diff options
author | Gustav Simonsson <gustav.simonsson@gmail.com> | 2015-09-28 23:46:17 +0800 |
---|---|---|
committer | Gustav Simonsson <gustav.simonsson@gmail.com> | 2015-09-28 23:46:38 +0800 |
commit | 1d20b0247c35f440d3fdc3d21de19b2d5256c3cf (patch) | |
tree | be0bce533d5d476e4f408d1d7757b9ac416463ae | |
parent | 7977e87ce1e9ec46a8e8275f4cf53b6281c412c7 (diff) | |
download | go-tangerine-1d20b0247c35f440d3fdc3d21de19b2d5256c3cf.tar go-tangerine-1d20b0247c35f440d3fdc3d21de19b2d5256c3cf.tar.gz go-tangerine-1d20b0247c35f440d3fdc3d21de19b2d5256c3cf.tar.bz2 go-tangerine-1d20b0247c35f440d3fdc3d21de19b2d5256c3cf.tar.lz go-tangerine-1d20b0247c35f440d3fdc3d21de19b2d5256c3cf.tar.xz go-tangerine-1d20b0247c35f440d3fdc3d21de19b2d5256c3cf.tar.zst go-tangerine-1d20b0247c35f440d3fdc3d21de19b2d5256c3cf.zip |
Update libsecp256k1
86 files changed, 6280 insertions, 2773 deletions
diff --git a/crypto/secp256k1/libsecp256k1/.gitignore b/crypto/secp256k1/libsecp256k1/.gitignore new file mode 100644 index 000000000..e0b7b7a48 --- /dev/null +++ b/crypto/secp256k1/libsecp256k1/.gitignore @@ -0,0 +1,41 @@ +bench_inv +bench_ecdh +bench_sign +bench_verify +bench_schnorr_verify +bench_recover +bench_internal +tests +gen_context +*.exe +*.so +*.a +!.gitignore + +Makefile +configure +.libs/ +Makefile.in +aclocal.m4 +autom4te.cache/ +config.log +config.status +*.tar.gz +*.la +libtool +.deps/ +.dirstamp +build-aux/ +*.lo +*.o +*~ +src/libsecp256k1-config.h +src/libsecp256k1-config.h.in +src/ecmult_static_context.h +m4/libtool.m4 +m4/ltoptions.m4 +m4/ltsugar.m4 +m4/ltversion.m4 +m4/lt~obsolete.m4 +src/stamp-h1 +libsecp256k1.pc diff --git a/crypto/secp256k1/libsecp256k1/.travis.yml b/crypto/secp256k1/libsecp256k1/.travis.yml new file mode 100644 index 000000000..fba0892dd --- /dev/null +++ b/crypto/secp256k1/libsecp256k1/.travis.yml @@ -0,0 +1,62 @@ +language: c +sudo: false +addons: + apt: + packages: libgmp-dev +compiler: + - clang + - gcc +env: + global: + - FIELD=auto BIGNUM=auto SCALAR=auto ENDOMORPHISM=no STATICPRECOMPUTATION=yes ASM=no BUILD=check EXTRAFLAGS= HOST= ECDH=no schnorr=NO RECOVERY=NO + matrix: + - SCALAR=32bit RECOVERY=yes + - SCALAR=32bit FIELD=32bit ECDH=yes + - SCALAR=64bit + - FIELD=64bit RECOVERY=yes + - FIELD=64bit ENDOMORPHISM=yes + - FIELD=64bit ENDOMORPHISM=yes ECDH=yes + - FIELD=64bit ASM=x86_64 + - FIELD=64bit ENDOMORPHISM=yes ASM=x86_64 + - FIELD=32bit SCHNORR=yes + - FIELD=32bit ENDOMORPHISM=yes + - BIGNUM=no + - BIGNUM=no ENDOMORPHISM=yes SCHNORR=yes RECOVERY=yes + - BIGNUM=no STATICPRECOMPUTATION=no + - BUILD=distcheck + - EXTRAFLAGS=CFLAGS=-DDETERMINISTIC +matrix: + fast_finish: true + include: + - compiler: clang + env: HOST=i686-linux-gnu ENDOMORPHISM=yes + addons: + apt: + packages: + - gcc-multilib + - libgmp-dev:i386 + - compiler: clang + env: HOST=i686-linux-gnu + addons: + apt: + packages: + - gcc-multilib + - compiler: gcc + env: HOST=i686-linux-gnu ENDOMORPHISM=yes + addons: + apt: + packages: + - gcc-multilib + - compiler: gcc + env: HOST=i686-linux-gnu + addons: + apt: + packages: + - gcc-multilib + - libgmp-dev:i386 +before_script: ./autogen.sh +script: + - if [ -n "$HOST" ]; then export USE_HOST="--host=$HOST"; fi + - if [ "x$HOST" = "xi686-linux-gnu" ]; then export CC="$CC -m32"; fi + - ./configure --enable-endomorphism=$ENDOMORPHISM --with-field=$FIELD --with-bignum=$BIGNUM --with-scalar=$SCALAR --enable-ecmult-static-precomputation=$STATICPRECOMPUTATION --enable-module-ecdh=$ECDH --enable-module-schnorr=$SCHNORR $EXTRAFLAGS $USE_HOST && make -j2 $BUILD +os: linux diff --git a/crypto/secp256k1/secp256k1/COPYING b/crypto/secp256k1/libsecp256k1/COPYING index 4522a5990..4522a5990 100644 --- a/crypto/secp256k1/secp256k1/COPYING +++ b/crypto/secp256k1/libsecp256k1/COPYING diff --git a/crypto/secp256k1/secp256k1/Makefile.am b/crypto/secp256k1/libsecp256k1/Makefile.am index cc15338b7..57524fab0 100644 --- a/crypto/secp256k1/secp256k1/Makefile.am +++ b/crypto/secp256k1/libsecp256k1/Makefile.am @@ -19,6 +19,8 @@ noinst_HEADERS += src/eckey.h noinst_HEADERS += src/eckey_impl.h noinst_HEADERS += src/ecmult.h noinst_HEADERS += src/ecmult_impl.h +noinst_HEADERS += src/ecmult_const.h +noinst_HEADERS += src/ecmult_const_impl.h noinst_HEADERS += src/ecmult_gen.h noinst_HEADERS += src/ecmult_gen_impl.h noinst_HEADERS += src/num.h @@ -43,19 +45,16 @@ pkgconfigdir = $(libdir)/pkgconfig pkgconfig_DATA = libsecp256k1.pc libsecp256k1_la_SOURCES = src/secp256k1.c -libsecp256k1_la_CPPFLAGS = -I$(top_srcdir)/include $(SECP_INCLUDES) +libsecp256k1_la_CPPFLAGS = -I$(top_srcdir)/include -I$(top_srcdir)/src $(SECP_INCLUDES) libsecp256k1_la_LIBADD = $(SECP_LIBS) noinst_PROGRAMS = if USE_BENCHMARK -noinst_PROGRAMS += bench_verify bench_recover bench_sign bench_internal +noinst_PROGRAMS += bench_verify bench_sign bench_internal bench_verify_SOURCES = src/bench_verify.c bench_verify_LDADD = libsecp256k1.la $(SECP_LIBS) bench_verify_LDFLAGS = -static -bench_recover_SOURCES = src/bench_recover.c -bench_recover_LDADD = libsecp256k1.la $(SECP_LIBS) -bench_recover_LDFLAGS = -static bench_sign_SOURCES = src/bench_sign.c bench_sign_LDADD = libsecp256k1.la $(SECP_LIBS) bench_sign_LDFLAGS = -static @@ -68,10 +67,44 @@ endif if USE_TESTS noinst_PROGRAMS += tests tests_SOURCES = src/tests.c -tests_CPPFLAGS = -DVERIFY $(SECP_INCLUDES) $(SECP_TEST_INCLUDES) +tests_CPPFLAGS = -DVERIFY -I$(top_srcdir)/src $(SECP_INCLUDES) $(SECP_TEST_INCLUDES) tests_LDADD = $(SECP_LIBS) $(SECP_TEST_LIBS) tests_LDFLAGS = -static TESTS = tests endif -EXTRA_DIST = autogen.sh +if USE_ECMULT_STATIC_PRECOMPUTATION +CPPFLAGS_FOR_BUILD +=-I$(top_srcdir)/ +CFLAGS_FOR_BUILD += -Wall -Wextra -Wno-unused-function + +gen_context_OBJECTS = gen_context.o +gen_context_BIN = gen_context$(BUILD_EXEEXT) +gen_%.o: src/gen_%.c + $(CC_FOR_BUILD) $(CPPFLAGS_FOR_BUILD) $(CFLAGS_FOR_BUILD) -c $< -o $@ + +$(gen_context_BIN): $(gen_context_OBJECTS) + $(CC_FOR_BUILD) $^ -o $@ + +$(libsecp256k1_la_OBJECTS): src/ecmult_static_context.h +$(tests_OBJECTS): src/ecmult_static_context.h +$(bench_internal_OBJECTS): src/ecmult_static_context.h + +src/ecmult_static_context.h: $(gen_context_BIN) + ./$(gen_context_BIN) + +CLEANFILES = $(gen_context_BIN) src/ecmult_static_context.h +endif + +EXTRA_DIST = autogen.sh src/gen_context.c src/basic-config.h + +if ENABLE_MODULE_ECDH +include src/modules/ecdh/Makefile.am.include +endif + +if ENABLE_MODULE_SCHNORR +include src/modules/schnorr/Makefile.am.include +endif + +if ENABLE_MODULE_RECOVERY +include src/modules/recovery/Makefile.am.include +endif diff --git a/crypto/secp256k1/secp256k1/README.md b/crypto/secp256k1/libsecp256k1/README.md index 6095db422..6095db422 100644 --- a/crypto/secp256k1/secp256k1/README.md +++ b/crypto/secp256k1/libsecp256k1/README.md diff --git a/crypto/secp256k1/secp256k1/TODO b/crypto/secp256k1/libsecp256k1/TODO index a300e1c5e..a300e1c5e 100644 --- a/crypto/secp256k1/secp256k1/TODO +++ b/crypto/secp256k1/libsecp256k1/TODO diff --git a/crypto/secp256k1/secp256k1/autogen.sh b/crypto/secp256k1/libsecp256k1/autogen.sh index 65286b935..65286b935 100755 --- a/crypto/secp256k1/secp256k1/autogen.sh +++ b/crypto/secp256k1/libsecp256k1/autogen.sh diff --git a/crypto/secp256k1/secp256k1/configure.ac b/crypto/secp256k1/libsecp256k1/configure.ac index 3dc182951..786d8dcfb 100644 --- a/crypto/secp256k1/secp256k1/configure.ac +++ b/crypto/secp256k1/libsecp256k1/configure.ac @@ -17,25 +17,19 @@ PKG_PROG_PKG_CONFIG AC_PATH_TOOL(AR, ar) AC_PATH_TOOL(RANLIB, ranlib) AC_PATH_TOOL(STRIP, strip) +AX_PROG_CC_FOR_BUILD if test "x$CFLAGS" = "x"; then CFLAGS="-O3 -g" fi +AM_PROG_CC_C_O + AC_PROG_CC_C89 if test x"$ac_cv_prog_cc_c89" = x"no"; then AC_MSG_ERROR([c89 compiler support required]) fi -case $host in - *mingw*) - use_pkgconfig=no - ;; - *) - use_pkgconfig=yes - ;; -esac - case $host_os in *darwin*) if test x$cross_compiling != xyes; then @@ -80,6 +74,14 @@ AC_COMPILE_IFELSE([AC_LANG_SOURCE([[char foo;]])], CFLAGS="$saved_CFLAGS" ]) +saved_CFLAGS="$CFLAGS" +CFLAGS="$CFLAGS -fvisibility=hidden" +AC_MSG_CHECKING([if ${CC} supports -fvisibility=hidden]) +AC_COMPILE_IFELSE([AC_LANG_SOURCE([[char foo;]])], + [ AC_MSG_RESULT([yes]) ], + [ AC_MSG_RESULT([no]) + CFLAGS="$saved_CFLAGS" + ]) AC_ARG_ENABLE(benchmark, AS_HELP_STRING([--enable-benchmark],[compile benchmark (default is no)]), @@ -95,6 +97,26 @@ AC_ARG_ENABLE(endomorphism, AS_HELP_STRING([--enable-endomorphism],[enable endomorphism (default is no)]), [use_endomorphism=$enableval], [use_endomorphism=no]) + +AC_ARG_ENABLE(ecmult_static_precomputation, + AS_HELP_STRING([--enable-ecmult-static-precomputation],[enable precomputed ecmult table for signing (default is yes)]), + [use_ecmult_static_precomputation=$enableval], + [use_ecmult_static_precomputation=yes]) + +AC_ARG_ENABLE(module_ecdh, + AS_HELP_STRING([--enable-module-ecdh],[enable ECDH shared secret computation (default is no)]), + [enable_module_ecdh=$enableval], + [enable_module_ecdh=no]) + +AC_ARG_ENABLE(module_schnorr, + AS_HELP_STRING([--enable-module-schnorr],[enable Schnorr signature module (default is no)]), + [enable_module_schnorr=$enableval], + [enable_module_schnorr=no]) + +AC_ARG_ENABLE(module_recovery, + AS_HELP_STRING([--enable-module-recovery],[enable ECDSA pubkey recovery module (default is no)]), + [enable_module_recovery=$enableval], + [enable_module_recovery=no]) AC_ARG_WITH([field], [AS_HELP_STRING([--with-field=64bit|32bit|auto], [Specify Field Implementation. Default is auto])],[req_field=$withval], [req_field=auto]) @@ -305,6 +327,22 @@ if test x"$use_endomorphism" = x"yes"; then AC_DEFINE(USE_ENDOMORPHISM, 1, [Define this symbol to use endomorphism optimization]) fi +if test x"$use_ecmult_static_precomputation" = x"yes"; then + AC_DEFINE(USE_ECMULT_STATIC_PRECOMPUTATION, 1, [Define this symbol to use a statically generated ecmult table]) +fi + +if test x"$enable_module_ecdh" = x"yes"; then + AC_DEFINE(ENABLE_MODULE_ECDH, 1, [Define this symbol to enable the ECDH module]) +fi + +if test x"$enable_module_schnorr" = x"yes"; then + AC_DEFINE(ENABLE_MODULE_SCHNORR, 1, [Define this symbol to enable the Schnorr signature module]) +fi + +if test x"$enable_module_recovery" = x"yes"; then + AC_DEFINE(ENABLE_MODULE_RECOVERY, 1, [Define this symbol to enable the ECDSA pubkey recovery module]) +fi + AC_C_BIGENDIAN() AC_MSG_NOTICE([Using assembly optimizations: $set_asm]) @@ -312,6 +350,10 @@ AC_MSG_NOTICE([Using field implementation: $set_field]) AC_MSG_NOTICE([Using bignum implementation: $set_bignum]) AC_MSG_NOTICE([Using scalar implementation: $set_scalar]) AC_MSG_NOTICE([Using endomorphism optimizations: $use_endomorphism]) +AC_MSG_NOTICE([Building ECDH module: $enable_module_ecdh]) + +AC_MSG_NOTICE([Building Schnorr signatures module: $enable_module_schnorr]) +AC_MSG_NOTICE([Building ECDSA pubkey recovery module: $enable_module_recovery]) AC_CONFIG_HEADERS([src/libsecp256k1-config.h]) AC_CONFIG_FILES([Makefile libsecp256k1.pc]) @@ -321,6 +363,10 @@ AC_SUBST(SECP_TEST_LIBS) AC_SUBST(SECP_TEST_INCLUDES) AM_CONDITIONAL([USE_TESTS], [test x"$use_tests" != x"no"]) AM_CONDITIONAL([USE_BENCHMARK], [test x"$use_benchmark" = x"yes"]) +AM_CONDITIONAL([USE_ECMULT_STATIC_PRECOMPUTATION], [test x"$use_ecmult_static_precomputation" = x"yes"]) +AM_CONDITIONAL([ENABLE_MODULE_ECDH], [test x"$enable_module_ecdh" = x"yes"]) +AM_CONDITIONAL([ENABLE_MODULE_SCHNORR], [test x"$enable_module_schnorr" = x"yes"]) +AM_CONDITIONAL([ENABLE_MODULE_RECOVERY], [test x"$enable_module_recovery" = x"yes"]) dnl make sure nothing new is exported so that we don't break the cache PKGCONFIG_PATH_TEMP="$PKG_CONFIG_PATH" diff --git a/crypto/secp256k1/libsecp256k1/include/secp256k1.h b/crypto/secp256k1/libsecp256k1/include/secp256k1.h new file mode 100644 index 000000000..23378de1f --- /dev/null +++ b/crypto/secp256k1/libsecp256k1/include/secp256k1.h @@ -0,0 +1,547 @@ +#ifndef _SECP256K1_ +# define _SECP256K1_ + +# ifdef __cplusplus +extern "C" { +# endif + +#include <stddef.h> + +/* These rules specify the order of arguments in API calls: + * + * 1. Context pointers go first, followed by output arguments, combined + * output/input arguments, and finally input-only arguments. + * 2. Array lengths always immediately the follow the argument whose length + * they describe, even if this violates rule 1. + * 3. Within the OUT/OUTIN/IN groups, pointers to data that is typically generated + * later go first. This means: signatures, public nonces, private nonces, + * messages, public keys, secret keys, tweaks. + * 4. Arguments that are not data pointers go last, from more complex to less + * complex: function pointers, algorithm names, messages, void pointers, + * counts, flags, booleans. + * 5. Opaque data pointers follow the function pointer they are to be passed to. + */ + +/** Opaque data structure that holds context information (precomputed tables etc.). + * + * The purpose of context structures is to cache large precomputed data tables + * that are expensive to construct, and also to maintain the randomization data + * for blinding. + * + * Do not create a new context object for each operation, as construction is + * far slower than all other API calls (~100 times slower than an ECDSA + * verification). + * + * A constructed context can safely be used from multiple threads + * simultaneously, but API call that take a non-const pointer to a context + * need exclusive access to it. In particular this is the case for + * secp256k1_context_destroy and secp256k1_context_randomize. + * + * Regarding randomization, either do it once at creation time (in which case + * you do not need any locking for the other calls), or use a read-write lock. + */ +typedef struct secp256k1_context_struct secp256k1_context; + +/** Opaque data structure that holds a parsed and valid public key. + * + * The exact representation of data inside is implementation defined and not + * guaranteed to be portable between different platforms or versions. It is + * however guaranteed to be 64 bytes in size, and can be safely copied/moved. + * If you need to convert to a format suitable for storage or transmission, use + * secp256k1_ec_pubkey_serialize and secp256k1_ec_pubkey_parse. + * + * Furthermore, it is guaranteed that identical public keys (ignoring + * compression) will have identical representation, so they can be memcmp'ed. + */ +typedef struct { + unsigned char data[64]; +} secp256k1_pubkey; + +/** Opaque data structured that holds a parsed ECDSA signature. + * + * The exact representation of data inside is implementation defined and not + * guaranteed to be portable between different platforms or versions. It is + * however guaranteed to be 64 bytes in size, and can be safely copied/moved. + * If you need to convert to a format suitable for storage or transmission, use + * the secp256k1_ecdsa_signature_serialize_* and + * secp256k1_ecdsa_signature_serialize_* functions. + * + * Furthermore, it is guaranteed to identical signatures will have identical + * representation, so they can be memcmp'ed. + */ +typedef struct { + unsigned char data[64]; +} secp256k1_ecdsa_signature; + +/** A pointer to a function to deterministically generate a nonce. + * + * Returns: 1 if a nonce was successfully generated. 