aboutsummaryrefslogtreecommitdiffstats
path: root/crypto/secp256k1/curve.go
diff options
context:
space:
mode:
authorGustav Simonsson <gustav.simonsson@gmail.com>2015-09-30 01:37:44 +0800
committerGustav Simonsson <gustav.simonsson@gmail.com>2015-11-30 20:43:32 +0800
commitc8ad64f33cd04fc10ac6681260ea06e464908c91 (patch)
treebd48055c50b57e2b17ca0bde4e9e5ae9ba7ca5ce /crypto/secp256k1/curve.go
parent27a50c8f4bc69f98e20db361859bfbb6cf371c00 (diff)
downloadgo-tangerine-c8ad64f33cd04fc10ac6681260ea06e464908c91.tar
go-tangerine-c8ad64f33cd04fc10ac6681260ea06e464908c91.tar.gz
go-tangerine-c8ad64f33cd04fc10ac6681260ea06e464908c91.tar.bz2
go-tangerine-c8ad64f33cd04fc10ac6681260ea06e464908c91.tar.lz
go-tangerine-c8ad64f33cd04fc10ac6681260ea06e464908c91.tar.xz
go-tangerine-c8ad64f33cd04fc10ac6681260ea06e464908c91.tar.zst
go-tangerine-c8ad64f33cd04fc10ac6681260ea06e464908c91.zip
crypto, crypto/ecies, crypto/secp256k1: libsecp256k1 scalar mult
thanks to Felix Lange (fjl) for help with design & impl
Diffstat (limited to 'crypto/secp256k1/curve.go')
-rw-r--r--crypto/secp256k1/curve.go335
1 files changed, 335 insertions, 0 deletions
diff --git a/crypto/secp256k1/curve.go b/crypto/secp256k1/curve.go
new file mode 100644
index 000000000..6e44a6771
--- /dev/null
+++ b/crypto/secp256k1/curve.go
@@ -0,0 +1,335 @@
+// Copyright 2010 The Go Authors. All rights reserved.
+// Copyright 2011 ThePiachu. All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following disclaimer
+// in the documentation and/or other materials provided with the
+// distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived from
+// this software without specific prior written permission.
+// * The name of ThePiachu may not be used to endorse or promote products
+// derived from this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+package secp256k1
+
+import (
+ "crypto/elliptic"
+ "io"
+ "math/big"
+ "sync"
+ "unsafe"
+)
+
+/*
+#include "libsecp256k1/include/secp256k1.h"
+extern int secp256k1_pubkey_scalar_mul(const secp256k1_context* ctx, const unsigned char *point, const unsigned char *scalar);
+*/
+import "C"
+
+// This code is from https://github.com/ThePiachu/GoBit and implements
+// several Koblitz elliptic curves over prime fields.
+//
+// The curve methods, internally, on Jacobian coordinates. For a given
+// (x, y) position on the curve, the Jacobian coordinates are (x1, y1,
+// z1) where x = x1/z1² and y = y1/z1³. The greatest speedups come
+// when the whole calculation can be performed within the transform
+// (as in ScalarMult and ScalarBaseMult). But even for Add and Double,
+// it's faster to apply and reverse the transform than to operate in
+// affine coordinates.
+
+// A BitCurve represents a Koblitz Curve with a=0.
+// See http://www.hyperelliptic.org/EFD/g1p/auto-shortw.html
+type BitCurve struct {
+ P *big.Int // the order of the underlying field
+ N *big.Int // the order of the base point
+ B *big.Int // the constant of the BitCurve equation
+ Gx, Gy *big.Int // (x,y) of the base point
+ BitSize int // the size of the underlying field
+}
+
+func (BitCurve *BitCurve) Params() *elliptic.CurveParams {
+ return &elliptic.CurveParams{
+ P: BitCurve.P,
+ N: BitCurve.N,
+ B: BitCurve.B,
+ Gx: BitCurve.Gx,
+ Gy: BitCurve.Gy,
+ BitSize: BitCurve.BitSize,
+ }
+}
+
+// IsOnBitCurve returns true if the given (x,y) lies on the BitCurve.
+func (BitCurve *BitCurve) IsOnCurve(x, y *big.Int) bool {
+ // y² = x³ + b
+ y2 := new(big.Int).Mul(y, y) //y²
+ y2.Mod(y2, BitCurve.P) //y²%P
+
+ x3 := new(big.Int).Mul(x, x) //x²
+ x3.Mul(x3, x) //x³
+
+ x3.Add(x3, BitCurve.B) //x³+B
+ x3.Mod(x3, BitCurve.P) //(x³+B)%P
+
+ return x3.Cmp(y2) == 0
+}
+
+//TODO: double check if the function is okay
+// affineFromJacobian reverses the Jacobian transform. See the comment at the
+// top of the file.
