c.pushBin(vm.JUMPDEST)
}

// pushBin pushes the value v to the binary stack.
func (c *Compiler) pushBin(v interface{}) {
    if c.debug {
        fmt.Printf("%d: %v\n", len(c.binary), v)
    }
    c.binary = append(c.binary, v)
}

// isPush returns whether the string op is either any of
// push(N).
func isPush(op string) bool {
    return strings.ToUpper(op) == "PUSH"
}

// isJump returns whether the string op is jump(i)
func isJump(op string) bool {
    return strings.ToUpper(op) == "JUMPI" || strings.ToUpper(op) == "JUMP"
}

// toBinary converts text to a vm.OpCode
func toBinary(text string) vm.OpCode {
    return vm.StringToOp(strings.ToUpper(text))
}

type compileError struct {
    got  string
    want string

    lineno int
}

func (err compileError) Error() string {
    return fmt.Sprintf("%d syntax error: unexpected %v, expected %v", err.lineno, err.got, err.want)
}

func compileErr(c token, got, want string) error {
    return compileError{
        got:    got,
        want:   want,
        lineno: c.lineno,
    }
}