0 will cause signing to fail. + * Out: nonce32: pointer to a 32-byte array to be filled by the function. + * In: msg32: the 32-byte message hash being verified (will not be NULL) + * key32: pointer to a 32-byte secret key (will not be NULL) + * algo16: pointer to a 16-byte array describing the signature + * algorithm (will be NULL for ECDSA for compatibility). + * data: Arbitrary data pointer that is passed through. + * attempt: how many iterations we have tried to find a nonce. + * This will almost always be 0, but different attempt values + * are required to result in a different nonce. + * + * Except for test cases, this function should compute some cryptographic hash of + * the message, the algorithm, the key and the attempt. + */ +typedef int (*secp256k1_nonce_function)( + unsigned char *nonce32, + const unsigned char *msg32, + const unsigned char *key32, + const unsigned char *algo16, + void *data, + unsigned int attempt +); + +# if !defined(SECP256K1_GNUC_PREREQ) +# if defined(__GNUC__)&&defined(__GNUC_MINOR__) +# define SECP256K1_GNUC_PREREQ(_maj,_min) \ + ((__GNUC__<<16)+__GNUC_MINOR__>=((_maj)<<16)+(_min)) +# else +# define SECP256K1_GNUC_PREREQ(_maj,_min) 0 +# endif +# endif + +# if (!defined(__STDC_VERSION__) || (__STDC_VERSION__ < 199901L) ) +# if SECP256K1_GNUC_PREREQ(2,7) +# define SECP256K1_INLINE __inline__ +# elif (defined(_MSC_VER)) +# define SECP256K1_INLINE __inline +# else +# define SECP256K1_INLINE +# endif +# else +# define SECP256K1_INLINE inline +# endif + +#ifndef SECP256K1_API +# if defined(_WIN32) +# ifdef SECP256K1_BUILD +# define SECP256K1_API __declspec(dllexport) +# else +# define SECP256K1_API +# endif +# elif defined(__GNUC__) && defined(SECP256K1_BUILD) +# define SECP256K1_API __attribute__ ((visibility ("default"))) +# else +# define SECP256K1_API +# endif +#endif + +/**Warning attributes + * NONNULL is not used if SECP256K1_BUILD is set to avoid the compiler optimizing out + * some paranoid null checks. */ +# if defined(__GNUC__) && SECP256K1_GNUC_PREREQ(3, 4) +# define SECP256K1_WARN_UNUSED_RESULT __attribute__ ((__warn_unused_result__)) +# else +# define SECP256K1_WARN_UNUSED_RESULT +# endif +# if !defined(SECP256K1_BUILD) && defined(__GNUC__) && SECP256K1_GNUC_PREREQ(3, 4) +# define SECP256K1_ARG_NONNULL(_x) __attribute__ ((__nonnull__(_x))) +# else +# define SECP256K1_ARG_NONNULL(_x) +# endif + +/** Flags to pass to secp256k1_context_create. */ +# define SECP256K1_CONTEXT_VERIFY (1 << 0) +# define SECP256K1_CONTEXT_SIGN (1 << 1) + +/** Flag to pass to secp256k1_ec_pubkey_serialize and secp256k1_ec_privkey_export. */ +# define SECP256K1_EC_COMPRESSED (1 << 0) + +/** Create a secp256k1 context object. + * + * Returns: a newly created context object. + * In: flags: which parts of the context to initialize. + */ +SECP256K1_API secp256k1_context* secp256k1_context_create( + unsigned int flags +) SECP256K1_WARN_UNUSED_RESULT; + +/** Copies a secp256k1 context object. + * + * Returns: a newly created context object. + * Args: ctx: an existing context to copy (cannot be NULL) + */ +SECP256K1_API secp256k1_context* secp256k1_context_clone( + const secp256k1_context* ctx +) SECP256K1_ARG_NONNULL(1) SECP256K1_WARN_UNUSED_RESULT; + +/** Destroy a secp256k1 context object. + * + * The context pointer may not be used afterwards. + * Args: ctx: an existing context to destroy (cannot be NULL) + */ +SECP256K1_API void secp256k1_context_destroy( + secp256k1_context* ctx +); + +/** Set a callback function to be called when an illegal argument is passed to + * an API call. It will only trigger for violations that are mentioned + * explicitly in the header. + * + * The philosophy is that these shouldn't be dealt with through a + * specific return value, as calling code should not have branches to deal with + * the case that this code itself is broken. + * + * On the other hand, during debug stage, one would want to be informed about + * such mistakes, and the default (crashing) may be inadvisable. + * When this callback is triggered, the API function called is guaranteed not + * to cause a crash, though its return value and output arguments are + * undefined. + * + * Args: ctx: an existing context object (cannot be NULL) + * In: fun: a pointer to a function to call when an illegal argument is + * passed to the API, taking a message and an opaque pointer + * (NULL restores a default handler that calls abort). + * data: the opaque pointer to pass to fun above. + */ +SECP256K1_API void secp256k1_context_set_illegal_callback( + secp256k1_context* ctx, + void (*fun)(const char* message, void* data), + const void* data +) SECP256K1_ARG_NONNULL(1); + +/** Set a callback function to be called when an internal consistency check + * fails. The default is crashing. + * + * This can only trigger in case of a hardware failure, miscompilation, + * memory corruption, serious bug in the library, or other error would can + * otherwise result in undefined behaviour. It will not trigger due to mere + * incorrect usage of the API (see secp256k1_context_set_illegal_callback + * for that). After this callback returns, anything may happen, including + * crashing. + * + * Args: ctx: an existing context object (cannot be NULL) + * In: fun: a pointer to a function to call when an interal error occurs, + * taking a message and an opaque pointer (NULL restores a default + * handler that calls abort). + * data: the opaque pointer to pass to fun above. + */ +SECP256K1_API void secp256k1_context_set_error_callback( + secp256k1_context* ctx, + void (*fun)(const char* message, void* data), + const void* data +) SECP256K1_ARG_NONNULL(1); + +/** Parse a variable-length public key into the pubkey object. + * + * Returns: 1 if the public key was fully valid. + * 0 if the public key could not be parsed or is invalid. + * Args: ctx: a secp256k1 context object. + * Out: pubkey: pointer to a pubkey object. If 1 is returned, it is set to a + * parsed version of input. If not, its value is undefined. + * In: input: pointer to a serialized public key + * inputlen: length of the array pointed to by input + * + * This function supports parsing compressed (33 bytes, header byte 0x02 or + * 0x03), uncompressed (65 bytes, header byte 0x04), or hybrid (65 bytes, header + * byte 0x06 or 0x07) format public keys. + */ +SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_parse( + const secp256k1_context* ctx, + secp256k1_pubkey* pubkey, + const unsigned char *input, + size_t inputlen +) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3); + +/** Serialize a pubkey object into a serialized byte sequence. + * + * Returns: 1 always. + * Args: ctx: a secp256k1 context object. + * Out: output: a pointer to a 65-byte (if compressed==0) or 33-byte (if + * compressed==1) byte array to place the serialized key in. + * outputlen: a pointer to an integer which will contain the serialized + * size. + * In: pubkey: a pointer to a secp256k1_pubkey containing an initialized + * public key. + * flags: SECP256K1_EC_COMPRESSED if serialization should be in + * compressed format. + */ +SECP256K1_API int secp256k1_ec_pubkey_serialize( + const secp256k1_context* ctx, + unsigned char *output, + size_t *outputlen, + const secp256k1_pubkey* pubkey, + unsigned int flags +) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4); + +/** Parse a DER ECDSA signature. + * + * Returns: 1 when the signature could be parsed, 0 otherwise. + * Args: ctx: a secp256k1 context object + * Out: sig: a pointer to a signature object + * In: input: a pointer to the signature to be parsed + * inputlen: the length of the array pointed to be input + * + * Note that this function also supports some violations of DER and even BER. + */ +SECP256K1_API int secp256k1_ecdsa_signature_parse_der( + const secp256k1_context* ctx, + secp256k1_ecdsa_signature* sig, + const unsigned char *input, + size_t inputlen +) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3); + +/** Serialize an ECDSA signature in DER format. + * + * Returns: 1 if enough space was available to serialize, 0 otherwise + * Args: ctx: a secp256k1 context object + * Out: output: a pointer to an array to store the DER serialization + * In/Out: outputlen: a pointer to a length integer. Initially, this integer + * should be set to the length of output. After the call + * it will be set to the length of the serialization (even + * if 0 was returned). + * In: sig: a pointer to an initialized signature object + */ +SECP256K1_API int secp256k1_ecdsa_signature_serialize_der( + const secp256k1_context* ctx, + unsigned char *output, + size_t *outputlen, + const secp256k1_ecdsa_signature* sig +) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4); + +/** Verify an ECDSA signature. + * + * Returns: 1: correct signature + * 0: incorrect or unparseable signature + * Args: ctx: a secp256k1 context object, initialized for verification. + * In: sig: the signature being verified (cannot be NULL) + * msg32: the 32-byte message hash being verified (cannot be NULL) + * pubkey: pointer to an initialized public key to verify with (cannot be NULL) + */ +SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ecdsa_verify( + const secp256k1_context* ctx, + const secp256k1_ecdsa_signature *sig, + const unsigned char *msg32, + const secp256k1_pubkey *pubkey +) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4); + +/** An implementation of RFC6979 (using HMAC-SHA256) as nonce generation function. + * If a data pointer is passed, it is assumed to be a pointer to 32 bytes of + * extra entropy. + */ +extern const secp256k1_nonce_function secp256k1_nonce_function_rfc6979; + +/** A default safe nonce generation function (currently equal to secp256k1_nonce_function_rfc6979). */ +extern const secp256k1_nonce_function secp256k1_nonce_function_default; + +/** Create an ECDSA signature. + * + * Returns: 1: signature created + * 0: the nonce generation function failed, or the private key was invalid. + * Args: ctx: pointer to a context object, initialized for signing (cannot be NULL) + * Out: sig: pointer to an array where the signature will be placed (cannot be NULL) + * In: msg32: the 32-byte message hash being signed (cannot be NULL) + * seckey: pointer to a 32-byte secret key (cannot be NULL) + * noncefp:pointer to a nonce generation function. If NULL, secp256k1_nonce_function_default is used + * ndata: pointer to arbitrary data used by the nonce generation function (can be NULL) + * + * The sig always has an s value in the lower half of the range (From 0x1 + * to 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0, + * inclusive), unlike many other implementations. + * + * With ECDSA a third-party can can forge a second distinct signature + * of the same message given a single initial signature without knowing + * the key by setting s to its additive inverse mod-order, 'flipping' the + * sign of the random point R which is not included in the signature. + * Since the forgery is of the same message this isn't universally + * problematic, but in systems where message malleability or uniqueness + * of signatures is important this can cause issues. This forgery can be + * blocked by all verifiers forcing signers to use a canonical form. The + * lower-S form reduces the size of signatures slightly on average when + * variable length encodings (such as DER) are used and is cheap to + * verify, making it a good choice. Security of always using lower-S is + * assured because anyone can trivially modify a signature after the + * fact to enforce this property. Adjusting it inside the signing + * function avoids the need to re-serialize or have curve specific + * constants outside of the library. By always using a canonical form + * even in applications where it isn't needed it becomes possible to + * impose a requirement later if a need is discovered. + * No other forms of ECDSA malleability are known and none seem likely, + * but there is no formal proof that ECDSA, even with this additional + * restriction, is free of other malleability. Commonly used serialization + * schemes will also accept various non-unique encodings, so care should + * be taken when this property is required for an application. + */ +SECP256K1_API int secp256k1_ecdsa_sign( + const secp256k1_context* ctx, + secp256k1_ecdsa_signature *sig, + const unsigned char *msg32, + const unsigned char *seckey, + secp256k1_nonce_function noncefp, + const void *ndata +) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4); + +/** Verify an ECDSA secret key. + * + * Returns: 1: secret key is valid + * 0: secret key is invalid + * Args: ctx: pointer to a context object (cannot be NULL) + * In: seckey: pointer to a 32-byte secret key (cannot be NULL) + */ +SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_seckey_verify( + const secp256k1_context* ctx, + const unsigned char *seckey +) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2); + +/** Compute the public key for a secret key. + * + * Returns: 1: secret was valid, public key stores + * 0: secret was invalid, try again + * Args: ctx: pointer to a context object, initialized for signing (cannot be NULL) + * Out: pubkey: pointer to the created public key (cannot be NULL) + * In: seckey: pointer to a 32-byte private key (cannot be NULL) + */ +SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_create( + const secp256k1_context* ctx, + secp256k1_pubkey *pubkey, + const unsigned char *seckey +) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3); + +/** Export a private key in BER format. + * + * Returns: 1 if the private key was valid. + * Args: ctx: pointer to a context object, initialized for signing (cannot + * be NULL) + * Out: privkey: pointer to an array for storing the private key in BER. + * Should have space for 279 bytes, and cannot be NULL. + * privkeylen: Pointer to an int where the length of the private key in + * privkey will be stored. + * In: seckey: pointer to a 32-byte secret key to export. + * flags: SECP256K1_EC_COMPRESSED if the key should be exported in + * compressed format. + * + * This function is purely meant for compatibility with applications that + * require BER encoded keys. When working with secp256k1-specific code, the + * simple 32-byte private keys are sufficient. + * + * Note that this function does not guarantee correct DER output. It is + * guaranteed to be parsable by secp256k1_ec_privkey_import. + */ +SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_privkey_export( + const secp256k1_context* ctx, + unsigned char *privkey, + size_t *privkeylen, + const unsigned char *seckey, + unsigned int flags +) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4); + +/** Import a private key in DER format. + * Returns: 1 if a private key was extracted. + * Args: ctx: pointer to a context object (cannot be NULL). + * Out: seckey: pointer to a 32-byte array for storing the private key. + * (cannot be NULL). + * In: privkey: pointer to a private key in DER format (cannot be NULL). + * privkeylen: length of the DER private key pointed to be privkey. + * + * This function will accept more than just strict DER, and even allow some BER + * violations. The public key stored inside the DER-encoded private key is not + * verified for correctness, nor are the curve parameters. Use this function + * only if you know in advance it is supposed to contain a secp256k1 private + * key. + */ +SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_privkey_import( + const secp256k1_context* ctx, + unsigned char *seckey, + const unsigned char *privkey, + size_t privkeylen +) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3); + +/** Tweak a private key by adding tweak to it. + * Returns: 0 if the tweak was out of range (chance of around 1 in 2^128 for + * uniformly random 32-byte arrays, or if the resulting private key + * would be invalid (only when the tweak is the complement of the + * private key). 