diff options
Diffstat (limited to 'vendor/github.com/rcrowley/go-metrics/sample.go')
-rw-r--r-- | vendor/github.com/rcrowley/go-metrics/sample.go | 616 |
1 files changed, 0 insertions, 616 deletions
diff --git a/vendor/github.com/rcrowley/go-metrics/sample.go b/vendor/github.com/rcrowley/go-metrics/sample.go deleted file mode 100644 index fecee5ef6..000000000 --- a/vendor/github.com/rcrowley/go-metrics/sample.go +++ /dev/null @@ -1,616 +0,0 @@ -package metrics - -import ( - "math" - "math/rand" - "sort" - "sync" - "time" -) - -const rescaleThreshold = time.Hour - -// Samples maintain a statistically-significant selection of values from -// a stream. -type Sample interface { - Clear() - Count() int64 - Max() int64 - Mean() float64 - Min() int64 - Percentile(float64) float64 - Percentiles([]float64) []float64 - Size() int - Snapshot() Sample - StdDev() float64 - Sum() int64 - Update(int64) - Values() []int64 - Variance() float64 -} - -// ExpDecaySample is an exponentially-decaying sample using a forward-decaying -// priority reservoir. See Cormode et al's "Forward Decay: A Practical Time -// Decay Model for Streaming Systems". -// -// <http://dimacs.rutgers.edu/~graham/pubs/papers/fwddecay.pdf> -type ExpDecaySample struct { - alpha float64 - count int64 - mutex sync.Mutex - reservoirSize int - t0, t1 time.Time - values *expDecaySampleHeap -} - -// NewExpDecaySample constructs a new exponentially-decaying sample with the -// given reservoir size and alpha. -func NewExpDecaySample(reservoirSize int, alpha float64) Sample { - if UseNilMetrics { - return NilSample{} - } - s := &ExpDecaySample{ - alpha: alpha, - reservoirSize: reservoirSize, - t0: time.Now(), - values: newExpDecaySampleHeap(reservoirSize), - } - s.t1 = s.t0.Add(rescaleThreshold) - return s -} - -// Clear clears all samples. -func (s *ExpDecaySample) Clear() { - s.mutex.Lock() - defer s.mutex.Unlock() - s.count = 0 - s.t0 = time.Now() - s.t1 = s.t0.Add(rescaleThreshold) - s.values.Clear() -} - -// Count returns the number of samples recorded, which may exceed the -// reservoir size. -func (s *ExpDecaySample) Count() int64 { - s.mutex.Lock() - defer s.mutex.Unlock() - return s.count -} - -// Max returns the maximum value in the sample, which may not be the maximum -// value ever to be part of the sample. -func (s *ExpDecaySample) Max() int64 { - return SampleMax(s.Values()) -} - -// Mean returns the mean of the values in the sample. -func (s *ExpDecaySample) Mean() float64 { - return SampleMean(s.Values()) -} - -// Min returns the minimum value in the sample, which may not be the minimum -// value ever to be part of the sample. -func (s *ExpDecaySample) Min() int64 { - return SampleMin(s.Values()) -} - -// Percentile returns an arbitrary percentile of values in the sample. -func (s *ExpDecaySample) Percentile(p float64) float64 { - return SamplePercentile(s.Values(), p) -} - -// Percentiles returns a slice of arbitrary percentiles of values in the -// sample. -func (s *ExpDecaySample) Percentiles(ps []float64) []float64 { - return SamplePercentiles(s.Values(), ps) -} - -// Size returns the size of the sample, which is at most the reservoir size. -func (s *ExpDecaySample) Size() int { - s.mutex.Lock() - defer s.mutex.Unlock() - return s.values.Size() -} - -// Snapshot returns a read-only copy of the sample. -func (s *ExpDecaySample) Snapshot() Sample { - s.mutex.Lock() - defer s.mutex.Unlock() - vals := s.values.Values() - values := make([]int64, len(vals)) - for i, v := range vals { - values[i] = v.v - } - return &SampleSnapshot{ - count: s.count, - values: values, - } -} - -// StdDev returns the standard deviation of the values in the sample. -func (s *ExpDecaySample) StdDev() float64 { - return SampleStdDev(s.Values()) -} - -// Sum returns the sum of the values in the sample. -func (s *ExpDecaySample) Sum() int64 { - return SampleSum(s.Values()) -} - -// Update samples a new value. -func (s *ExpDecaySample) Update(v int64) { - s.update(time.Now(), v) -} - -// Values