+func (BitCurve *BitCurve) affineFromJacobian(x, y, z *big.Int) (xOut, yOut *big.Int) {
+ zinv := new(big.Int).ModInverse(z, BitCurve.P)
+ zinvsq := new(big.Int).Mul(zinv, zinv)
+
+ xOut = new(big.Int).Mul(x, zinvsq)
+ xOut.Mod(xOut, BitCurve.P)
+ zinvsq.Mul(zinvsq, zinv)
+ yOut = new(big.Int).Mul(y, zinvsq)
+ yOut.Mod(yOut, BitCurve.P)
+ return
+}
+
+// Add returns the sum of (x1,y1) and (x2,y2)
+func (BitCurve *BitCurve) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) {
+ z := new(big.Int).SetInt64(1)
+ return BitCurve.affineFromJacobian(BitCurve.addJacobian(x1, y1, z, x2, y2, z))
+}
+
+// addJacobian takes two points in Jacobian coordinates, (x1, y1, z1) and
+// (x2, y2, z2) and returns their sum, also in Jacobian form.
+func (BitCurve *BitCurve) addJacobian(x1, y1, z1, x2, y2, z2 *big.Int) (*big.Int, *big.Int, *big.Int) {
+ // See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl
+ z1z1 := new(big.Int).Mul(z1, z1)
+ z1z1.Mod(z1z1, BitCurve.P)
+ z2z2 := new(big.Int).Mul(z2, z2)
+ z2z2.Mod(z2z2, BitCurve.P)
+
+ u1 := new(big.Int).Mul(x1, z2z2)
+ u1.Mod(u1, BitCurve.P)
+ u2 := new(big.Int).Mul(x2, z1z1)
+ u2.Mod(u2, BitCurve.P)
+ h := new(big.Int).Sub(u2, u1)
+ if h.Sign() == -1 {
+ h.Add(h, BitCurve.P)
+ }
+ i := new(big.Int).Lsh(h, 1)
+ i.Mul(i, i)
+ j := new(big.Int).Mul(h, i)
+
+ s1 := new(big.Int).Mul(y1, z2)
+ s1.Mul(s1, z2z2)
+ s1.Mod(s1, BitCurve.P)
+ s2 := new(big.Int).Mul(y2, z1)
+ s2.Mul(s2, z1z1)
+ s2.Mod(s2, BitCurve.P)
+ r := new(big.Int).Sub(s2, s1)
+ if r.Sign() == -1 {
+ r.Add(r, BitCurve.P)
+ }
+ r.Lsh(r, 1)
+ v := new(big.Int).Mul(u1, i)
+
+ x3 := new(big.Int).Set(r)
+ x3.Mul(x3, x3)
+ x3.Sub(x3, j)
+ x3.Sub(x3, v)
+ x3.Sub(x3, v)
+ x3.Mod(x3, BitCurve.P)
+
+ y3 := new(big.Int).Set(r)
+ v.Sub(v, x3)
+ y3.Mul(y3, v)
+ s1.Mul(s1, j)
+ s1.Lsh(s1, 1)
+ y3.Sub(y3, s1)
+ y3.Mod(y3, BitCurve.P)
+
+ z3 := new(big.Int).Add(z1, z2)
+ z3.Mul(z3, z3)
+ z3.Sub(z3, z1z1)
+ if z3.Sign() == -1 {
+ z3.Add(z3, BitCurve.P)
+ }
+ z3.Sub(z3, z2z2)
+ if z3.Sign() == -1 {
+ z3.Add(z3, BitCurve.P)
+ }
+ z3.Mul(z3, h)
+ z3.Mod(z3, BitCurve.P)
+
+ return x3, y3, z3
+}
+
+// Double returns 2*(x,y)
+func (BitCurve *BitCurve) Double(x1, y1 *big.Int) (*big.Int, *big.Int) {
+ z1 := new(big.Int).SetInt64(1)
+ return BitCurve.affineFromJacobian(BitCurve.doubleJacobian(x1, y1, z1))
+}
+
+// doubleJacobian takes a point in Jacobian coordinates, (x, y, z), and
+// returns its double, also in Jacobian form.
+func (BitCurve *BitCurve) doubleJacobian(x, y, z *big.Int) (*big.Int, *big.Int, *big.Int) {
+ // See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l
+
+ a := new(big.Int).Mul(x, x) //X1²
+ b := new(big.Int).Mul(y, y) //Y1²
+ c := new(big.Int).Mul(b, b) //B²
+
+ d := new(big.Int).Add(x, b) //X1+B
+ d.Mul(d, d) //(X1+B)²
+ d.Sub(d, a) //(X1+B)²-A
+ d.Sub(d, c) //(X1+B)²-A-C
+ d.Mul(d, big.NewInt(2)) //2*((X1+B)²-A-C)
+
+ e := new(big.Int).Mul(big.NewInt(3), a) //3*A
+ f := new(big.Int).Mul(e, e) //E²
+
+ x3 := new(big.Int).Mul(big.NewInt(2), d) //2*D
+ x3.Sub(f, x3) //F-2*D
+ x3.Mod(x3, BitCurve.P)
+
+ y3 := new(big.Int).Sub(d, x3) //D-X3
+ y3.Mul(e, y3) //E*(D-X3)
+ y3.Sub(y3, new(big.Int).Mul(big.NewInt(8), c)) //E*(D-X3)-8*C
+ y3.Mod(y3, BitCurve.P)
+
+ z3 := new(big.Int).Mul(y, z) //Y1*Z1
+ z3.Mul(big.NewInt(2), z3) //3*Y1*Z1
+ z3.Mod(z3, BitCurve.P)
+
+ return x3, y3, z3
+}
+
+func (BitCurve *BitCurve) ScalarMult(Bx, By *big.Int, scalar []byte) (*big.Int, *big.Int) {
+ // Ensure scalar is exactly 32 bytes. We pad always, even if
+ // scalar is 32 bytes long, to avoid a timing side channel.
