diff options
Diffstat (limited to 'core/vm/contracts.go')
-rw-r--r-- | core/vm/contracts.go | 202 |
1 files changed, 202 insertions, 0 deletions
diff --git a/core/vm/contracts.go b/core/vm/contracts.go index 43b60ba77..407f198f0 100644 --- a/core/vm/contracts.go +++ b/core/vm/contracts.go @@ -22,7 +22,9 @@ import ( "math/big" "github.com/ethereum/go-ethereum/common" + "github.com/ethereum/go-ethereum/common/math" "github.com/ethereum/go-ethereum/crypto" + "github.com/ethereum/go-ethereum/crypto/bn256" "github.com/ethereum/go-ethereum/params" "golang.org/x/crypto/ripemd160" ) @@ -45,6 +47,19 @@ var PrecompiledContracts = map[common.Address]PrecompiledContract{ common.BytesToAddress([]byte{4}): &dataCopy{}, } +// PrecompiledContractsMetropolis contains the default set of ethereum contracts +// for metropolis hardfork +var PrecompiledContractsMetropolis = map[common.Address]PrecompiledContract{ + common.BytesToAddress([]byte{1}): &ecrecover{}, + common.BytesToAddress([]byte{2}): &sha256hash{}, + common.BytesToAddress([]byte{3}): &ripemd160hash{}, + common.BytesToAddress([]byte{4}): &dataCopy{}, + common.BytesToAddress([]byte{5}): &bigModexp{}, + common.BytesToAddress([]byte{6}): &bn256Add{}, + common.BytesToAddress([]byte{7}): &bn256ScalarMul{}, + common.BytesToAddress([]byte{8}): &pairing{}, +} + // RunPrecompile runs and evaluate the output of a precompiled contract defined in contracts.go func RunPrecompiledContract(p PrecompiledContract, input []byte, contract *Contract) (ret []byte, err error) { gas := p.RequiredGas(input) @@ -132,3 +147,190 @@ func (c *dataCopy) RequiredGas(input []byte) uint64 { func (c *dataCopy) Run(in []byte) ([]byte, error) { return in, nil } + +// bigModexp implements a native big integer exponential modular operation. +type bigModexp struct{} + +// RequiredGas returns the gas required to execute the pre-compiled contract. +// +// This method does not require any overflow checking as the input size gas costs +// required for anything significant is so high it's impossible to pay for. +func (c *bigModexp) RequiredGas(input []byte) uint64 { + // TODO reword required gas to have error reporting and convert arithmetic + // to uint64. + if len(input) < 3*32 { + input = append(input, make([]byte, 3*32-len(input))...) + } + var ( + baseLen = new(big.Int).SetBytes(input[:31]) + expLen = math.BigMax(new(big.Int).SetBytes(input[32:64]), big.NewInt(1)) + modLen = new(big.Int).SetBytes(input[65:97]) + ) + x := new(big.Int).Set(math.BigMax(baseLen, modLen)) + x.Mul(x, x) + x.Mul(x, expLen) + x.Div(x, new(big.Int).SetUint64(params.QuadCoeffDiv)) + + return x.Uint64() +} + +func (c *bigModexp) Run(input []byte) ([]byte, error) { + if len(input) < 3*32 { + input = append(input, make([]byte, 3*32-len(input))...) + } + // why 32-byte? These values won't fit anyway + var ( + baseLen = new(big.Int).SetBytes(input[:32]).Uint64() + expLen = new(big.Int).SetBytes(input[32:64]).Uint64() + modLen = new(big.Int).SetBytes(input[64:96]).Uint64() + ) + + input = input[96:] + if uint64(len(input)) < baseLen { + input = append(input, make([]byte, baseLen-uint64(len(input)))...) + } + base := new(big.Int).SetBytes(input[:baseLen]) + + input = input[baseLen:] + if uint64(len(input)) < expLen { + input = append(input, make([]byte, expLen-uint64(len(input)))...) + } + exp := new(big.Int).SetBytes(input[:expLen]) + + input = input[expLen:] + if uint64(len(input)) < modLen { + input = append(input, make([]byte, modLen-uint64(len(input)))...) + } + mod := new(big.Int).SetBytes(input[:modLen]) + + return