returns a copy of the values in the sample. -func (s *ExpDecaySample) Values() []int64 { - s.mutex.Lock() - defer s.mutex.Unlock() - vals := s.values.Values() - values := make([]int64, len(vals)) - for i, v := range vals { - values[i] = v.v - } - return values -} - -// Variance returns the variance of the values in the sample. -func (s *ExpDecaySample) Variance() float64 { - return SampleVariance(s.Values()) -} - -// update samples a new value at a particular timestamp. This is a method all -// its own to facilitate testing. -func (s *ExpDecaySample) update(t time.Time, v int64) { - s.mutex.Lock() - defer s.mutex.Unlock() - s.count++ - if s.values.Size() == s.reservoirSize { - s.values.Pop() - } - s.values.Push(expDecaySample{ - k: math.Exp(t.Sub(s.t0).Seconds()*s.alpha) / rand.Float64(), - v: v, - }) - if t.After(s.t1) { - values := s.values.Values() - t0 := s.t0 - s.values.Clear() - s.t0 = t - s.t1 = s.t0.Add(rescaleThreshold) - for _, v := range values { - v.k = v.k * math.Exp(-s.alpha*s.t0.Sub(t0).Seconds()) - s.values.Push(v) - } - } -} - -// NilSample is a no-op Sample. -type NilSample struct{} - -// Clear is a no-op. -func (NilSample) Clear() {} - -// Count is a no-op. -func (NilSample) Count() int64 { return 0 } - -// Max is a no-op. -func (NilSample) Max() int64 { return 0 } - -// Mean is a no-op. -func (NilSample) Mean() float64 { return 0.0 } - -// Min is a no-op. -func (NilSample) Min() int64 { return 0 } - -// Percentile is a no-op. -func (NilSample) Percentile(p float64) float64 { return 0.0 } - -// Percentiles is a no-op. -func (NilSample) Percentiles(ps []float64) []float64 { - return make([]float64, len(ps)) -} - -// Size is a no-op. -func (NilSample) Size() int { return 0 } - -// Sample is a no-op. -func (NilSample) Snapshot() Sample { return NilSample{} } - -// StdDev is a no-op. -func (NilSample) StdDev() float64 { return 0.0 } - -// Sum is a no-op. -func (NilSample) Sum() int64 { return 0 } - -// Update is a no-op. -func (NilSample) Update(v int64) {} - -// Values is a no-op. -func (NilSample) Values() []int64 { return []int64{} } - -// Variance is a no-op. -func (NilSample) Variance() float64 { return 0.0 } - -// SampleMax returns the maximum value of the slice of int64. -func SampleMax(values []int64) int64 { - if 0 == len(values) { - return 0 - } - var max int64 = math.MinInt64 - for _, v := range values { - if max < v { - max = v - } - } - return max -} - -// SampleMean returns the mean value of the slice of int64. -func SampleMean(values []int64) float64 { - if 0 == len(values) { - return 0.0 - } - return float64(SampleSum(values)) / float64(len(values)) -} - -// SampleMin returns the minimum value of the slice of int64. -func SampleMin(values []int64) int64 { - if 0 == len(values) { - return 0 - } - var min int64 = math.MaxInt64 - for _, v := range values { - if min > v { - min = v - } - } - return min -} - -// SamplePercentiles returns an arbitrary percentile of the slice of int64. -func SamplePercentile(values int64Slice, p float64) float64 { - return SamplePercentiles(values, []float64{p})[0] -} - -// SamplePercentiles returns a slice of arbitrary percentiles of the slice of -// int64. -func SamplePercentiles(values int64Slice, ps []float64) []float64 { - scores := make([]float64, len(ps)) - size := len(values) - if size > 0 { - sort.Sort(values) - for i, p := range ps { - pos := p * float64(size+1) - if pos < 1.0 { - scores[i] = float64(values[0]) - } else if pos >= float64(size) { - scores[i] = float64(values[size-1]) - } else { - lower := float64(values[int(pos)-1]) - upper := float64(values[int(pos)]) - scores[i] = lower + (pos-math.Floor(pos))*(upper-lower) - } - } - } - return scores -} - -// SampleSnapshot is a read-only copy of another Sample. -type SampleSnapshot struct { - count int64 - values []int64 -} - -func NewSampleSnapshot(count int64, values []int64) *SampleSnapshot { - return &SampleSnapshot{ - count: count, - values: values, - } -} - -// Clear