1 otherwise. + * Args: ctx: pointer to a context object (cannot be NULL). + * In/Out: seckey: pointer to a 32-byte private key. + * In: tweak: pointer to a 32-byte tweak. + */ +SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_privkey_tweak_add( + const secp256k1_context* ctx, + unsigned char *seckey, + const unsigned char *tweak +) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3); + +/** Tweak a public key by adding tweak times the generator to it. + * Returns: 0 if the tweak was out of range (chance of around 1 in 2^128 for + * uniformly random 32-byte arrays, or if the resulting public key + * would be invalid (only when the tweak is the complement of the + * corresponding private key). 1 otherwise. + * Args: ctx: pointer to a context object initialized for validation + * (cannot be NULL). + * In/Out: pubkey: pointer to a public key object. + * In: tweak: pointer to a 32-byte tweak. + */ +SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_tweak_add( + const secp256k1_context* ctx, + secp256k1_pubkey *pubkey, + const unsigned char *tweak +) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3); + +/** Tweak a private key by multiplying it by a tweak. + * Returns: 0 if the tweak was out of range (chance of around 1 in 2^128 for + * uniformly random 32-byte arrays, or equal to zero. 1 otherwise. + * Args: ctx: pointer to a context object (cannot be NULL). + * In/Out: seckey: pointer to a 32-byte private key. + * In: tweak: pointer to a 32-byte tweak. + */ +SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_privkey_tweak_mul( + const secp256k1_context* ctx, + unsigned char *seckey, + const unsigned char *tweak +) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3); + +/** Tweak a public key by multiplying it by a tweak value. + * Returns: 0 if the tweak was out of range (chance of around 1 in 2^128 for + * uniformly random 32-byte arrays, or equal to zero. 1 otherwise. + * Args: ctx: pointer to a context object initialized for validation + * (cannot be NULL). + * In/Out: pubkey: pointer to a public key obkect. + * In: tweak: pointer to a 32-byte tweak. + */ +SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_tweak_mul( + const secp256k1_context* ctx, + secp256k1_pubkey *pubkey, + const unsigned char *tweak +) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3); + +/** Updates the context randomization. + * Returns: 1: randomization successfully updated + * 0: error + * Args: ctx: pointer to a context object (cannot be NULL) + * In: seed32: pointer to a 32-byte random seed (NULL resets to initial state) + */ +SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_context_randomize( + secp256k1_context* ctx, + const unsigned char *seed32 +) SECP256K1_ARG_NONNULL(1); + +/** Add a number of public keys together. + * Returns: 1: the sum of the public keys is valid. + * 0: the sum of the public keys is not valid. + * Args: ctx: pointer to a context object + * Out: out: pointer to pubkey for placing the resulting public key + * (cannot be NULL) + * In: ins: pointer to array of pointers to public keys (cannot be NULL) + * n: the number of public keys to add together (must be at least 1) + * Use secp256k1_ec_pubkey_compress and secp256k1_ec_pubkey_decompress if the + * uncompressed format is needed. + */ +SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_combine( + const secp256k1_context* ctx, + secp256k1_pubkey *out, + const secp256k1_pubkey * const * ins, + int n +) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3); + +# ifdef __cplusplus +} +# endif + +#endif diff --git a/crypto/secp256k1/libsecp256k1/include/secp256k1_ecdh.h b/crypto/secp256k1/libsecp256k1/include/secp256k1_ecdh.h new file mode 100644 index 000000000..db520f446 --- /dev/null +++ b/crypto/secp256k1/libsecp256k1/include/secp256k1_ecdh.h @@ -0,0 +1,30 @@ +#ifndef _SECP256K1_ECDH_ +# define _SECP256K1_ECDH_ + +# include "secp256k1.h" + +# ifdef __cplusplus +extern "C" { +# endif + +/** Compute an EC Diffie-Hellman secret in constant time + * Returns: 1: exponentiation was successful + * 0: scalar was invalid (zero or overflow) + * Args: ctx: pointer to a context object (cannot be NULL) + * Out: result: a 32-byte array which will be populated by an ECDH + * secret computed from the point and scalar + * In: point: pointer to a public point + * scalar: a 32-byte scalar with which to multiply the point + */ +SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ecdh( + const secp256k1_context* ctx, + unsigned char *result, + const secp256k1_pubkey *point, + const unsigned char *scalar +) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4); + +# ifdef __cplusplus +} +# endif + +#endif diff --git a/crypto/secp256k1/libsecp256k1/include/secp256k1_recovery.h b/crypto/secp256k1/libsecp256k1/include/secp256k1_recovery.h new file mode 100644 index 000000000..c9b8c0a30 --- /dev/null +++ b/crypto/secp256k1/libsecp256k1/include/secp256k1_recovery.h @@ -0,0 +1,110 @@ +#ifndef _SECP256K1_RECOVERY_ +# define _SECP256K1_RECOVERY_ + +# include "secp256k1.h" + +# ifdef __cplusplus +extern "C" { +# endif + +/** Opaque data structured that holds a parsed ECDSA signature, + * supporting pubkey recovery. + * + * The exact representation of data inside is implementation defined and not + * guaranteed to be portable between different platforms or versions. It is + * however guaranteed to be 65 bytes in size, and can be safely copied/moved. + * If you need to convert to a format suitable for storage or transmission, use + * the secp256k1_ecdsa_signature_serialize_* and + * secp256k1_ecdsa_signature_parse_* functions. + * + * Furthermore, it is guaranteed that identical signatures (including their + * recoverability) will have identical representation, so they can be + * memcmp'ed. + */ +typedef struct { + unsigned char data[65]; +} secp256k1_ecdsa_recoverable_signature; + +/** Parse a compact ECDSA signature (64 bytes + recovery id). + * + * Returns: 1 when the signature could be parsed, 0 otherwise + * Args: ctx: a secp256k1 context object + * Out: sig: a pointer to a signature object + * In: input64: a pointer to a 64-byte compact signature + * recid: the recovery id (0, 1, 2 or 3) + */ +SECP256K1_API int secp256k1_ecdsa_recoverable_signature_parse_compact( + const secp256k1_context* ctx, + secp256k1_ecdsa_recoverable_signature* sig, + const unsigned char *input64, + int recid +) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3); + +/** Convert a recoverable signature into a normal signature. + * + * Returns: 1 + * Out: sig: a pointer to a normal signature (cannot be NULL). + * In: sigin: a pointer to a recoverable signature (cannot be NULL). + */ +SECP256K1_API int secp256k1_ecdsa_recoverable_signature_convert( + const secp256k1_context* ctx, + secp256k1_ecdsa_signature* sig, + const secp256k1_ecdsa_recoverable_signature* sigin +) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3); + +/** Serialize an ECDSA signature in compact format (64 bytes + recovery id). + * + * Returns: 1 + * Args: ctx: a secp256k1 context object + * Out: output64: a pointer to a 64-byte array of the compact signature (cannot be NULL) + * recid: a pointer to an integer to hold the recovery id (can be NULL). + * In: sig: a pointer to an initialized signature object (cannot be NULL) + */ +SECP256K1_API int secp256k1_ecdsa_recoverable_signature_serialize_compact( + const secp256k1_context* ctx, + unsigned char *output64, + int *recid, + const secp256k1_ecdsa_recoverable_signature* sig +) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(4); + +/** Create a recoverable ECDSA signature. + * + * Returns: 1: signature created + * 0: the nonce generation function failed, or the private key was invalid. + * Args: ctx: pointer to a context object, initialized for signing (cannot be NULL) + * Out: sig: pointer to an array where the signature will be placed (cannot be NULL) + * In: msg32: the 32-byte message hash being signed (cannot be NULL) + * seckey: pointer to a 32-byte secret key (cannot be NULL) + * noncefp:pointer to a nonce generation function. If NULL, secp256k1_nonce_function_default is used + * ndata: pointer to arbitrary data used by the nonce generation function (can be NULL) + */ +SECP256K1_API int secp256k1_ecdsa_sign_recoverable( + const secp256k1_context* ctx, + secp256k1_ecdsa_recoverable_signature *sig, + const unsigned char *msg32, + const unsigned char *seckey, + secp256k1_nonce_function noncefp, + const void *ndata +) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4); + +/** Recover an ECDSA public key from a signature. + * + * Returns: 1: public key successfully recovered (which guarantees a correct signature). + * 0: otherwise. + * Args: ctx: pointer to a context object, initialized for verification (cannot be NULL) + * Out: pubkey: pointer to the recoved public key (cannot be NULL) + * In: sig: pointer to initialized signature that supports pubkey recovery (cannot be NULL) + * msg32: the 32-byte message hash assumed to be signed (cannot be NULL) + */ +SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ecdsa_recover( + const secp256k1_context* ctx, + secp256k1_pubkey *pubkey, + const secp256k1_ecdsa_recoverable_signature *sig, + const unsigned char *msg32 +) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4); + +# ifdef __cplusplus +} +# endif + +#endif diff --git a/crypto/secp256k1/libsecp256k1/include/secp256k1_schnorr.h b/crypto/secp256k1/libsecp256k1/include/secp256k1_schnorr.h new file mode 100644 index 000000000..49354933d --- /dev/null +++ b/crypto/secp256k1/libsecp256k1/include/secp256k1_schnorr.h @@ -0,0 +1,173 @@ +#ifndef _SECP256K1_SCHNORR_ +# define _SECP256K1_SCHNORR_ + +# include "secp256k1.h" + +# ifdef __cplusplus +extern "C" { +# endif + +/** Create a signature using a custom EC-Schnorr-SHA256 construction. It + * produces non-malleable 64-byte signatures which support public key recovery + * batch validation, and multiparty signing. + * Returns: 1: signature created + * 0: the nonce generation function failed, or the private key was + * invalid. + * Args: ctx: pointer to a context object, initialized for signing + * (cannot be NULL) + * Out: sig64: pointer to a 64-byte array where the signature will be + * placed (cannot be NULL) + * In: msg32: the 32-byte message hash being signed (cannot be NULL) + * seckey: pointer to a 32-byte secret key (cannot be NULL) + * noncefp:pointer to a nonce generation function. If NULL, + * secp256k1_nonce_function_default is used + * ndata: pointer to arbitrary data used by the nonce generation + * function (can be NULL) + */ +SECP256K1_API int secp256k1_schnorr_sign( + const secp256k1_context* ctx, + unsigned char *sig64, + const unsigned char *msg32, + const unsigned char *seckey, + secp256k1_nonce_function noncefp, + const void *ndata +) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4); + +/** Verify a signature created by secp256k1_schnorr_sign. + * Returns: 1: correct signature + * 0: incorrect signature + * Args: ctx: a secp256k1 context object, initialized for verification. + * In: sig64: the 64-byte signature being verified (cannot be NULL) + * msg32: the 32-byte message hash being verified (cannot be NULL) + * pubkey: the public key to verify with (cannot be NULL) + */ +SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_schnorr_verify( + const secp256k1_context* ctx, + const unsigned char *sig64, + const unsigned char *msg32, + const secp256k1_pubkey *pubkey +) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4); + +/** Recover an EC public key from a Schnorr signature created using + * secp256k1_schnorr_sign. + * Returns: 1: public key successfully recovered (which guarantees a correct + * signature). + * 0: otherwise. + * Args: ctx: pointer to a context object, initialized for + * verification (cannot be NULL) + * Out: pubkey: pointer to a pubkey to set to the recovered public key + * (cannot be NULL). + * In: sig64: signature as 64 byte array (cannot be NULL) + * msg32: the 32-byte message hash assumed to be signed (cannot + * be NULL) + */ +SECP256K1_API int secp256k1_schnorr_recover( + const secp256k1_context* ctx, + secp256k1_pubkey *pubkey, + const unsigned char *sig64, + const unsigned char *msg32 +) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4); + +/** Generate a nonce pair deterministically for use with + * secp256k1_schnorr_partial_sign. + * Returns: 1: valid nonce pair was generated. + * 0: otherwise (nonce generation function failed) + * Args: ctx: pointer to a context object, initialized for signing + * (cannot be NULL) + * Out: pubnonce: public side of the nonce (cannot be NULL) + * privnonce32: private side of the nonce (32 byte) (cannot be NULL) + * In: msg32: the 32-byte message hash assumed to be signed (cannot + * be NULL) + * sec32: the 32-byte private key (cannot be NULL) + * noncefp: pointer to a nonce generation function. If NULL, + * secp256k1_nonce_function_default is used + * noncedata: pointer to arbitrary data used by the nonce generation + * function (can be NULL) + * + * Do not use the output as a private/public key pair for signing/validation. + */ +SECP256K1_API int secp256k1_schnorr_generate_nonce_pair( + const secp256k1_context* ctx, + secp256k1_pubkey *pubnonce, + unsigned char *privnonce32, + const unsigned char *msg32, + const unsigned char *sec32, + secp256k1_nonce_function noncefp, + const void* noncedata +) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3); + +/** Produce a partial Schnorr signature, which can be combined using + * secp256k1_schnorr_partial_combine, to end up with a full signature