common.LeftPadBytes(base.Exp(base, exp, mod).Bytes(), len(input[:modLen])), nil +} + +type bn256Add struct{} + +// RequiredGas returns the gas required to execute the pre-compiled contract. +// +// This method does not require any overflow checking as the input size gas costs +// required for anything significant is so high it's impossible to pay for. +func (c *bn256Add) RequiredGas(input []byte) uint64 { + return 0 // TODO +} + +func (c *bn256Add) Run(in []byte) ([]byte, error) { + in = common.RightPadBytes(in, 128) + + x, onCurve := new(bn256.G1).Unmarshal(in[:64]) + if !onCurve { + return nil, errNotOnCurve + } + gx, gy, _, _ := x.CurvePoints() + if gx.Cmp(bn256.P) >= 0 || gy.Cmp(bn256.P) >= 0 { + return nil, errInvalidCurvePoint + } + + y, onCurve := new(bn256.G1).Unmarshal(in[64:128]) + if !onCurve { + return nil, errNotOnCurve + } + gx, gy, _, _ = y.CurvePoints() + if gx.Cmp(bn256.P) >= 0 || gy.Cmp(bn256.P) >= 0 { + return nil, errInvalidCurvePoint + } + x.Add(x, y) + + return x.Marshal(), nil +} + +type bn256ScalarMul struct{} + +// RequiredGas returns the gas required to execute the pre-compiled contract. +// +// This method does not require any overflow checking as the input size gas costs +// required for anything significant is so high it's impossible to pay for. +func (c *bn256ScalarMul) RequiredGas(input []byte) uint64 { + return 0 // TODO +} + +func (c *bn256ScalarMul) Run(in []byte) ([]byte, error) { + in = common.RightPadBytes(in, 96) + + g1, onCurve := new(bn256.G1).Unmarshal(in[:64]) + if !onCurve { + return nil, errNotOnCurve + } + x, y, _, _ := g1.CurvePoints() + if x.Cmp(bn256.P) >= 0 || y.Cmp(bn256.P) >= 0 { + return nil, errInvalidCurvePoint + } + g1.ScalarMult(g1, new(big.Int).SetBytes(in[64:96])) + + return g1.Marshal(), nil +} + +// pairing implements a pairing pre-compile for the bn256 curve +type pairing struct{} + +// RequiredGas returns the gas required to execute the pre-compiled contract. +// +// This method does not require any overflow checking as the input size gas costs +// required for anything significant is so high it's impossible to pay for. +func (c *pairing) RequiredGas(input []byte) uint64 { + //return 0 // TODO + k := (len(input) + 191) / pairSize + return uint64(60000*k + 40000) +} + +const pairSize = 192 + +var ( + true32Byte = []byte{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1} + fals32Byte = make([]byte, 32) + errNotOnCurve = errors.New("point not on elliptic curve") + errInvalidCurvePoint = errors.New("invalid elliptic curve point") +) + +func (c *pairing) Run(in []byte) ([]byte, error) { + if len(in) == 0 { + return true32Byte, nil + } + + if len(in)%pairSize > 0 { + return nil, errBadPrecompileInput + } + + var ( + g1s []*bn256.G1 + g2s []*bn256.G2 + ) + for i := 0; i < len(in); i += pairSize { + g1, onCurve := new(bn256.G1).Unmarshal(in[i : i+64]) + if !onCurve { + return nil, errNotOnCurve + } + + x, y, _, _ := g1.CurvePoints() + if x.Cmp(bn256.P) >= 0 || y.Cmp(bn256.P) >= 0 { + return nil, errInvalidCurvePoint + } + + g2, onCurve := new(bn256.G2).Unmarshal(in[i+64 : i+192]) + if !onCurve { + return nil, errNotOnCurve + } + x2, y2, _, _ := g2.CurvePoints() + if x2.Real().Cmp(bn256.P) >= 0 || x2.Imag().Cmp(bn256.P) >= 0 || + y2.Real().Cmp(bn256.P) >= 0 || y2.Imag().Cmp(bn256.P) >= 0 { + return nil, errInvalidCurvePoint + } + + g1s = append(g1s, g1) + g2s = append(g2s, g2) + } + + isOne := bn256.PairingCheck(g1s, g2s) + if isOne { + return true32Byte, nil + } + + return fals32Byte, nil +} |