panics. -func (*SampleSnapshot) Clear() { - panic("Clear called on a SampleSnapshot") -} - -// Count returns the count of inputs at the time the snapshot was taken. -func (s *SampleSnapshot) Count() int64 { return s.count } - -// Max returns the maximal value at the time the snapshot was taken. -func (s *SampleSnapshot) Max() int64 { return SampleMax(s.values) } - -// Mean returns the mean value at the time the snapshot was taken. -func (s *SampleSnapshot) Mean() float64 { return SampleMean(s.values) } - -// Min returns the minimal value at the time the snapshot was taken. -func (s *SampleSnapshot) Min() int64 { return SampleMin(s.values) } - -// Percentile returns an arbitrary percentile of values at the time the -// snapshot was taken. -func (s *SampleSnapshot) Percentile(p float64) float64 { - return SamplePercentile(s.values, p) -} - -// Percentiles returns a slice of arbitrary percentiles of values at the time -// the snapshot was taken. -func (s *SampleSnapshot) Percentiles(ps []float64) []float64 { - return SamplePercentiles(s.values, ps) -} - -// Size returns the size of the sample at the time the snapshot was taken. -func (s *SampleSnapshot) Size() int { return len(s.values) } - -// Snapshot returns the snapshot. -func (s *SampleSnapshot) Snapshot() Sample { return s } - -// StdDev returns the standard deviation of values at the time the snapshot was -// taken. -func (s *SampleSnapshot) StdDev() float64 { return SampleStdDev(s.values) } - -// Sum returns the sum of values at the time the snapshot was taken. -func (s *SampleSnapshot) Sum() int64 { return SampleSum(s.values) } - -// Update panics. -func (*SampleSnapshot) Update(int64) { - panic("Update called on a SampleSnapshot") -} - -// Values returns a copy of the values in the sample. -func (s *SampleSnapshot) Values() []int64 { - values := make([]int64, len(s.values)) - copy(values, s.values) - return values -} - -// Variance returns the variance of values at the time the snapshot was taken. -func (s *SampleSnapshot) Variance() float64 { return SampleVariance(s.values) } - -// SampleStdDev returns the standard deviation of the slice of int64. -func SampleStdDev(values []int64) float64 { - return math.Sqrt(SampleVariance(values)) -} - -// SampleSum returns the sum of the slice of int64. -func SampleSum(values []int64) int64 { - var sum int64 - for _, v := range values { - sum += v - } - return sum -} - -// SampleVariance returns the variance of the slice of int64. -func SampleVariance(values []int64) float64 { - if 0 == len(values) { - return 0.0 - } - m := SampleMean(values) - var sum float64 - for _, v := range values { - d := float64(v) - m - sum += d * d - } - return sum / float64(len(values)) -} - -// A uniform sample using Vitter's Algorithm R. -// -// <http://www.cs.umd.edu/~samir/498/vitter.pdf> -type UniformSample struct { - count int64 - mutex sync.Mutex - reservoirSize int - values []int64 -} - -// NewUniformSample constructs a new uniform sample with the given reservoir -// size. -func NewUniformSample(reservoirSize int) Sample { - if UseNilMetrics { - return NilSample{} - } - return &UniformSample{ - reservoirSize: reservoirSize, - values: make([]int64, 0, reservoirSize), - } -} - -// Clear clears all samples. -func (s *UniformSample) Clear() { - s.mutex.Lock() - defer s.mutex.Unlock() - s.count = 0 - s.values = make([]int64, 0, s.reservoirSize) -} - -// Count returns the number of samples recorded, which may exceed the -// reservoir size. -func (s *UniformSample) Count() int64 { - s.mutex.Lock() - defer s.mutex.Unlock() - return s.count -} - -// Max returns the maximum value in the sample, which may not be the maximum -// value ever to be part of the sample. -func (s *UniformSample) Max() int64 { - s.mutex.Lock() - defer s.mutex.Unlock() - return SampleMax(s.values) -} - -// Mean returns the mean of the values in the sample. -func (s *UniformSample) Mean() float64 { - s.mutex.Lock() - defer s.mutex.Unlock() - return