that is + * verifiable using secp256k1_schnorr_verify. + * Returns: 1: signature created succesfully. + * 0: no valid signature exists with this combination of keys, nonces + * and message (chance around 1 in 2^128) + * -1: invalid private key, nonce, or public nonces. + * Args: ctx: pointer to context object, initialized for signing (cannot + * be NULL) + * Out: sig64: pointer to 64-byte array to put partial signature in + * In: msg32: pointer to 32-byte message to sign + * sec32: pointer to 32-byte private key + * pubnonce_others: pointer to pubkey containing the sum of the other's + * nonces (see secp256k1_ec_pubkey_combine) + * secnonce32: pointer to 32-byte array containing our nonce + * + * The intended procedure for creating a multiparty signature is: + * - Each signer S[i] with private key x[i] and public key Q[i] runs + * secp256k1_schnorr_generate_nonce_pair to produce a pair (k[i],R[i]) of + * private/public nonces. + * - All signers communicate their public nonces to each other (revealing your + * private nonce can lead to discovery of your private key, so it should be + * considered secret). + * - All signers combine all the public nonces they received (excluding their + * own) using secp256k1_ec_pubkey_combine to obtain an + * Rall[i] = sum(R[0..i-1,i+1..n]). + * - All signers produce a partial signature using + * secp256k1_schnorr_partial_sign, passing in their own private key x[i], + * their own private nonce k[i], and the sum of the others' public nonces + * Rall[i]. + * - All signers communicate their partial signatures to each other. + * - Someone combines all partial signatures using + * secp256k1_schnorr_partial_combine, to obtain a full signature. + * - The resulting signature is validatable using secp256k1_schnorr_verify, with + * public key equal to the result of secp256k1_ec_pubkey_combine of the + * signers' public keys (sum(Q[0..n])). + * + * Note that secp256k1_schnorr_partial_combine and secp256k1_ec_pubkey_combine + * function take their arguments in any order, and it is possible to + * pre-combine several inputs already with one call, and add more inputs later + * by calling the function again (they are commutative and associative). + */ +SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_schnorr_partial_sign( + const secp256k1_context* ctx, + unsigned char *sig64, + const unsigned char *msg32, + const unsigned char *sec32, + const secp256k1_pubkey *pubnonce_others, + const unsigned char *secnonce32 +) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4) SECP256K1_ARG_NONNULL(5) SECP256K1_ARG_NONNULL(6); + +/** Combine multiple Schnorr partial signatures. + * Returns: 1: the passed signatures were succesfully combined. + * 0: the resulting signature is not valid (chance of 1 in 2^256) + * -1: some inputs were invalid, or the signatures were not created + * using the same set of nonces + * Args: ctx: pointer to a context object + * Out: sig64: pointer to a 64-byte array to place the combined signature + * (cannot be NULL) + * In: sig64sin: pointer to an array of n pointers to 64-byte input + * signatures + * n: the number of signatures to combine (at least 1) + */ +SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_schnorr_partial_combine( + const secp256k1_context* ctx, + unsigned char *sig64, + const unsigned char * const * sig64sin, + int n +) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3); + +# ifdef __cplusplus +} +# endif + +#endif diff --git a/crypto/secp256k1/secp256k1/libsecp256k1.pc.in b/crypto/secp256k1/libsecp256k1/libsecp256k1.pc.in index 1c72dd000..1c72dd000 100644 --- a/crypto/secp256k1/secp256k1/libsecp256k1.pc.in +++ b/crypto/secp256k1/libsecp256k1/libsecp256k1.pc.in diff --git a/crypto/secp256k1/secp256k1/obj/.gitignore b/crypto/secp256k1/libsecp256k1/obj/.gitignore index e69de29bb..e69de29bb 100644 --- a/crypto/secp256k1/secp256k1/obj/.gitignore +++ b/crypto/secp256k1/libsecp256k1/obj/.gitignore diff --git a/crypto/secp256k1/libsecp256k1/src/basic-config.h b/crypto/secp256k1/libsecp256k1/src/basic-config.h new file mode 100644 index 000000000..c4c16eb7c --- /dev/null +++ b/crypto/secp256k1/libsecp256k1/src/basic-config.h @@ -0,0 +1,32 @@ +/********************************************************************** + * Copyright (c) 2013, 2014 Pieter Wuille * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or http://www.opensource.org/licenses/mit-license.php.* + **********************************************************************/ + +#ifndef _SECP256K1_BASIC_CONFIG_ +#define _SECP256K1_BASIC_CONFIG_ + +#ifdef USE_BASIC_CONFIG + +#undef USE_ASM_X86_64 +#undef USE_ENDOMORPHISM +#undef USE_FIELD_10X26 +#undef USE_FIELD_5X52 +#undef USE_FIELD_INV_BUILTIN +#undef USE_FIELD_INV_NUM +#undef USE_NUM_GMP +#undef USE_NUM_NONE +#undef USE_SCALAR_4X64 +#undef USE_SCALAR_8X32 +#undef USE_SCALAR_INV_BUILTIN +#undef USE_SCALAR_INV_NUM + +#define USE_NUM_NONE 1 +#define USE_FIELD_INV_BUILTIN 1 +#define USE_SCALAR_INV_BUILTIN 1 +#define USE_FIELD_10X26 1 +#define USE_SCALAR_8X32 1 + +#endif // USE_BASIC_CONFIG +#endif // _SECP256K1_BASIC_CONFIG_ diff --git a/crypto/secp256k1/secp256k1/src/bench.h b/crypto/secp256k1/libsecp256k1/src/bench.h index 0559b3e85..3a71b4aaf 100644 --- a/crypto/secp256k1/secp256k1/src/bench.h +++ b/crypto/secp256k1/libsecp256k1/src/bench.h @@ -20,7 +20,9 @@ static double gettimedouble(void) { void print_number(double x) { double y = x; int c = 0; - if (y < 0.0) y = -y; + if (y < 0.0) { + y = -y; + } while (y < 100.0) { y *= 10.0; c++; @@ -35,20 +37,28 @@ void run_benchmark(char *name, void (*benchmark)(void*), void (*setup)(void*), v double max = 0.0; for (i = 0; i < count; i++) { double begin, total; - if (setup) setup(data); + if (setup != NULL) { + setup(data); + } begin = gettimedouble(); benchmark(data); total = gettimedouble() - begin; - if (teardown) teardown(data); - if (total < min) min = total; - if (total > max) max = total; + if (teardown != NULL) { + teardown(data); + } + if (total < min) { + min = total; + } + if (total > max) { + max = total; + } sum += total; } printf("%s: min ", name); print_number(min * 1000000.0 / iter); printf("us / avg "); print_number((sum / count) * 1000000.0 / iter); - printf("us / avg "); + printf("us / max "); print_number(max * 1000000.0 / iter); printf("us\n"); } diff --git a/crypto/secp256k1/libsecp256k1/src/bench_ecdh.c b/crypto/secp256k1/libsecp256k1/src/bench_ecdh.c new file mode 100644 index 000000000..5a7c6376e --- /dev/null +++ b/crypto/secp256k1/libsecp256k1/src/bench_ecdh.c @@ -0,0 +1,53 @@ +/********************************************************************** + * Copyright (c) 2015 Pieter Wuille, Andrew Poelstra * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or http://www.opensource.org/licenses/mit-license.php.* + **********************************************************************/ + +#include <string.h> + +#include "include/secp256k1.h" +#include "include/secp256k1_ecdh.h" +#include "util.h" +#include "bench.h" + +typedef struct { + secp256k1_context *ctx; + secp256k1_pubkey point; + unsigned char scalar[32]; +} bench_ecdh_t; + +static void bench_ecdh_setup(void* arg) { + int i; + bench_ecdh_t *data = (bench_ecdh_t*)arg; + const unsigned char point[] = { + 0x03, + 0x54, 0x94, 0xc1, 0x5d, 0x32, 0x09, 0x97, 0x06, + 0xc2, 0x39, 0x5f, 0x94, 0x34, 0x87, 0x45, 0xfd, + 0x75, 0x7c, 0xe3, 0x0e, 0x4e, 0x8c, 0x90, 0xfb, + 0xa2, 0xba, 0xd1, 0x84, 0xf8, 0x83, 0xc6, 0x9f + }; + + data->ctx = secp256k1_context_create(0); + for (i = 0; i < 32; i++) { + data->scalar[i] = i + 1; + } + CHECK(secp256k1_ec_pubkey_parse(data->ctx, &data->point, point, sizeof(point)) == 1); +} + +static void bench_ecdh(void* arg) { + int i; + unsigned char res[32]; + bench_ecdh_t *data = (bench_ecdh_t*)arg; + + for (i = 0; i < 20000; i++) { + CHECK(secp256k1_ecdh(data->ctx, res, &data->point, data->scalar) == 1); + } +} + +int main(void) { + bench_ecdh_t data; + + run_benchmark("ecdh", bench_ecdh, bench_ecdh_setup, NULL, &data, 10, 20000); + return 0; +} diff --git a/crypto/secp256k1/secp256k1/src/bench_internal.c b/crypto/secp256k1/libsecp256k1/src/bench_internal.c index a960549b9..7809f5f8c 100644 --- a/crypto/secp256k1/secp256k1/src/bench_internal.c +++ b/crypto/secp256k1/libsecp256k1/src/bench_internal.c @@ -13,15 +13,17 @@ #include "field_impl.h" #include "group_impl.h" #include "scalar_impl.h" +#include "ecmult_const_impl.h" #include "ecmult_impl.h" #include "bench.h" +#include "secp256k1.c" typedef struct { - secp256k1_scalar_t scalar_x, scalar_y; - secp256k1_fe_t fe_x, fe_y; - secp256k1_ge_t ge_x, ge_y; - secp256k1_gej_t gej_x, gej_y; - unsigned char data[32]; + secp256k1_scalar scalar_x, scalar_y; + secp256k1_fe fe_x, fe_y; + secp256k1_ge ge_x, ge_y; + secp256k1_gej gej_x, gej_y; + unsigned char data[64]; int wnaf[256]; } bench_inv_t; @@ -51,6 +53,7 @@ void bench_setup(void* arg) { secp256k1_gej_set_ge(&data->gej_x, &data->ge_x); secp256k1_gej_set_ge(&data->gej_y, &data->ge_y); memcpy(data->data, init_x, 32); + memcpy(data->data + 32, init_y, 32); } void bench_scalar_add(void* arg) { @@ -95,8 +98,8 @@ void bench_scalar_split(void* arg) { bench_inv_t *data = (bench_inv_t*)arg; for (i = 0; i < 20000; i++) { - secp256k1_scalar_t l, r; - secp256k1_scalar_split_lambda_var(&l, &r, &data->scalar_x); + secp256k1_scalar l, r; + secp256k1_scalar_split_lambda(&l, &r, &data->scalar_x); secp256k1_scalar_add(&data->scalar_x, &data->scalar_x, &data->scalar_y); } } @@ -193,7 +196,7 @@ void bench_group_double_var(void* arg) { bench_inv_t *data = (bench_inv_t*)arg; for (i = 0; i < 200000; i++) { - secp256k1_gej_double_var(&data->gej_x, &data->gej_x); + secp256k1_gej_double_var(&data->gej_x, &data->gej_x, NULL); } } @@ -202,7 +205,7 @@ void bench_group_add_var(void* arg) { bench_inv_t *data = (bench_inv_t*)arg; for (i = 0; i < 200000; i++) { - secp256k1_gej_add_var(&data->gej_x, &data->gej_x, &data->gej_y); + secp256k1_gej_add_var(&data->gej_x, &data->gej_x, &data->gej_y, NULL); } } @@ -220,7 +223,7 @@ void bench_group_add_affine_var(void* arg) { bench_inv_t *data = (bench_inv_t*)arg; for (i = 0; i < 200000; i++) { - secp256k1_gej_add_ge_var(&data->gej_x, &data->gej_x, &data->ge_y); + secp256k1_gej_add_ge_var(&data->gej_x, &data->gej_x, &data->ge_y, NULL); } } @@ -229,7 +232,17 @@ void bench_ecmult_wnaf(void* arg) { bench_inv_t *data = (bench_inv_t*)arg; for (i = 0; i < 20000; i++) { - secp256k1_ecmult_wnaf(data->wnaf, &data->scalar_x, WINDOW_A); + secp256k1_ecmult_wnaf(data->wnaf, 256, &data->scalar_x, WINDOW_A); + secp256k1_scalar_add(&data->scalar_x, &data->scalar_x, &data->scalar_y); + } +} + +void bench_wnaf_const(void* arg) { + int i; + bench_inv_t *data = (bench_inv_t*)arg; + + for (i = 0; i < 20000; i++) { + secp256k1_wnaf_const(data->wnaf, data->scalar_x, WINDOW_A); secp256k1_scalar_add(&data->scalar_x, &data->scalar_x, &data->scalar_y); } } @@ -265,11 +278,27 @@ void bench_rfc6979_hmac_sha256(void* arg) { secp256k1_rfc6979_hmac_sha256_t rng; for (i = 0; i < 20000; i++) { - secp256k1_rfc6979_hmac_sha256_initialize(&rng, data->data, 32, data->data, 32, NULL, 0); + secp256k1_rfc6979_hmac_sha256_initialize(&rng, data->data, 64); secp256k1_rfc6979_hmac_sha256_generate(&rng, data->data, 32); } } +void bench_context_verify(void* arg) { + int i; + (void)arg; + for (i = 0; i < 20; i++) { + secp256k1_context_destroy(secp256k1_context_create(SECP256K1_CONTEXT_VERIFY)); + } +} + +void bench_context_sign(void* arg) { + int i; + (void)arg; + for (i = 0; i < 200; i++) { + secp256k1_context_destroy(secp256k1_context_create(SECP256K1_CONTEXT_SIGN)); + } +} + int have_flag(int argc, char** argv, char *flag) { char** argm = argv + argc; @@ -278,7 +307,9 @@ int have_flag(int argc, char** argv, char *flag) { return 1; } while (argv != NULL && argv != argm) { - if (strcmp(*argv, flag) == 0) return 1; + if (strcmp(*argv, flag) == 0) { + return 1; + } argv++; } return 0; @@ -309,10 +340,15 @@ int main(int argc, char **argv) { if (have_flag(argc, argv, "group") || have_flag(argc, argv, "add")) run_benchmark("group_add_affine", bench_group_add_affine, bench_setup, NULL, &data, 10, 200000); if (have_flag(argc, argv, "group") || have_flag(argc, argv, "add")) run_benchmark("group_add_affine_var", bench_group_add_affine_var, bench_setup, NULL, &data, 10, 200000); + if (have_flag(argc, argv, "ecmult") || have_flag(argc, argv, "wnaf")) run_benchmark("wnaf_const", bench_wnaf_const, bench_setup, NULL, &data, 10, 20000); if (have_flag(argc, argv, "ecmult") || have_flag(argc, argv, "wnaf")) run_benchmark("ecmult_wnaf", bench_ecmult_wnaf, bench_setup, NULL, &data, 10, 20000); if (have_flag(argc, argv, "hash") || have_flag(argc, argv, "sha256")) run_benchmark("hash_sha256", bench_sha256, bench_setup, NULL, &data, 10, 20000); if (have_flag(argc, argv, "hash") || have_flag(argc, argv, "hmac")) run_benchmark("hash_hmac_sha256", bench_hmac_sha256, bench_setup, NULL, &data, 10, 20000); if (have_flag(argc, argv, "hash") || have_flag(argc, argv, "rng6979")) run_benchmark("hash_rfc6979_hmac_sha256", bench_rfc6979_hmac_sha256, bench_setup, NULL, &data, 10, 20000); + + if (have_flag(argc, argv, "context") || have_flag(argc, argv, "verify")) run_benchmark("context_verify", bench_context_verify, bench_setup, NULL, &data, 10, 20); + if (have_flag(argc, argv, "context") || have_flag(argc, argv, "sign")) run_benchmark("context_sign", bench_context_sign, bench_setup, NULL, &data, 10, 200); + return 0; } diff --git a/crypto/secp256k1/secp256k1/src/bench_recover.c b/crypto/secp256k1/libsecp256k1/src/bench_recover.c index 6991cc9d6..6489378cc 100644 --- a/crypto/secp256k1/secp256k1/src/bench_recover.c +++ b/crypto/secp256k1/libsecp256k1/src/bench_recover.c @@ -1,14 +1,16 @@ /********************************************************************** - * Copyright (c) 2014 Pieter Wuille * + * Copyright (c) 2014-2015 Pieter Wuille * * Distributed under the MIT software license, see the accompanying * * file COPYING or http://www.opensource.org/licenses/mit-license.php.