+ if len(scalar) > 32 {
+ panic("can't handle scalars > 256 bits")
+ }
+ padded := make([]byte, 32)
+ copy(padded[32-len(scalar):], scalar)
+ scalar = padded
+
+ // Do the multiplication in C, updating point.
+ point := make([]byte, 64)
+ readBits(point[:32], Bx)
+ readBits(point[32:], By)
+ pointPtr := (*C.uchar)(unsafe.Pointer(&point[0]))
+ scalarPtr := (*C.uchar)(unsafe.Pointer(&scalar[0]))
+ res := C.secp256k1_pubkey_scalar_mul(context, pointPtr, scalarPtr)
+
+ // Unpack the result and clear temporaries.
+ x := new(big.Int).SetBytes(point[:32])
+ y := new(big.Int).SetBytes(point[32:])
+ for i := range point {
+ point[i] = 0
+ }
+ for i := range padded {
+ scalar[i] = 0
+ }
+ if res != 1 {
+ return nil, nil
+ }
+ return x, y
+}
+
+// ScalarBaseMult returns k*G, where G is the base point of the group and k is
+// an integer in big-endian form.
+func (BitCurve *BitCurve) ScalarBaseMult(k []byte) (*big.Int, *big.Int) {
+ return BitCurve.ScalarMult(BitCurve.Gx, BitCurve.Gy, k)
+}
+
+var mask = []byte{0xff, 0x1, 0x3, 0x7, 0xf, 0x1f, 0x3f, 0x7f}
+
+//TODO: double check if it is okay
+// GenerateKey returns a public/private key pair. The private key is generated
+// using the given reader, which must return random data.
+func (BitCurve *BitCurve) GenerateKey(rand io.Reader) (priv []byte, x, y *big.Int, err error) {
+ byteLen := (BitCurve.BitSize + 7) >> 3
+ priv = make([]byte, byteLen)
+
+ for x == nil {
+ _, err = io.ReadFull(rand, priv)
+ if err != nil {
+ return
+ }
+ // We have to mask off any excess bits in the case that the size of the
+ // underlying field is not a whole number of bytes.
+ priv[0] &= mask[BitCurve.BitSize%8]
+ // This is because, in tests, rand will return all zeros and we don't
+ // want to get the point at infinity and loop forever.
+ priv[1] ^= 0x42
+ x, y = BitCurve.ScalarBaseMult(priv)
+ }
+ return
+}
+
+// Marshal converts a point into the form specified in section 4.3.6 of ANSI
+// X9.62.
+func (BitCurve *BitCurve) Marshal(x, y *big.Int) []byte {
+ byteLen := (BitCurve.BitSize + 7) >> 3
+
+ ret := make([]byte, 1+2*byteLen)
+ ret[0] = 4 // uncompressed point
+
+ xBytes := x.Bytes()
+ copy(ret[1+byteLen-len(xBytes):], xBytes)
+ yBytes := y.Bytes()
+ copy(ret[1+2*byteLen-len(yBytes):], yBytes)
+ return ret
+}
+
+// Unmarshal converts a point, serialised by Marshal, into an x, y pair. On
+// error, x = nil.
+func (BitCurve *BitCurve) Unmarshal(data []byte) (x, y *big.Int) {
+ byteLen := (BitCurve.BitSize + 7) >> 3
+ if len(data) != 1+2*byteLen {
+ return
+ }
+ if data[0] != 4 { // uncompressed form
+ return
+ }
+ x = new(big.Int).SetBytes(data[1 : 1+byteLen])
+ y = new(big.Int).SetBytes(data[1+byteLen:])
+ return
+}
+
+var (
+ initonce sync.Once
+ theCurve *BitCurve
+)
+
+// S256 returns a BitCurve which implements secp256k1 (see SEC 2 section 2.7.1)
+func S256() *BitCurve {
+ initonce.Do(func() {
+ // See SEC 2 section 2.7.1
+ // curve parameters taken from:
+ // http://www.secg.org/collateral/sec2_final.pdf
+ theCurve = new(BitCurve)
+ theCurve.P, _ = new(big.Int).SetString("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F", 16)
+ theCurve.N, _ = new(big.Int).SetString("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141", 16)
+ theCurve.B, _ = new(big.Int).SetString("0000000000000000000000000000000000000000000000000000000000000007", 16)
+ theCurve.Gx, _ = new(big.Int).SetString("79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798", 16)
+ theCurve.Gy, _ = new(big.Int).SetString("483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8", 16)
+ theCurve.BitSize = 256
+ })
+ return theCurve
+}