SampleMean(s.values) -} - -// Min returns the minimum value in the sample, which may not be the minimum -// value ever to be part of the sample. -func (s *UniformSample) Min() int64 { - s.mutex.Lock() - defer s.mutex.Unlock() - return SampleMin(s.values) -} - -// Percentile returns an arbitrary percentile of values in the sample. -func (s *UniformSample) Percentile(p float64) float64 { - s.mutex.Lock() - defer s.mutex.Unlock() - return SamplePercentile(s.values, p) -} - -// Percentiles returns a slice of arbitrary percentiles of values in the -// sample. -func (s *UniformSample) Percentiles(ps []float64) []float64 { - s.mutex.Lock() - defer s.mutex.Unlock() - return SamplePercentiles(s.values, ps) -} - -// Size returns the size of the sample, which is at most the reservoir size. -func (s *UniformSample) Size() int { - s.mutex.Lock() - defer s.mutex.Unlock() - return len(s.values) -} - -// Snapshot returns a read-only copy of the sample. -func (s *UniformSample) Snapshot() Sample { - s.mutex.Lock() - defer s.mutex.Unlock() - values := make([]int64, len(s.values)) - copy(values, s.values) - return &SampleSnapshot{ - count: s.count, - values: values, - } -} - -// StdDev returns the standard deviation of the values in the sample. -func (s *UniformSample) StdDev() float64 { - s.mutex.Lock() - defer s.mutex.Unlock() - return SampleStdDev(s.values) -} - -// Sum returns the sum of the values in the sample. -func (s *UniformSample) Sum() int64 { - s.mutex.Lock() - defer s.mutex.Unlock() - return SampleSum(s.values) -} - -// Update samples a new value. -func (s *UniformSample) Update(v int64) { - s.mutex.Lock() - defer s.mutex.Unlock() - s.count++ - if len(s.values) < s.reservoirSize { - s.values = append(s.values, v) - } else { - r := rand.Int63n(s.count) - if r < int64(len(s.values)) { - s.values[int(r)] = v - } - } -} - -// Values returns a copy of the values in the sample. -func (s *UniformSample) Values() []int64 { - s.mutex.Lock() - defer s.mutex.Unlock() - values := make([]int64, len(s.values)) - copy(values, s.values) - return values -} - -// Variance returns the variance of the values in the sample. -func (s *UniformSample) Variance() float64 { - s.mutex.Lock() - defer s.mutex.Unlock() - return SampleVariance(s.values) -} - -// expDecaySample represents an individual sample in a heap. -type expDecaySample struct { - k float64 - v int64 -} - -func newExpDecaySampleHeap(reservoirSize int) *expDecaySampleHeap { - return &expDecaySampleHeap{make([]expDecaySample, 0, reservoirSize)} -} - -// expDecaySampleHeap is a min-heap of expDecaySamples. -// The internal implementation is copied from the standard library's container/heap -type expDecaySampleHeap struct { - s []expDecaySample -} - -func (h *expDecaySampleHeap) Clear() { - h.s = h.s[:0] -} - -func (h *expDecaySampleHeap) Push(s expDecaySample) { - n := len(h.s) - h.s = h.s[0 : n+1] - h.s[n] = s - h.up(n) -} - -func (h *expDecaySampleHeap) Pop() expDecaySample { - n := len(h.s) - 1 - h.s[0], h.s[n] = h.s[n], h.s[0] - h.down(0, n) - - n = len(h.s) - s := h.s[n-1] - h.s = h.s[0 : n-1] - return s -} - -func (h *expDecaySampleHeap) Size() int { - return len(h.s) -} - -func (h *expDecaySampleHeap) Values() []expDecaySample { - return h.s -} - -func (h *expDecaySampleHeap) up(j int) { - for { - i := (j - 1) / 2 // parent - if i == j || !(h.s[j].k < h.s[i].k) { - break - } - h.s[i], h.s[j] = h.s[j], h.s[i] - j = i - } -} - -func (h *expDecaySampleHeap) down(i, n int) { - for { - j1 := 2*i + 1 - if j1 >= n || j1 < 0 { // j1 < 0 after int overflow - break - } - j := j1 // left child - if j2 := j1 + 1; j2 < n && !(h.s[j1].k < h.s[j2].k) { - j = j2 // = 2*i + 2 // right child - } - if !(h.s[j].k < h.s[i].k) { - break - } - h.s[i], h.s[j] = h.s[j], h.s[i] - i = j - } -} - -type int64Slice []int64 - -func (p int64Slice) Len() int { return len(p) } -func (p int64Slice) Less(i, j int) bool { return p[i] < p[j] } -func (p int64Slice) Swap(i, j int) { p[i], p[j] = p[j], p[i] } |