* **********************************************************************/ #include "include/secp256k1.h" +#include "include/secp256k1_recovery.h" #include "util.h" #include "bench.h" typedef struct { + secp256k1_context *ctx; unsigned char msg[32]; unsigned char sig[64]; } bench_recover_t; @@ -16,16 +18,20 @@ typedef struct { void bench_recover(void* arg) { int i; bench_recover_t *data = (bench_recover_t*)arg; - unsigned char pubkey[33]; + secp256k1_pubkey pubkey; + unsigned char pubkeyc[33]; for (i = 0; i < 20000; i++) { int j; - int pubkeylen = 33; - CHECK(secp256k1_ecdsa_recover_compact(data->msg, data->sig, pubkey, &pubkeylen, 1, i % 2)); + size_t pubkeylen = 33; + secp256k1_ecdsa_recoverable_signature sig; + CHECK(secp256k1_ecdsa_recoverable_signature_parse_compact(data->ctx, &sig, data->sig, i % 2)); + CHECK(secp256k1_ecdsa_recover(data->ctx, &pubkey, &sig, data->msg)); + CHECK(secp256k1_ec_pubkey_serialize(data->ctx, pubkeyc, &pubkeylen, &pubkey, SECP256K1_EC_COMPRESSED)); for (j = 0; j < 32; j++) { data->sig[j + 32] = data->msg[j]; /* Move former message to S. */ data->msg[j] = data->sig[j]; /* Move former R to message. */ - data->sig[j] = pubkey[j + 1]; /* Move recovered pubkey X coordinate to R (which must be a valid X coordinate). */ + data->sig[j] = pubkeyc[j + 1]; /* Move recovered pubkey X coordinate to R (which must be a valid X coordinate). */ } } } @@ -34,16 +40,21 @@ void bench_recover_setup(void* arg) { int i; bench_recover_t *data = (bench_recover_t*)arg; - for (i = 0; i < 32; i++) data->msg[i] = 1 + i; - for (i = 0; i < 64; i++) data->sig[i] = 65 + i; + for (i = 0; i < 32; i++) { + data->msg[i] = 1 + i; + } + for (i = 0; i < 64; i++) { + data->sig[i] = 65 + i; + } } int main(void) { bench_recover_t data; - secp256k1_start(SECP256K1_START_VERIFY); + + data.ctx = secp256k1_context_create(SECP256K1_CONTEXT_VERIFY); run_benchmark("ecdsa_recover", bench_recover, bench_recover_setup, NULL, &data, 10, 20000); - secp256k1_stop(); + secp256k1_context_destroy(data.ctx); return 0; } diff --git a/crypto/secp256k1/libsecp256k1/src/bench_schnorr_verify.c b/crypto/secp256k1/libsecp256k1/src/bench_schnorr_verify.c new file mode 100644 index 000000000..5f137dda2 --- /dev/null +++ b/crypto/secp256k1/libsecp256k1/src/bench_schnorr_verify.c @@ -0,0 +1,73 @@ +/********************************************************************** + * Copyright (c) 2014 Pieter Wuille * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or http://www.opensource.org/licenses/mit-license.php.* + **********************************************************************/ + +#include <stdio.h> +#include <string.h> + +#include "include/secp256k1.h" +#include "include/secp256k1_schnorr.h" +#include "util.h" +#include "bench.h" + +typedef struct { + unsigned char key[32]; + unsigned char sig[64]; + unsigned char pubkey[33]; + size_t pubkeylen; +} benchmark_schnorr_sig_t; + +typedef struct { + secp256k1_context *ctx; + unsigned char msg[32]; + benchmark_schnorr_sig_t sigs[64]; + int numsigs; +} benchmark_schnorr_verify_t; + +static void benchmark_schnorr_init(void* arg) { + int i, k; + benchmark_schnorr_verify_t* data = (benchmark_schnorr_verify_t*)arg; + + for (i = 0; i < 32; i++) { + data->msg[i] = 1 + i; + } + for (k = 0; k < data->numsigs; k++) { + secp256k1_pubkey pubkey; + for (i = 0; i < 32; i++) { + data->sigs[k].key[i] = 33 + i + k; + } + secp256k1_schnorr_sign(data->ctx, data->sigs[k].sig, data->msg, data->sigs[k].key, NULL, NULL); + data->sigs[k].pubkeylen = 33; + CHECK(secp256k1_ec_pubkey_create(data->ctx, &pubkey, data->sigs[k].key)); + CHECK(secp256k1_ec_pubkey_serialize(data->ctx, data->sigs[k].pubkey, &data->sigs[k].pubkeylen, &pubkey, SECP256K1_EC_COMPRESSED)); + } +} + +static void benchmark_schnorr_verify(void* arg) { + int i; + benchmark_schnorr_verify_t* data = (benchmark_schnorr_verify_t*)arg; + + for (i = 0; i < 20000 / data->numsigs; i++) { + secp256k1_pubkey pubkey; + data->sigs[0].sig[(i >> 8) % 64] ^= (i & 0xFF); + CHECK(secp256k1_ec_pubkey_parse(data->ctx, &pubkey, data->sigs[0].pubkey, data->sigs[0].pubkeylen)); + CHECK(secp256k1_schnorr_verify(data->ctx, data->sigs[0].sig, data->msg, &pubkey) == ((i & 0xFF) == 0)); + data->sigs[0].sig[(i >> 8) % 64] ^= (i & 0xFF); + } +} + + + +int main(void) { + benchmark_schnorr_verify_t data; + + data.ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY); + + data.numsigs = 1; + run_benchmark("schnorr_verify", benchmark_schnorr_verify, benchmark_schnorr_init, NULL, &data, 10, 20000); + + secp256k1_context_destroy(data.ctx); + return 0; +} diff --git a/crypto/secp256k1/secp256k1/src/bench_sign.c b/crypto/secp256k1/libsecp256k1/src/bench_sign.c index c5b6829a8..ed7224d75 100644 --- a/crypto/secp256k1/secp256k1/src/bench_sign.c +++ b/crypto/secp256k1/libsecp256k1/src/bench_sign.c @@ -9,6 +9,7 @@ #include "bench.h" typedef struct { + secp256k1_context* ctx; unsigned char msg[32]; unsigned char key[32]; } bench_sign_t; @@ -17,32 +18,39 @@ static void bench_sign_setup(void* arg) { int i; bench_sign_t *data = (bench_sign_t*)arg; - for (i = 0; i < 32; i++) data->msg[i] = i + 1; - for (i = 0; i < 32; i++) data->key[i] = i + 65; + for (i = 0; i < 32; i++) { + data->msg[i] = i + 1; + } + for (i = 0; i < 32; i++) { + data->key[i] = i + 65; + } } static void bench_sign(void* arg) { int i; bench_sign_t *data = (bench_sign_t*)arg; - unsigned char sig[64]; + unsigned char sig[74]; for (i = 0; i < 20000; i++) { + size_t siglen = 74; int j; - int recid = 0; - CHECK(secp256k1_ecdsa_sign_compact(data->msg, sig, data->key, NULL, NULL, &recid)); + secp256k1_ecdsa_signature signature; + CHECK(secp256k1_ecdsa_sign(data->ctx, &signature, data->msg, data->key, NULL, NULL)); + CHECK(secp256k1_ecdsa_signature_serialize_der(data->ctx, sig, &siglen, &signature)); for (j = 0; j < 32; j++) { - data->msg[j] = sig[j]; /* Move former R to message. */ - data->key[j] = sig[j + 32]; /* Move former S to key. */ + data->msg[j] = sig[j]; + data->key[j] = sig[j + 32]; } } } int main(void) { bench_sign_t data; - secp256k1_start(SECP256K1_START_SIGN); + + data.ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN); run_benchmark("ecdsa_sign", bench_sign, bench_sign_setup, NULL, &data, 10, 20000); - secp256k1_stop(); + secp256k1_context_destroy(data.ctx); return 0; } diff --git a/crypto/secp256k1/secp256k1/src/bench_verify.c b/crypto/secp256k1/libsecp256k1/src/bench_verify.c index c279305a0..0cafbdc4e 100644 --- a/crypto/secp256k1/secp256k1/src/bench_verify.c +++ b/crypto/secp256k1/libsecp256k1/src/bench_verify.c @@ -12,12 +12,13 @@ #include "bench.h" typedef struct { + secp256k1_context *ctx; unsigned char msg[32]; unsigned char key[32]; unsigned char sig[72]; - int siglen; + size_t siglen; unsigned char pubkey[33]; - int pubkeylen; + size_t pubkeylen; } benchmark_verify_t; static void benchmark_verify(void* arg) { @@ -25,10 +26,14 @@ static void benchmark_verify(void* arg) { benchmark_verify_t* data = (benchmark_verify_t*)arg; for (i = 0; i < 20000; i++) { + secp256k1_pubkey pubkey; + secp256k1_ecdsa_signature sig; data->sig[data->siglen - 1] ^= (i & 0xFF); data->sig[data->siglen - 2] ^= ((i >> 8) & 0xFF); data->sig[data->siglen - 3] ^= ((i >> 16) & 0xFF); - CHECK(secp256k1_ecdsa_verify(data->msg, data->sig, data->siglen, data->pubkey, data->pubkeylen) == (i == 0)); + CHECK(secp256k1_ec_pubkey_parse(data->ctx, &pubkey, data->pubkey, data->pubkeylen) == 1); + CHECK(secp256k1_ecdsa_signature_parse_der(data->ctx, &sig, data->sig, data->siglen) == 1); + CHECK(secp256k1_ecdsa_verify(data->ctx, &sig, data->msg, &pubkey) == (i == 0)); data->sig[data->siglen - 1] ^= (i & 0xFF); data->sig[data->siglen - 2] ^= ((i >> 8) & 0xFF); data->sig[data->siglen - 3] ^= ((i >> 16) & 0xFF); @@ -37,19 +42,26 @@ static void benchmark_verify(void* arg) { int main(void) { int i; + secp256k1_pubkey pubkey; + secp256k1_ecdsa_signature sig; benchmark_verify_t data; - secp256k1_start(SECP256K1_START_VERIFY | SECP256K1_START_SIGN); + data.ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY); - for (i = 0; i < 32; i++) data.msg[i] = 1 + i; - for (i = 0; i < 32; i++) data.key[i] = 33 + i; + for (i = 0; i < 32; i++) { + data.msg[i] = 1 + i; + } + for (i = 0; i < 32; i++) { + data.key[i] = 33 + i; + } data.siglen = 72; - secp256k1_ecdsa_sign(data.msg, data.sig, &data.siglen, data.key, NULL, NULL); - data.pubkeylen = 33; - CHECK(secp256k1_ec_pubkey_create(data.pubkey, &data.pubkeylen, data.key, 1)); + CHECK(secp256k1_ecdsa_sign(data.ctx, &sig, data.msg, data.key, NULL, NULL)); + CHECK(secp256k1_ecdsa_signature_serialize_der(data.ctx, data.sig, &data.siglen, &sig)); + CHECK(secp256k1_ec_pubkey_create(data.ctx, &pubkey, data.key)); + CHECK(secp256k1_ec_pubkey_serialize(data.ctx, data.pubkey, &data.pubkeylen, &pubkey, SECP256K1_EC_COMPRESSED) == 1); run_benchmark("ecdsa_verify", benchmark_verify, NULL, NULL, &data, 10, 20000); - secp256k1_stop(); + secp256k1_context_destroy(data.ctx); return 0; } diff --git a/crypto/secp256k1/libsecp256k1/src/ecdsa.h b/crypto/secp256k1/libsecp256k1/src/ecdsa.h new file mode 100644 index 000000000..4c0a4a89e --- /dev/null +++ b/crypto/secp256k1/libsecp256k1/src/ecdsa.h @@ -0,0 +1,22 @@ +/********************************************************************** + * Copyright (c) 2013, 2014 Pieter Wuille * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or http://www.opensource.org/licenses/mit-license.php.* + **********************************************************************/ + +#ifndef _SECP256K1_ECDSA_ +#define _SECP256K1_ECDSA_ + +#include <stddef.h> + +#include "scalar.h" +#include "group.h" +#include "ecmult.h" + +static int secp256k1_ecdsa_sig_parse(secp256k1_scalar *r, secp256k1_scalar *s, const unsigned char *sig, size_t size); +static int secp256k1_ecdsa_sig_serialize(unsigned char *sig, size_t *size, const secp256k1_scalar *r, const secp256k1_scalar *s); +static int secp256k1_ecdsa_sig_verify(const secp256k1_ecmult_context *ctx, const secp256k1_scalar* r, const secp256k1_scalar* s, const secp256k1_ge *pubkey, const secp256k1_scalar *message); +static int secp256k1_ecdsa_sig_sign(const secp256k1_ecmult_gen_context *ctx, secp256k1_scalar* r, secp256k1_scalar* s, const secp256k1_scalar *seckey, const secp256k1_scalar *message, const secp256k1_scalar *nonce, int *recid); +static int secp256k1_ecdsa_sig_recover(const secp256k1_ecmult_context *ctx, const secp256k1_scalar* r, const secp256k1_scalar* s, secp256k1_ge *pubkey, const secp256k1_scalar *message, int recid); + +#endif diff --git a/crypto/secp256k1/secp256k1/src/ecdsa_impl.h b/crypto/secp256k1/libsecp256k1/src/ecdsa_impl.h index 17514047b..4a172b3c5 100644 --- a/crypto/secp256k1/secp256k1/src/ecdsa_impl.h +++ b/crypto/secp256k1/libsecp256k1/src/ecdsa_impl.h @@ -28,7 +28,7 @@ * sage: '%x' % (EllipticCurve ([F (a), F (b)]).order()) * 'fffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141' */ -static const secp256k1_fe_t secp256k1_ecdsa_const_order_as_fe = SECP256K1_FE_CONST( +static const secp256k1_fe secp256k1_ecdsa_const_order_as_fe = SECP256K1_FE_CONST( 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFEUL, 0xBAAEDCE6UL, 0xAF48A03BUL, 0xBFD25E8CUL, 0xD0364141UL ); @@ -42,16 +42,16 @@ static const secp256k1_fe_t secp256k1_ecdsa_const_order_as_fe = SECP256K1_FE_CON * sage: '%x' % (p - EllipticCurve ([F (a), F (b)]).order()) * '14551231950b75fc4402da1722fc9baee' */ -static const secp256k1_fe_t secp256k1_ecdsa_const_p_minus_order = SECP256K1_FE_CONST( +static const secp256k1_fe secp256k1_ecdsa_const_p_minus_order = SECP256K1_FE_CONST( 0, 0, 0, 1, 0x45512319UL, 0x50B75FC4UL, 0x402DA172UL, 0x2FC9BAEEUL ); -static int secp256k1_ecdsa_sig_parse(secp256k1_ecdsa_sig_t *r, const unsigned char *sig, int size) { +static int secp256k1_ecdsa_sig_parse(secp256k1_scalar *rr, secp256k1_scalar *rs, const unsigned char *sig, size_t size) { unsigned char ra[32] = {0}, sa[32] = {0}; const unsigned char *rp; const unsigned char *sp; - int lenr; - int lens; + size_t lenr; + size_t lens; int overflow; if (sig[0] != 0x30) { return 0; @@ -98,26 +98,27 @@ static int secp256k1_ecdsa_sig_parse(secp256k1_ecdsa_sig_t *r, const unsigned ch memcpy(ra + 32 - lenr, rp, lenr); memcpy(sa + 32 - lens, sp, lens); overflow = 0; - secp256k1_scalar_set_b32(&r->r, ra, &overflow); + secp256k1_scalar_set_b32(rr, ra, &overflow); if (overflow) { return 0; } - secp256k1_scalar_set_b32(&r->s, sa, &overflow); + secp256k1_scalar_set_b32(rs, sa, &overflow); if (overflow) { return 0; } return 1; } -static int secp256k1_ecdsa_sig_serialize(unsigned char *sig, int *size, const secp256k1_ecdsa_sig_t *a) { +static int secp256k1_ecdsa_sig_serialize(unsigned char *sig, size_t *size, const secp256k1_scalar* ar, const secp256k1_scalar* as) { unsigned char r[33] = {0}, s[33] = {0}; unsigned char *rp = r, *sp = s; - int lenR = 33, lenS = 33; - secp256k1_scalar_get_b32(&r[1], &a->r); - secp256k1_scalar_get_b32(&s[1], &a->s); + size_t lenR = 33, lenS = 33; + secp256k1_scalar_get_b32(&r[1], ar); + secp256k1_scalar_get_b32(&s[1], as); while (lenR > 1 && rp[0] == 0 && rp[1] < 0x80) { lenR--; rp++; } while (lenS > 1 && sp[0] == 0 && sp[1] < 0x80) { lenS--; sp++; } if (*size < 6+lenS+lenR) { + *size = 6 + lenS + lenR; return 0; } *size = 6 + lenS + lenR; @@ -132,26 +133,26 @@ static int secp256k1_ecdsa_sig_serialize(unsigned char *sig, int *size, const se return 1; } -static int secp256k1_ecdsa_sig_verify(const secp256k1_ecdsa_sig_t *sig, const secp256k1_ge_t *pubkey, const secp256k1_scalar_t *message) { +static int secp256k1_ecdsa_sig_verify(const secp256k1_ecmult_context *ctx, const secp256k1_scalar *sigr, const secp256k1_scalar *sigs, const secp256k1_ge *pubkey, const secp256k1_scalar *message) { unsigned char c[32]; - secp256k1_scalar_t sn, u1, u2; - secp256k1_fe_t xr; - secp256k1_gej_t pubkeyj; - secp256k1_gej_t pr; + secp256k1_scalar sn, u1, u2; + secp256k1_fe xr; + secp256k1_gej pubkeyj; + secp256k1_gej pr; - if (secp256k1_scalar_is_zero(&sig->r) || secp256k1_scalar_is_zero(&sig->s)) { + if (secp256k1_scalar_is_zero(sigr) || secp256k1_scalar_is_zero(sigs)) { return 0; } - secp256k1_scalar_inverse_var(&sn, &sig->s); + secp256k1_scalar_inverse_var(&sn, sigs); secp256k1_scalar_mul(&u1, &sn, message); - secp256k1_scalar_mul(&u2, &sn, &sig->r); + secp256k1_scalar_mul(&u2, &sn, sigr); secp256k1_gej_set_ge(&pubkeyj, pubkey); - secp256k1_ecmult(&pr, &pubkeyj, &u2, &u1); + secp256k1_ecmult(ctx, &pr, &pubkeyj, &u2, &u1); if (secp256k1_gej_is_infinity(&pr)) { return 0; } - secp256k1_scalar_get_b32(c, &sig->r); + secp256k1_scalar_get_b32(c, sigr); secp256k1_fe_set_b32(&xr, c); /** We now have the recomputed R point in pr, and its claimed x coordinate (modulo n) @@ -186,19 +187,19 @@ static int secp256k1_ecdsa_sig_verify(const secp256k1_ecdsa_sig_t *sig, const se return 0; } -static int secp256k1_ecdsa_sig_recover(const secp256k1_ecdsa_sig_t *sig, secp256k1_ge_t *pubkey, const secp256k1_scalar_t *message, int recid) { +static int secp256k1_ecdsa_sig_recover(const secp256k1_ecmult_context *ctx, const secp256k1_scalar *sigr, const secp256k1_scalar* sigs, secp256k1_ge *pubkey, const secp256k1_scalar *message, int recid) { unsigned char brx[32]; - secp256k1_fe_t fx; - secp256k1_ge_t x; - secp256k1_gej_t xj; - secp256k1_scalar_t rn, u1, u2; - secp256k1_gej_t qj; + secp256k1_fe fx; + secp256k1_ge x; + secp256k1_gej xj; + secp256k1_scalar rn, u1, u2; + secp256k1_gej qj; - if (secp256k1_scalar_is_zero(&sig->r) || secp256k1_scalar_is_zero(&sig->s)) { + if (secp256k1_scalar_is_zero(sigr) || secp256k1_scalar_is_zero(sigs)) { return 0; } - secp256k1_scalar_get_b32(brx, &sig->r); + secp256k1_scalar_get_b32(brx, sigr); VERIFY_CHECK(secp256k1_fe_set_b32(&fx, brx)); /* brx comes from a scalar, so is less than the order; certainly less than p */ if (recid & 2) { if (secp256k1_fe_cmp_var(&fx, &secp256k1_ecdsa_const_p_minus_order) >= 0) { @@ -210,29 +211,29 @@ static int secp256k1_ecdsa_sig_recover(const secp256k1_ecdsa_sig_t *sig, secp256 return 0; } secp256k1_gej_set_ge(&xj, &x); - secp256k1_scalar_inverse_var(&rn, &sig->r); + secp256k1_scalar_inverse_var(&rn, sigr); secp256k1_scalar_mul(&u1, &rn, message); secp256k1_scalar_negate(&u1, &u1); - secp256k1_scalar_mul(&u2, &rn, &sig->s); - secp256k1_ecmult(&qj, &xj, &u2, &u1); + secp256k1_scalar_mul(&u2, &rn, sigs); + secp256k1_ecmult(ctx, &qj, &xj, &u2, &u1); secp256k1_ge_set_gej_var(pubkey, &qj); return !secp256k1_gej_is_infinity(&qj); } -static int secp256k1_ecdsa_sig_sign(secp256k1_ecdsa_sig_t *sig, const secp256k1_scalar_t *seckey, const secp256k1_scalar_t *message, const secp256k1_scalar_t *nonce, int *recid) { +static int secp256k1_ecdsa_sig_sign(const secp256k1_ecmult_gen_context *ctx, secp256k1_scalar *sigr, secp256k1_scalar *sigs, const secp256k1_scalar *seckey, const secp256k1_scalar *message, const secp256k1_scalar *nonce, int *recid) { unsigned char b[32]; - secp256k1_gej_t rp; - secp256k1_ge_t r; - secp256k1_scalar_t n; + secp256k1_gej rp; + secp256k1_ge r; + secp256k1_scalar n; int overflow = 0; - secp256k1_ecmult_gen(&rp, nonce); + secp256k1_ecmult_gen(ctx, &rp, nonce); secp256k1_ge_set_gej(&r, &rp); secp256k1_fe_normalize(&r.x); secp256k1_fe_normalize(&r.y); secp256k1_fe_get_b32(b, &r.x); - secp256k1_scalar_set_b32(&sig->r, b, &overflow); - if (secp256k1_scalar_is_zero(&sig->r)) { + secp256k1_scalar_set_b32(sigr, b, &overflow); + if (secp256k1_scalar_is_zero(sigr)) { /* P.x = order is on the curve, so technically sig->r could end up zero, which would be an invalid signature. */ secp256k1_gej_clear(&rp); secp256k1_ge_clear(&r); @@ -241,18 +242,18 @@ static int secp256k1_ecdsa_sig_sign(secp256k1_ecdsa_sig_t *sig, const secp256k1_ if (recid) { *recid = (overflow ? 2 : 0) | (secp256k1_fe_is_odd(&r.y) ? 1 : 0); } - secp256k1_scalar_mul(&n, &sig->r, seckey); + secp256k1_scalar_mul(&n, sigr, seckey); secp256k1_scalar_add(&n, &n, message); - secp256k1_scalar_inverse(&sig->s, nonce); - secp256k1_scalar_mul(&sig->s, &sig->s, &n); + secp256k1_scalar_inverse(sigs, nonce); + secp256k1_scalar_mul(sigs, sigs, &n); secp256k1_scalar_clear(&n); secp256k1_gej_clear(&rp); secp256k1_ge_clear(&r); - if (secp256k1_scalar_is_zero(&sig->s)) { + if (secp256k1_scalar_is_zero(sigs)) { return 0; } - if (secp256k1_scalar_is_high(&sig->s)) { - secp256k1_scalar_negate(&sig->s, &sig->s); + if (secp256k1_scalar_is_high(sigs)) { + secp256k1_scalar_negate(sigs, sigs); if (recid) { *recid ^= 1; } diff --git a/crypto/secp256k1/libsecp256k1/src/eckey.h b/crypto/secp256k1/libsecp256k1/src/eckey.h new file mode 100644 index 000000000..71c4096df --- /dev/null +++ b/crypto/secp256k1/libsecp256k1/src/eckey.h @@ -0,0 +1,28 @@ +/********************************************************************** + * Copyright (c) 2013, 2014 Pieter Wuille * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or http://www.opensource.org/licenses/mit-license.php.* + **********************************************************************/ + +#ifndef _SECP256K1_ECKEY_ +#define _SECP256K1_ECKEY_ + +#include <stddef.h> + +#include "group.h" +#include "scalar.h" +#include "ecmult.h" +#include "ecmult_gen.h" + +static int secp256k1_eckey_pubkey_parse(secp256k1_ge *elem, const unsigned char *pub, size_t size); +static int secp256k1_eckey_pubkey_serialize(secp256k1_ge *elem, unsigned char *pub, size_t *size, unsigned int flags); + +static int secp256k1_eckey_privkey_parse(secp256k1_scalar *key, const unsigned char *privkey, size_t privkeylen); +static int secp256k1_eckey_privkey_serialize(const secp256k1_ecmult_gen_context *ctx, unsigned char *privkey, size_t *privkeylen, const secp256k1_scalar *key, unsigned int flags); + +static int secp256k1_eckey_privkey_tweak_add(secp256k1_scalar *key, const secp256k1_scalar *tweak); +static int secp256k1_eckey_pubkey_tweak_add(const secp256k1_ecmult_context *ctx, secp256k1_ge *key, const secp256k1_scalar *tweak); +static int secp256k1_eckey_privkey_tweak_mul(secp256k1_scalar *key, const secp256k1_scalar *tweak); +static int secp256k1_eckey_pubkey_tweak_mul(const secp256k1_ecmult_context *ctx, secp256k1_ge *key, const secp256k1_scalar *tweak); + +#endif diff --git a/crypto/secp256k1/secp256k1/src/eckey_impl.h b/crypto/secp256k1/libsecp256k1/src/eckey_impl.h index 4382ff5f3..ae4424015 100644 --- a/crypto/secp256k1/secp256k1/src/eckey_impl.h +++ b/crypto/secp256k1/libsecp256k1/src/eckey_impl.h @@ -14,12 +14,12 @@ #include "group.h" #include "ecmult_gen.h" -static int secp256k1_eckey_pubkey_parse(secp256k1_ge_t *elem, const unsigned char *pub, int size) { +static int secp256k1_eckey_pubkey_parse(secp256k1_ge *elem, const unsigned char *pub, size_t size) { if (size == 33 && (pub[0] == 0x02 || pub[0] == 0x03)) { - secp256k1_fe_t x; + secp256k1_fe x; return secp256k1_fe_set_b32(&x, pub+1) && secp256k1_ge_set_xo_var(elem, &x, pub[0] == 0x03); } else if (size == 65 && (pub[0] == 0x04 || pub[0] == 0x06 || pub[0] == 0x07)) { - secp256k1_fe_t x, y; + secp256k1_fe x, y; if (!secp256k1_fe_set_b32(&x, pub+1) || !secp256k1_fe_set_b32(&y, pub+33)) { return 0; } @@ -33,14 +33,14 @@ static int secp256k1_eckey_pubkey_parse(secp256k1_ge_t *elem, const unsigned cha } } -static int secp256k1_eckey_pubkey_serialize(secp256k1_ge_t *elem, unsigned char *pub, int *size, int compressed) { +static int secp256k1_eckey_pubkey_serialize(secp256k1_ge *elem, unsigned char *pub, size_t *size, unsigned int flags) { if (secp256k1_ge_is_infinity(elem)) { return 0; } secp256k1_fe_normalize_var(&elem->x); secp256k1_fe_normalize_var(&elem->y); secp256k1_fe_get_b32(&pub[1], &elem->x); - if (compressed) { + if (flags & SECP256K1_EC_COMPRESSED) { *size = 33; pub[0] = 0x02 | (secp256k1_fe_is_odd(&elem->y) ? 0x01 : 0x00); } else { @@ -51,7 +51,7 @@ static int secp256k1_eckey_pubkey_serialize(secp256k1_ge_t *elem, unsigned char return 1; } -static int secp256k1_eckey_privkey_parse(secp256k1_scalar_t *key, const unsigned char *privkey, int privkeylen) { +static int secp256k1_eckey_privkey_parse(secp256k1_scalar *key, const unsigned char *privkey, size_t privkeylen) { unsigned char c[32] = {0}; const unsigned char *end = privkey + privkeylen; int lenb = 0; @@ -94,13 +94,13 @@ static int secp256k1_eckey_privkey_parse(secp256k1_scalar_t *key, const unsigned return !overflow; } -static int secp256k1_eckey_privkey_serialize(unsigned char *privkey, int *privkeylen, const secp256k1_scalar_t *key, int compressed) { - secp256k1_gej_t rp; - secp256k1_ge_t r; - int pubkeylen = 0; - secp256k1_ecmult_gen(&rp, key); +static int secp256k1_eckey_privkey_serialize(const secp256k1_ecmult_gen_context *ctx, unsigned char *privkey, size_t *privkeylen, const secp256k1_scalar *key, unsigned int flags) { + secp256k1_gej rp; + secp256k1_ge r; + size_t pubkeylen = 0; + secp256k1_ecmult_gen(ctx, &rp, key); secp256k1_ge_set_gej(&r, &rp); - if (compressed) { + if (flags & SECP256K1_EC_COMPRESSED) { static const unsigned char begin[] = { 0x30,0x81,0xD3,0x02,0x01,0x01,0x04,0x20 }; @@ -154,7 +154,7 @@ static int secp256k1_eckey_privkey_serialize(unsigned char *privkey, int *privke return 1; } -static int secp256k1_eckey_privkey_tweak_add(secp256k1_scalar_t *key, const secp256k1_scalar_t *tweak) { +static int secp256k1_eckey_privkey_tweak_add(secp256k1_scalar *key, const secp256k1_scalar *tweak) { secp256k1_scalar_add(key, key, tweak); if (secp256k1_scalar_is_zero(key)) { return 0; @@ -162,12 +162,12 @@ static int secp256k1_eckey_privkey_tweak_add(secp256k1_scalar_t *key, const secp return 1; } -static int secp256k1_eckey_pubkey_tweak_add(secp256k1_ge_t *key, const secp256k1_scalar_t *tweak) { - secp256k1_gej_t pt; - secp256k1_scalar_t one; +static int secp256k1_eckey_pubkey_tweak_add(const secp256k1_ecmult_context *ctx, secp256k1_ge *key, const secp256k1_scalar *tweak) { + secp256k1_gej pt; + secp256k1_scalar one; secp256k1_gej_set_ge(&pt, key); secp256k1_scalar_set_int(&one, 1); - secp256k1_ecmult(&pt, &pt, &one, tweak); + secp256k1_ecmult(ctx, &pt, &pt, &one, tweak); if (secp256k1_gej_is_infinity(&pt)) { return 0; @@ -176,7 +176,7 @@ static int secp256k1_eckey_pubkey_tweak_add(secp256k1_ge_t *key, const secp256k1 return 1; } -static int secp256k1_eckey_privkey_tweak_mul(secp256k1_scalar_t *key, const secp256k1_scalar_t *tweak) { +static int secp256k1_eckey_privkey_tweak_mul(secp256k1_scalar *key, const secp256k1_scalar *tweak) { if (secp256k1_scalar_is_zero(tweak)) { return 0; } @@ -185,16 +185,16 @@ static int secp256k1_eckey_privkey_tweak_mul(secp256k1_scalar_t *key, const secp return 1; } -static int secp256k1_eckey_pubkey_tweak_mul(secp256k1_ge_t *key, const secp256k1_scalar_t *tweak) { - secp256k1_scalar_t zero; - secp256k1_gej_t pt; +static int secp256k1_eckey_pubkey_tweak_mul(const secp256k1_ecmult_context *ctx, secp256k1_ge *key, const secp256k1_scalar *tweak) { + secp256k1_scalar zero; + secp256k1_gej pt; if (secp256k1_scalar_is_zero(tweak)) { return 0; } secp256k1_scalar_set_int(&zero, 0); secp256k1_gej_set_ge(&pt, key); - secp256k1_ecmult(&pt, &pt, tweak, &zero); + secp256k1_ecmult(ctx, &pt, &pt, tweak, &zero); secp256k1_ge_set_gej(key, &pt); return 1; } diff --git a/crypto/secp256k1/libsecp256k1/src/ecmult.h b/crypto/secp256k1/libsecp256k1/src/ecmult.h new file mode 100644 index 000000000..20484134f --- /dev/null +++ b/crypto/secp256k1/libsecp256k1/src/ecmult.h @@ -0,0 +1,31 @@ +/********************************************************************** + * Copyright (c) 2013, 2014 Pieter Wuille * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or http://www.opensource.org/licenses/mit-license.php.* + **********************************************************************/ + +#ifndef _SECP256K1_ECMULT_ +#define _SECP256K1_ECMULT_ + +#include "num.h" +#include "group.h" + +typedef struct { + /* For accelerating the computation of a*P + b*G: */ + secp256k1_ge_storage (*pre_g)[]; /* odd multiples of the generator */ +#ifdef USE_ENDOMORPHISM + secp256k1_ge_storage (*pre_g_128)[]; /* odd multiples of 2^128*generator */ +#endif +} secp256k1_ecmult_context; + +static void secp256k1_ecmult_context_init(secp256k1_ecmult_context *ctx); +static void secp256k1_ecmult_context_build(secp256k1_ecmult_context *ctx, const secp256k1_callback *cb); +static void secp256k1_ecmult_context_clone(secp256k1_ecmult_context *dst, + const secp256k1_ecmult_context *src, const secp256k1_callback *cb); +static void secp256k1_ecmult_context_clear(secp256k1_ecmult_context *ctx); +static int secp256k1_ecmult_context_is_built(const secp256k1_ecmult_context *ctx); + +/** Double multiply: R = na*A + ng*G */ +static void secp256k1_ecmult(const secp256k1_ecmult_context *ctx, secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_scalar *na, const secp256k1_scalar *ng); + +#endif diff --git a/crypto/secp256k1/secp256k1/src/ecmult_gen.h b/crypto/secp256k1/libsecp256k1/src/ecmult_const.h index 42f822f9c..2b0097655 100644 --- a/crypto/secp256k1/secp256k1/src/ecmult_gen.h +++ b/crypto/secp256k1/libsecp256k1/src/ecmult_const.h @@ -1,19 +1,15 @@ /********************************************************************** - * Copyright (c) 2013, 2014 Pieter Wuille * + * Copyright (c) 2015 Andrew Poelstra * * Distributed under the MIT software license, see the accompanying * * file COPYING or http://www.opensource.org/licenses/mit-license.php.* **********************************************************************/ -#ifndef _SECP256K1_ECMULT_GEN_ -#define _SECP256K1_ECMULT_GEN_ +#ifndef _SECP256K1_ECMULT_CONST_ +#define _SECP256K1_ECMULT_CONST_ #include "scalar.h" #include "group.h" -static void secp256k1_ecmult_gen_start(void); -static void secp256k1_ecmult_gen_stop(void); - -/** Multiply with the generator: R = a*G */ -static void secp256k1_ecmult_gen(secp256k1_gej_t *r, const secp256k1_scalar_t *a); +static void secp256k1_ecmult_const(secp256k1_gej *r, const secp256k1_ge *a, const secp256k1_scalar *q); #endif diff --git a/crypto/secp256k1/libsecp256k1/src/ecmult_const_impl.h b/crypto/secp256k1/libsecp256k1/src/ecmult_const_impl.h new file mode 100644 index 000000000..90ac94770 --- /dev/null +++ b/crypto/secp256k1/libsecp256k1/src/ecmult_const_impl.h @@ -0,0 +1,260 @@ +/********************************************************************** + * Copyright (c) 2015 Pieter Wuille, Andrew Poelstra * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or http://www.opensource.org/licenses/mit-license.php.* + **********************************************************************/ + +#ifndef _SECP256K1_ECMULT_CONST_IMPL_ +#define _SECP256K1_ECMULT_CONST_IMPL_ + +#include "scalar.h" +#include "group.h" +#include "ecmult_const.h" +#include "ecmult_impl.h" + +#ifdef USE_ENDOMORPHISM + #define WNAF_BITS 128 +#else + #define WNAF_BITS 256 +#endif +#define WNAF_SIZE(w) ((WNAF_BITS + (w) - 1) / (w)) + +/* This is like `ECMULT_TABLE_GET_GE` but is constant time */ +#define ECMULT_CONST_TABLE_GET_GE(r,pre,n,w) do { \ + int m; \ + int abs_n = (n) * (((n) > 0) * 2 - 1); \ + int idx_n = abs_n / 2; \ + secp256k1_fe neg_y; \ + VERIFY_CHECK(((n) & 1) == 1); \ + VERIFY_CHECK((n) >= -((1 << ((w)-1)) - 1)); \ + VERIFY_CHECK((n) <= ((1 << ((w)-1)) - 1)); \ + VERIFY_SETUP(secp256k1_fe_clear(&(r)->x)); \ + VERIFY_SETUP(secp256k1_fe_clear(&(r)->y)); \ + for (m = 0; m < ECMULT_TABLE_SIZE(w); m++) { \ + /* This loop is used to avoid secret data in array indices. See + * the comment in ecmult_gen_impl.h for rationale. */ \ + secp256k1_fe_cmov(&(r)->x, &(pre)[m].x, m == idx_n); \ + secp256k1_fe_cmov(&(r)->y, &(pre)[m].y, m == idx_n); \ + } \ + (r)->infinity = 0; \ + secp256k1_fe_negate(&neg_y, &(r)->y, 1); \ + secp256k1_fe_cmov(&(r)->y, &neg_y, (n) != abs_n); \ +} while(0) + + +/** Convert a number to WNAF notation. The number becomes represented by sum(2^{wi} * wnaf[i], i=0..return_val) + * with the following guarantees: + * - each wnaf[i] an odd integer between -(1 << w) and (1 << w) + * - each wnaf[i] is nonzero + * - the number of words set is returned; this is always (WNAF_BITS + w - 1) / w + * + * Adapted from `The Width-w NAF Method Provides Small Memory and Fast Elliptic Scalar + * Multiplications Secure against Side Channel Attacks`, Okeya and Tagaki. M. Joye (Ed.) + * CT-RSA 2003, LNCS 2612, pp. 328-443, 2003. Springer-Verlagy Berlin Heidelberg 2003 + * + * Numbers reference steps of `Algorithm SPA-resistant Width-w NAF with Odd Scalar` on pp. 335 + */ +static int secp256k1_wnaf_const(int *wnaf, secp256k1_scalar s, int w) { + int global_sign; + int skew = 0; + int word = 0; + /* 1 2 3 */ + int u_last; + int u; + +#ifdef USE_ENDOMORPHISM + int flip; + int bit; + secp256k1_scalar neg_s; + int not_neg_one; + /* If we are using the endomorphism, we cannot handle even numbers by negating + * them, since we are working with 128-bit numbers whose negations would be 256 + * bits, eliminating the performance advantage. Instead we use a technique from + * Section 4.2 of the Okeya/Tagaki paper, which is to add either 1 (for even) + * or 2 (for odd) to the number we are encoding, then compensating after the + * multiplication. */ + /* Negative 128-bit numbers will be negated, since otherwise they are 256-bit */ + flip = secp256k1_scalar_is_high(&s); + /* We add 1 to even numbers, 2 to odd ones, noting that negation flips parity */ + bit = flip ^ (s.d[0] & 1); + /* We check for negative one, since adding 2 to it will cause an overflow */ + secp256k1_scalar_negate(&neg_s, &s); + not_neg_one = !secp256k1_scalar_is_one(&neg_s); + secp256k1_scalar_cadd_bit(&s, bit, not_neg_one); + /* If we had negative one, flip == 1, s.d[0] == 0, bit == 1, so caller expects + * that we added two to it and flipped it. In fact for -1 these operations are + * identical. We only flipped, but since skewing is required (in the sense that + * the skew must be 1 or 2, never zero) and flipping is not, we need to change + * our flags to claim that we only skewed. */ + global_sign = secp256k1_scalar_cond_negate(&s, flip); + global_sign *= not_neg_one * 2 - 1; + skew = 1 << bit; +#else + /* Otherwise, we just negate to force oddness */ + int is_even = secp256k1_scalar_is_even(&s); + global_sign = secp256k1_scalar_cond_negate(&s, is_even); +#endif + + /* 4 */ + u_last = secp256k1_scalar_shr_int(&s, w); + while (word * w < WNAF_BITS) { + int sign; + int even; + + /* 4.1 4.4 */ + u = secp256k1_scalar_shr_int(&s, w); + /* 4.2 */ + even = ((u & 1) == 0); + sign = 2 * (u_last > 0) - 1; + u += sign * even; + u_last -= sign * even * (1 << w); + + /* 4.3, adapted for global sign change */ + wnaf[word++] = u_last * global_sign; + + u_last = u; + } + wnaf[word] = u * global_sign; + + VERIFY_CHECK(secp256k1_scalar_is_zero(&s)); + VERIFY_CHECK(word == WNAF_SIZE(w)); + return skew; +} + + +static void secp256k1_ecmult_const(secp256k1_gej *r, const secp256k1_ge *a, const secp256k1_scalar *scalar) { + secp256k1_ge pre_a[ECMULT_TABLE_SIZE(WINDOW_A)]; + secp256k1_ge tmpa; + secp256k1_fe Z; + +#ifdef USE_ENDOMORPHISM + secp256k1_ge pre_a_lam[ECMULT_TABLE_SIZE(WINDOW_A)]; + int wnaf_1[1 + WNAF_SIZE(WINDOW_A - 1)]; + int wnaf_lam[1 + WNAF_SIZE(WINDOW_A - 1)]; + int skew_1; + int skew_lam; + secp256k1_scalar q_1, q_lam; +#else + int wnaf[1 + WNAF_SIZE(WINDOW_A - 1)]; +#endif + + int i; + secp256k1_scalar sc = *scalar; + + /* build wnaf representation for q. */ +#ifdef USE_ENDOMORPHISM + /* split q into q_1 and q_lam (where q = q_1 + q_lam*lambda, and q_1 and q_lam are ~128 bit) */ + secp256k1_scalar_split_lambda(&q_1, &q_lam, &sc); + /* no need for zero correction when using endomorphism since even + * numbers have one added to them anyway */ + skew_1 = secp256k1_wnaf_const(wnaf_1, q_1, WINDOW_A - 1); + skew_lam = secp256k1_wnaf_const(wnaf_lam, q_lam, WINDOW_A - 1); +#else + int is_zero = secp256k1_scalar_is_zero(scalar); + /* the wNAF ladder cannot handle zero, so bump this to one .. we will + * correct the result after the fact */ + sc.d[0] += is_zero; + VERIFY_CHECK(!secp256k1_scalar_is_zero(&sc)); + + secp256k1_wnaf_const(wnaf, sc, WINDOW_A - 1); +#endif + + /* Calculate odd multiples of a. + * All multiples are brought to the same Z 'denominator', which is stored + * in Z. Due to secp256k1' isomorphism we can do all operations pretending + * that the Z coordinate was 1, use affine addition formulae, and correct + * the Z coordinate of the result once at the end. + */ + secp256k1_gej_set_ge(r, a); + secp256k1_ecmult_odd_multiples_table_globalz_windowa(pre_a, &Z, r); + for (i = 0; i < ECMULT_TABLE_SIZE(WINDOW_A); i++) { + secp256k1_fe_normalize_weak(&pre_a[i].y); + } +#ifdef USE_ENDOMORPHISM + for (i = 0; i < ECMULT_TABLE_SIZE(WINDOW_A); i++) { + secp256k1_ge_mul_lambda(&pre_a_lam[i], &pre_a[i]); + } +#endif + + /* first loop iteration (separated out so we can directly set r, rather + * than having it start at infinity, get doubled several times, then have + * its new value added to it) */ +#ifdef USE_ENDOMORPHISM + i = wnaf_1[WNAF_SIZE(WINDOW_A - 1)]; + VERIFY_CHECK(i != 0); + ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a, i, WINDOW_A); + secp256k1_gej_set_ge(r, &tmpa); + + i = wnaf_lam[WNAF_SIZE(WINDOW_A - 1)]; + VERIFY_CHECK(i != 0); + ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a_lam, i, WINDOW_A); + secp256k1_gej_add_ge(r, r, &tmpa); +#else + i = wnaf[WNAF_SIZE(WINDOW_A - 1)]; + VERIFY_CHECK(i != 0); + ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a, i, WINDOW_A); + secp256k1_gej_set_ge(r, &tmpa); +#endif + /* remaining loop iterations */ + for (i = WNAF_SIZE(WINDOW_A - 1) - 1; i >= 0; i--) { + int n; + int j; + for (j = 0; j < WINDOW_A - 1; ++j) { + secp256k1_gej_double_nonzero(r, r, NULL); + } +#ifdef USE_ENDOMORPHISM + n = wnaf_1[i]; + ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a, n, WINDOW_A); + VERIFY_CHECK(n != 0); + secp256k1_gej_add_ge(r, r, &tmpa); + + n = wnaf_lam[i]; + ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a_lam, n, WINDOW_A); + VERIFY_CHECK(n != 0); + secp256k1_gej_add_ge(r, r, &tmpa); +#else + n = wnaf[i]; + VERIFY_CHECK(n != 0); + ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a, n, WINDOW_A); + secp256k1_gej_add_ge(r, r, &tmpa); +#endif + } + + secp256k1_fe_mul(&r->z, &r->z, &Z); + +#ifdef USE_ENDOMORPHISM + { + /* Correct for wNAF skew */ + secp256k1_ge correction = *a; + secp256k1_ge_storage correction_1_stor; + secp256k1_ge_storage correction_lam_stor; + secp256k1_ge_storage a2_stor; + secp256k1_gej tmpj; + secp256k1_gej_set_ge(&tmpj, &correction); + secp256k1_gej_double_var(&tmpj, &tmpj, NULL); + secp256k1_ge_set_gej(&correction, &tmpj); + secp256k1_ge_to_storage(&correction_1_stor, a); + secp256k1_ge_to_storage(&correction_lam_stor, a); + secp256k1_ge_to_storage(&a2_stor, &correction); + + /* For odd numbers this is 2a (so replace it), for even ones a (so no-op) */ + secp256k1_ge_storage_cmov(&correction_1_stor, &a2_stor, skew_1 == 2); + secp256k1_ge_storage_cmov(&correction_lam_stor, &a2_stor, skew_lam == 2); + + /* Apply the correction */ + secp256k1_ge_from_storage(&correction, &correction_1_stor); + secp256k1_ge_neg(&correction, &correction); + secp256k1_gej_add_ge(r, r, &correction); + + secp256k1_ge_from_storage(&correction, &correction_lam_stor); + secp256k1_ge_neg(&correction, &correction); + secp256k1_ge_mul_lambda(&correction, &correction); + secp256k1_gej_add_ge(r, r, &correction); + } +#else + /* correct for zero */ + r->infinity |= is_zero; +#endif +} + +#endif diff --git a/crypto/secp256k1/libsecp256k1/src/ecmult_gen.h b/crypto/secp256k1/libsecp256k1/src/ecmult_gen.h new file mode 100644 index 000000000..eb2cc9ead --- /dev/null +++ b/crypto/secp256k1/libsecp256k1/src/ecmult_gen.h @@ -0,0 +1,43 @@ +/********************************************************************** + * Copyright (c) 2013, 2014 Pieter Wuille * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or http://www.opensource.org/licenses/mit-license.php.* + **********************************************************************/ + +#ifndef _SECP256K1_ECMULT_GEN_ +#define _SECP256K1_ECMULT_GEN_ + +#include "scalar.h" +#include "group.h" + +typedef struct { + /* For accelerating the computation of a*G: + * To harden against timing attacks, use the following mechanism: + * * Break up the multiplicand into groups of 4 bits, called n_0, n_1, n_2, ..., n_63. + * * Compute sum(n_i * 16^i * G + U_i, i=0..63), where: + * * U_i = U * 2^i (for i=0..62) + * * U_i = U * (1-2^63) (for i=63) + * where U is a point with no known corresponding scalar. Note that sum(U_i, i=0..63) = 0. + * For each i, and each of the 16 possible values of n_i, (n_i * 16^i * G + U_i) is + * precomputed (call it prec(i, n_i)). The formula now becomes sum(prec(i, n_i), i=0..63). + * None of the resulting prec group elements have a known scalar, and neither do any of + * the intermediate sums while computing a*G. + */ + secp256k1_ge_storage (*prec)[64][16]; /* prec[j][i] = 16^j * i * G + U_i */ + secp256k1_scalar blind; + secp256k1_gej initial; +} secp256k1_ecmult_gen_context; + +static void secp256k1_ecmult_gen_context_init(secp256k1_ecmult_gen_context* ctx); +static void secp256k1_ecmult_gen_context_build(secp256k1_ecmult_gen_context* ctx, const secp256k1_callback* cb); +static void secp256k1_ecmult_gen_context_clone(secp256k1_ecmult_gen_context *dst, + const secp256k1_ecmult_gen_context* src, const secp256k1_callback* cb); +static void secp256k1_ecmult_gen_context_clear(secp256k1_ecmult_gen_context* ctx); +static int secp256k1_ecmult_gen_context_is_built(const secp256k1_ecmult_gen_context* ctx); + +/** Multiply with the generator: R = a*G */ +static void secp256k1_ecmult_gen(const secp256k1_ecmult_gen_context* ctx, secp256k1_gej *r, const secp256k1_scalar *a); + +static void secp256k1_ecmult_gen_blind(secp256k1_ecmult_gen_context *ctx, const unsigned char *seed32); + +#endif diff --git a/crypto/secp256k1/libsecp256k1/src/ecmult_gen_impl.h b/crypto/secp256k1/libsecp256k1/src/ecmult_gen_impl.h new file mode 100644 index 000000000..2ee27377f --- /dev/null +++ b/crypto/secp256k1/libsecp256k1/src/ecmult_gen_impl.h @@ -0,0 +1,205 @@ +/********************************************************************** + * Copyright (c) 2013, 2014, 2015 Pieter Wuille, Gregory Maxwell * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or http://www.opensource.org/licenses/mit-license.php.* + **********************************************************************/ + +#ifndef _SECP256K1_ECMULT_GEN_IMPL_H_ +#define _SECP256K1_ECMULT_GEN_IMPL_H_ + +#include "scalar.h" +#include "group.h" +#include "ecmult_gen.h" +#include "hash_impl.h" +#ifdef USE_ECMULT_STATIC_PRECOMPUTATION +#include "ecmult_static_context.h" +#endif +static void secp256k1_ecmult_gen_context_init(secp256k1_ecmult_gen_context *ctx) { + ctx->prec = NULL; +} + +static void secp256k1_ecmult_gen_context_build(secp256k1_ecmult_gen_context *ctx, const secp256k1_callback* cb) { +#ifndef USE_ECMULT_STATIC_PRECOMPUTATION + secp256k1_ge prec[1024]; + secp256k1_gej gj; + secp256k1_gej nums_gej; + int i, j; +#endif + + if (ctx->prec != NULL) { + return; + } +#ifndef USE_ECMULT_STATIC_PRECOMPUTATION + ctx->prec = (secp256k1_ge_storage (*)[64][16])checked_malloc(cb, sizeof(*ctx->prec)); + + /* get the generator */ + secp256k1_gej_set_ge(&gj, &secp256k1_ge_const_g); + + /* Construct a group element with no known corresponding scalar (nothing up my sleeve). */ + { + static const unsigned char nums_b32[33] = "The scalar for this x is unknown"; + secp256k1_fe nums_x; + secp256k1_ge nums_ge; + VERIFY_CHECK(secp256k1_fe_set_b32(&nums_x, nums_b32)); + VERIFY_CHECK(secp256k1_ge_set_xo_var(&nums_ge, &nums_x, 0)); + secp256k1_gej_set_ge(&nums_gej, &nums_ge); + /* Add G to make the bits in x uniformly distributed. */ + secp256k1_gej_add_ge_var(&nums_gej, &nums_gej, &secp256k1_ge_const_g, NULL); + } + + /* compute prec. */ + { + secp256k1_gej precj[1024]; /* Jacobian versions of prec. */ + secp256k1_gej gbase; + secp256k1_gej numsbase; + gbase = gj; /* 16^j * G */ + numsbase = nums_gej; /* 2^j * nums. */ + for (j = 0; j < 64; j++) { + /* Set precj[j*16 .. j*16+15] to (numsbase, numsbase + gbase, ..., numsbase + 15*gbase). */ + precj[j*16] = numsbase; + for (i = 1; i < 16; i++) { + secp256k1_gej_add_var(&precj[j*16 + i], &precj[j*16 + i - 1], &gbase, NULL); + } + /* Multiply gbase by 16. */ + for (i = 0; i < 4; i++) { + secp256k1_gej_double_var(&gbase, &gbase, NULL); + } + /* Multiply numbase by 2. */ + secp256k1_gej_double_var(&numsbase, &numsbase, NULL); + if (j == 62) { + /* In the last iteration, numsbase is (1 - 2^j) * nums instead. */ + secp256k1_gej_neg(&numsbase, &numsbase); + secp256k1_gej_add_var(&numsbase, &numsbase, &nums_gej, NULL); + } + } + secp256k1_ge_set_all_gej_var(1024, prec, precj, cb); + } + for (j = 0; j < 64; j++) { + for (i = 0; i < 16; i++) { + secp256k1_ge_to_storage(&(*ctx->prec)[j][i], &prec[j*16 + i]); + } + } +#else + (void)cb; + ctx->prec = (secp256k1_ge_storage (*)[64][16])secp256k1_ecmult_static_context; +#endif + secp256k1_ecmult_gen_blind(ctx, NULL); +} + +static int secp256k1_ecmult_gen_context_is_built(const secp256k1_ecmult_gen_context* ctx) { + return ctx->prec != NULL; +} + +static void secp256k1_ecmult_gen_context_clone(secp256k1_ecmult_gen_context *dst, + const secp256k1_ecmult_gen_context *src, const secp256k1_callback* cb) { + if (src->prec == NULL) { + dst->prec = NULL; + } else { +#ifndef USE_ECMULT_STATIC_PRECOMPUTATION + dst->prec = (secp256k1_ge_storage (*)[64][16])checked_malloc(cb, sizeof(*dst->prec)); + memcpy(dst->prec, src->prec, sizeof(*dst->prec)); +#else + (void)cb; + dst->prec = src->prec; +#endif + dst->initial = src->initial; + dst->blind = src->blind; + } +} + +static void secp256k1_ecmult_gen_context_clear(secp256k1_ecmult_gen_context *ctx) { +#ifndef USE_ECMULT_STATIC_PRECOMPUTATION + free(ctx->prec); +#endif + secp256k1_scalar_clear(&ctx->blind); + secp256k1_gej_clear(&ctx->initial); + ctx->prec = NULL; +} + +static void secp256k1_ecmult_gen(const secp256k1_ecmult_gen_context *ctx, secp256k1_gej *r, const secp256k1_scalar *gn) { + secp256k1_ge add; + secp256k1_ge_storage adds; + secp256k1_scalar gnb; + int bits; + int i, j; + memset(&adds, 0, sizeof(adds)); + *r = ctx->initial; + /* Blind scalar/point multiplication by computing (n-b)G + bG instead of nG. */ + secp256k1_scalar_add(&gnb, gn, &ctx->blind); + add.infinity = 0; + for (j = 0; j < 64; j++) { + bits = secp256k1_scalar_get_bits(&gnb, j * 4, 4); + for (i = 0; i < 16; i++) { + /** This uses a conditional move to avoid any secret data in array indexes. + * _Any_ use of secret indexes has been demonstrated to result in timing + * sidechannels, even when the cache-line access patterns are uniform. + * See also: + * "A word of warning", CHES 2013 Rump Session, by Daniel J. Bernstein and Peter Schwabe + * (https://cryptojedi.org/peter/data/chesrump-20130822.pdf) and + * "Cache Attacks and Countermeasures: the Case of AES", RSA 2006, + * by Dag Arne Osvik, Adi Shamir, and Eran Tromer + * (http://www.tau.ac.il/~tromer/papers/cache.pdf) + */ + secp256k1_ge_storage_cmov(&adds, &(*ctx->prec)[j][i], i == bits); + } + secp256k1_ge_from_storage(&add, &adds); + secp256k1_gej_add_ge(r, r, &add); + } + bits = 0; + secp256k1_ge_clear(&add); + secp256k1_scalar_clear(&gnb); +} + +/* Setup blinding values for secp256k1_ecmult_gen. */ +static void secp256k1_ecmult_gen_blind(secp256k1_ecmult_gen_context *ctx, const unsigned char *seed32) { + secp256k1_scalar b; + secp256k1_gej gb; + secp256k1_fe s; + unsigned char nonce32[32]; + secp256k1_rfc6979_hmac_sha256_t rng; + int retry; + unsigned char keydata[64] = {0}; + if (seed32 == NULL) { + /* When seed is NULL, reset the initial point and blinding value. */ + secp256k1_gej_set_ge(&ctx->initial, &secp256k1_ge_const_g); + secp256k1_gej_neg(&ctx->initial, &ctx->initial); + secp256k1_scalar_set_int(&ctx->blind, 1); + } + /* The prior blinding value (if not reset) is chained forward by including it in the hash. */ + secp256k1_scalar_get_b32(nonce32, &ctx->blind); + /** Using a CSPRNG allows a failure free interface, avoids needing large amounts of random data, + * and guards against weak or adversarial seeds. This is a simpler and safer interface than + * asking the caller for blinding values directly and expecting them to retry on failure. + */ + memcpy(keydata, nonce32, 32); + if (seed32 != NULL) { + memcpy(keydata + 32, seed32, 32); + } + secp256k1_rfc6979_hmac_sha256_initialize(&rng, keydata, seed32 ? 64 : 32); + memset(keydata, 0, sizeof(keydata)); + /* Retry for out of range results to achieve uniformity. */ + do { + secp256k1_rfc6979_hmac_sha256_generate(&rng, nonce32, 32); + retry = !secp256k1_fe_set_b32(&s, nonce32); + retry |= secp256k1_fe_is_zero(&s); + } while (retry); + /* Randomize the projection to defend against multiplier sidechannels. */ + secp256k1_gej_rescale(&ctx->initial, &s); + secp256k1_fe_clear(&s); + do { + secp256k1_rfc6979_hmac_sha256_generate(&rng, nonce32, 32); + secp256k1_scalar_set_b32(&b, nonce32, &retry); + /* A blinding value of 0 works, but would undermine the projection hardening. */ + retry |= secp256k1_scalar_is_zero(&b); + } while (retry); + secp256k1_rfc6979_hmac_sha256_finalize(&rng); + memset(nonce32, 0, 32); + secp256k1_ecmult_gen(ctx, &gb, &b); + secp256k1_scalar_negate(&b, &b); + ctx->blind = b; + ctx->initial = gb; + secp256k1_scalar_clear(&b); + secp256k1_gej_clear(&gb); +} + +#endif diff --git a/crypto/secp256k1/libsecp256k1/src/ecmult_impl.h b/crypto/secp256k1/libsecp256k1/src/ecmult_impl.h new file mode 100644 index 000000000..e6e5f4718 --- /dev/null +++ b/crypto/secp256k1/libsecp256k1/src/ecmult_impl.h @@ -0,0 +1,389 @@ +/********************************************************************** + * Copyright (c) 2013, 2014 Pieter Wuille * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or http://www.opensource.org/licenses/mit-license.php.* + **********************************************************************/ + +#ifndef _SECP256K1_ECMULT_IMPL_H_ +#define _SECP256K1_ECMULT_IMPL_H_ + +#include "group.h" +#include "scalar.h" +#include "ecmult.h" + +/* optimal for 128-bit and 256-bit exponents. */ +#define WINDOW_A 5 + +/** larger numbers may result in slightly better performance, at the cost of + exponentially larger precomputed tables. */ +#ifdef USE_ENDOMORPHISM +/** Two tables for window size 15: 1.375 MiB. */ +#define WINDOW_G 15 +#else +/** One table for window size 16: 1.375 MiB. */ +#define WINDOW_G 16 +#endif + +/** The number of entries a table with precomputed multiples needs to have. */ +#define ECMULT_TABLE_SIZE(w) (1 << ((w)-2)) + +/** Fill a table 'prej' with precomputed odd multiples of a. Prej will contain + * the values [1*a,3*a,...,(2*n-1)*a], so it space for n values. zr[0] will + * contain prej[0].z / a.z. The other zr[i] values = prej[i].z / prej[i-1].z. + * Prej's Z values are undefined, except for the last value. + */ +static void secp256k1_ecmult_odd_multiples_table(int n, secp256k1_gej *prej, secp256k1_fe *zr, const secp256k1_gej *a) { + secp256k1_gej d; + secp256k1_ge a_ge, d_ge; + int i; + + VERIFY_CHECK(!a->infinity); + + secp256k1_gej_double_var(&d, a, NULL); + + /* + * Perform the additions on an isomorphism where 'd' is affine: drop the z coordinate + * of 'd', and scale the 1P starting value's x/y coordinates without changing its z. + */ + d_ge.x = d.x; + d_ge.y = d.y; + d_ge.infinity = 0; + + secp256k1_ge_set_gej_zinv(&a_ge, a, &d.z); + prej[0].x = a_ge.x; + prej[0].y = a_ge.y; + prej[0].z = a->z; + prej[0].infinity = 0; + + zr[0] = d.z; + for (i = 1; i < n; i++) { + secp256k1_gej_add_ge_var(&prej[i], &prej[i-1], &d_ge, &zr[i]); + } + + /* + * Each point in 'prej' has a z coordinate too small by a factor of 'd.z'. Only + * the final point's z coordinate is actually used though, so just update that. + */ + secp256k1_fe_mul(&prej[n-1].z, &prej[n-1].z, &d.z); +} + +/** Fill a table 'pre' with precomputed odd multiples of a. + * + * There are two versions of this function: + * - secp256k1_ecmult_odd_multiples_table_globalz_windowa which brings its + * resulting point set to a single constant Z denominator, stores the X and Y + * coordinates as ge_storage points in pre, and stores the global Z in rz. + * It only operates on tables sized for WINDOW_A wnaf multiples. + * - secp256k1_ecmult_odd_multiples_table_storage_var, which converts its + * resulting point set to actually affine points, and stores those in pre. + * It operates on tables of any size, but uses heap-allocated temporaries. + * + * To compute a*P + b*G, we compute a table for P using the first function, + * and for G using the second (which requires an inverse, but it only needs to + * happen once). + */ +static void secp256k1_ecmult_odd_multiples_table_globalz_windowa(secp256k1_ge *pre, secp256k1_fe *globalz, const secp256k1_gej *a) { + secp256k1_gej prej[ECMULT_TABLE_SIZE(WINDOW_A)]; + secp256k1_fe zr[ECMULT_TABLE_SIZE(WINDOW_A)]; + + /* Compute the odd multiples in Jacobian form. */ + secp256k1_ecmult_odd_multiples_table(ECMULT_TABLE_SIZE(WINDOW_A), prej, zr, a); + /* Bring them to the same Z denominator. */ + secp256k1_ge_globalz_set_table_gej(ECMULT_TABLE_SIZE(WINDOW_A), pre, globalz, prej, zr); +} + +static void secp256k1_ecmult_odd_multiples_table_storage_var(int n, secp256k1_ge_storage *pre, const secp256k1_gej *a, const secp256k1_callback *cb) { + secp256k1_gej *prej = (secp256k1_gej*)checked_malloc(cb, sizeof(secp256k1_gej) * n); + secp256k1_ge *prea = (secp256k1_ge*)checked_malloc(cb, sizeof(secp256k1_ge) * n); + secp256k1_fe *zr = (secp256k1_fe*)checked_malloc(cb, sizeof(secp256k1_fe) * n); + int i; + + /* Compute the odd multiples in Jacobian form. */ + secp256k1_ecmult_odd_multiples_table(n, prej, zr, a); + /* Convert them in batch to affine coordinates. */ + secp256k1_ge_set_table_gej_var(n, prea, prej, zr); + /* Convert them to compact storage form. */ + for (i = 0; i < n; i++) { + secp256k1_ge_to_storage(&pre[i], &prea[i]); + } + + free(prea); + free(prej); + free(zr); +} + +/** The following two macro retrieves a particular odd multiple from a table + * of precomputed multiples. */ +#define ECMULT_TABLE_GET_GE(r,pre,n,w) do { \ + VERIFY_CHECK(((n) & 1) == 1); \ + VERIFY_CHECK((n) >= -((1 << ((w)-1)) - 1)); \ + VERIFY_CHECK((n) <= ((1 << ((w)-1)) - 1)); \ + if ((n) > 0) { \ + *(r) = (pre)[((n)-1)/2]; \ + } else { \ + secp256k1_ge_neg((r), &(pre)[(-(n)-1)/2]); \ + } \ +} while(0) + +#define ECMULT_TABLE_GET_GE_STORAGE(r,pre,n,w) do { \ + VERIFY_CHECK(((n) & 1) == 1); \ + VERIFY_CHECK((n) >= -((1 << ((w)-1)) - 1)); \ + VERIFY_CHECK((n) <= ((1 << ((w)-1)) - 1)); \ + if ((n) > 0) { \ + secp256k1_ge_from_storage((r), &(pre)[((n)-1)/2]); \ + } else { \ + secp256k1_ge_from_storage((r), &(pre)[(-(n)-1)/2]); \ + secp256k1_ge_neg((r), (r)); \ + } \ +} while(0) + +static void secp256k1_ecmult_context_init(secp256k1_ecmult_context *ctx) { + ctx->pre_g = NULL; +#ifdef USE_ENDOMORPHISM + ctx->pre_g_128 = NULL; +#endif +} + +static void secp256k1_ecmult_context_build(secp256k1_ecmult_context *ctx, const secp256k1_callback *cb) { + secp256k1_gej gj; + + if (ctx->pre_g != NULL) { + return; + } + + /* get the generator */ + secp256k1_gej_set_ge(&gj, &secp256k1_ge_const_g); + + ctx->pre_g = (secp256k1_ge_storage (*)[])checked_malloc(cb, sizeof((*ctx->pre_g)[0]) * ECMULT_TABLE_SIZE(WINDOW_G)); + + /* precompute the tables with odd multiples */ + secp256k1_ecmult_odd_multiples_table_storage_var(ECMULT_TABLE_SIZE(WINDOW_G), *ctx->pre_g, &gj, cb); + +#ifdef USE_ENDOMORPHISM + { + secp256k1_gej g_128j; + int i; + + ctx->pre_g_128 = (secp256k1_ge_storage (*)[])checked_malloc(cb, sizeof((*ctx->pre_g_128)[0]) * ECMULT_TABLE_SIZE(WINDOW_G)); + + /* calculate 2^128*generator */ + g_128j = gj; + for (i = 0; i < 128; i++) { + secp256k1_gej_double_var(&g_128j, &g_128j, NULL); + } + secp256k1_ecmult_odd_multiples_table_storage_var(ECMULT_TABLE_SIZE(WINDOW_G), *ctx->pre_g_128, &g_128j, cb); + } +#endif +} + +static void secp256k1_ecmult_context_clone(secp256k1_ecmult_context *dst, + const secp256k1_ecmult_context *src, const secp256k1_callback *cb) { + if (src->pre_g == NULL) { + dst->pre_g = NULL; + } else { + size_t size = sizeof((*dst->pre_g)[0]) * ECMULT_TABLE_SIZE(WINDOW_G); + dst->pre_g = (secp256k1_ge_storage (*)[])checked_malloc(cb, size); + memcpy(dst->pre_g, src->pre_g, size); + } +#ifdef USE_ENDOMORPHISM + if (src->pre_g_128 == NULL) { + dst->pre_g_128 = NULL; + } else { + size_t size = sizeof((*dst->pre_g_128)[0]) * ECMULT_TABLE_SIZE(WINDOW_G); + dst->pre_g_128 = (secp256k1_ge_storage (*)[])checked_malloc(cb, size); + memcpy(dst->pre_g_128, src->pre_g_128, size); + } +#endif +} + +static int secp256k1_ecmult_context_is_built(const secp256k1_ecmult_context *ctx) { + return ctx->pre_g != NULL; +} + +static void secp256k1_ecmult_context_clear(secp256k1_ecmult_context *ctx) { + free(ctx->pre_g); +#ifdef USE_ENDOMORPHISM + free(ctx->pre_g_128); +#endif + secp256k1_ecmult_context_init(ctx); +} + +/** Convert a number to WNAF notation. The number becomes represented by sum(2^i * wnaf[i], i=0..bits), + * with the following guarantees: + * - each wnaf[i] is either 0, or an odd integer between -(1<<(w-1) - 1) and (1<<(w-1) - 1) + * - two non-zero entries in wnaf are separated by at least w-1 zeroes. + * - the number of set values in wnaf is returned. This number is at most 256, and at most one more + * than the number of bits in the (absolute value) of the input. + */ +static int secp256k1_ecmult_wnaf(int *wnaf, int len, const secp256k1_scalar *a, int w) { + secp256k1_scalar s = *a; + int last_set_bit = -1; + int bit = 0; + int sign = 1; + int carry = 0; + + VERIFY_CHECK(wnaf != NULL); + VERIFY_CHECK(0 <= len && len <= 256); + VERIFY_CHECK(a != NULL); + VERIFY_CHECK(2 <= w && w <= 31); + + memset(wnaf, 0, len * sizeof(wnaf[0])); + + if (secp256k1_scalar_get_bits(&s, 255, 1)) { + secp256k1_scalar_negate(&s, &s); + sign = -1; + } + + while (bit < len) { + int now; + int word; + if (secp256k1_scalar_get_bits(&s, bit, 1) == (unsigned int)carry) { + bit++; + continue; + } + + now = w; + if (now > len - bit) { + now = len - bit; + } + + word = secp256k1_scalar_get_bits_var(&s, bit, now) + carry; + + carry = (word >> (w-1)) & 1; + word -= carry << w; + + wnaf[bit] = sign * word; + last_set_bit = bit; + + bit += now; + } +#ifdef VERIFY + CHECK(carry == 0); + while (bit < 256) { + CHECK(secp256k1_scalar_get_bits(&s, bit++, 1) == 0); + } +#endif + return last_set_bit + 1; +} + +static void secp256k1_ecmult(const secp256k1_ecmult_context *ctx, secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_scalar *na, const secp256k1_scalar *ng) { + secp256k1_ge pre_a[ECMULT_TABLE_SIZE(WINDOW_A)]; + secp256k1_ge tmpa; + secp256k1_fe Z; +#ifdef USE_ENDOMORPHISM + secp256k1_ge pre_a_lam[ECMULT_TABLE_SIZE(WINDOW_A)]; + secp256k1_scalar na_1, na_lam; + /* Splitted G factors. */ + secp256k1_scalar ng_1, ng_128; + int wnaf_na_1[130]; + int wnaf_na_lam[130]; + int bits_na_1; + int bits_na_lam; + int wnaf_ng_1[129]; + int bits_ng_1; + int wnaf_ng_128[129]; + int bits_ng_128; +#else + int wnaf_na[256]; + int bits_na; + int wnaf_ng[256]; + int bits_ng; +#endif + int i; + int bits; + +#ifdef USE_ENDOMORPHISM + /* split na into na_1 and na_lam (where na = na_1 + na_lam*lambda, and na_1 and na_lam are ~128 bit) */ + secp256k1_scalar_split_lambda(&na_1, &na_lam, na); + + /* build wnaf representation for na_1 and na_lam. */ + bits_na_1 = secp256k1_ecmult_wnaf(wnaf_na_1, 130, &na_1, WINDOW_A); + bits_na_lam = secp256k1_ecmult_wnaf(wnaf_na_lam, 130, &na_lam, WINDOW_A); + VERIFY_CHECK(bits_na_1 <= 130); + VERIFY_CHECK(bits_na_lam <= 130); + bits = bits_na_1; + if (bits_na_lam > bits) { + bits = bits_na_lam; + } +#else + /* build wnaf representation for na. */ + bits_na = secp256k1_ecmult_wnaf(wnaf_na, 256, na, WINDOW_A); + bits = bits_na; +#endif + + /* Calculate odd multiples of a. + * All multiples are brought to the same Z 'denominator', which is stored + * in Z. Due to secp256k1' isomorphism we can do all operations pretending + * that the Z coordinate was 1, use affine addition formulae, and correct + * the Z coordinate of the result once at the end. + * The exception is the precomputed G table points, which are actually + * affine. Compared to the base used for other points, they have a Z ratio + * of 1/Z, so we can use secp256k1_gej_add_zinv_var, which uses the same + * isomorphism to efficiently add with a known Z inverse. + */ + secp256k1_ecmult_odd_multiples_table_globalz_windowa(pre_a, &Z, a); + +#ifdef USE_ENDOMORPHISM + for (i = 0; i < ECMULT_TABLE_SIZE(WINDOW_A); i++) { + secp256k1_ge_mul_lambda(&pre_a_lam[i], &pre_a[i]); + } + + /* split ng into ng_1 and ng_128 (where gn = gn_1 + gn_128*2^128, and gn_1 and gn_128 are ~128 bit) */ + secp256k1_scalar_split_128(&ng_1, &ng_128, ng); + + /* Build wnaf representation for ng_1 and ng_128 */ + bits_ng_1 = secp256k1_ecmult_wnaf(wnaf_ng_1, 129, &ng_1, WINDOW_G); + bits_ng_128 = secp256k1_ecmult_wnaf(wnaf_ng_128, 129, &ng_128, WINDOW_G); + if (bits_ng_1 > bits) { + bits = bits_ng_1; + } + if (bits_ng_128 > bits) { + bits = bits_ng_128; + } +#else + bits_ng = secp256k1_ecmult_wnaf(wnaf_ng, 256, ng, WINDOW_G); + if (bits_ng > bits) { + bits = bits_ng; + } +#endif + + secp256k1_gej_set_infinity(r); + + for (i = bits - 1; i >= 0; i--) { + int n; + secp256k1_gej_double_var(r, r, NULL); +#ifdef USE_ENDOMORPHISM + if (i < bits_na_1 && (n = wnaf_na_1[i])) { + ECMULT_TABLE_GET_GE(&tmpa, pre_a, n, WINDOW_A); + secp256k1_gej_add_ge_var(r, r, &tmpa, NULL); + } + if (i < bits_na_lam && (n = wnaf_na_lam[i])) { + ECMULT_TABLE_GET_GE(&tmpa, pre_a_lam, n, WINDOW_A); + secp256k1_gej_add_ge_var(r, r, &tmpa, NULL); + } + if (i < bits_ng_1 && (n = wnaf_ng_1[i])) { + ECMULT_TABLE_GET_GE_STORAGE(&tmpa, *ctx->pre_g, n, WINDOW_G); + secp256k1_gej_add_zinv_var(r, r, &tmpa, &Z); + } + if (i < bits_ng_128 && (n = wnaf_ng_128[i])) { + ECMULT_TABLE_GET_GE_STORAGE(&tmpa, *ctx->pre_g_128, n, WINDOW_G); + secp256k1_gej_add_zinv_var(r, r, &tmpa, &Z); + } +#else + if (i < bits_na && (n = wnaf_na[i])) { + ECMULT_TABLE_GET_GE(&tmpa, pre_a, n, WINDOW_A); + secp256k1_gej_add_ge_var(r, r, &tmpa, NULL); + } + if (i < bits_ng && (n = wnaf_ng[i])) { + ECMULT_TABLE_GET_GE_STORAGE(&tmpa, *ctx->pre_g, n, WINDOW_G); + secp256k1_gej_add_zinv_var(r, r, &tmpa, &Z); + } +#endif + } + + if (!r->infinity) { + secp256k1_fe_mul(&r->z, &r->z, &Z); + } +} + +#endif diff --git a/crypto/secp256k1/secp256k1/src/field.h b/crypto/secp256k1/libsecp256k1/src/field.h index 9e6d7d3c0..311329b92 100644 --- a/crypto/secp256k1/secp256k1/src/field.h +++ b/crypto/secp256k1/libsecp256k1/src/field.h @@ -31,86 +31,89 @@ #endif /** Normalize a field element. */ -static void secp256k1_fe_normalize(secp256k1_fe_t *r); +static void secp256k1_fe_normalize(secp256k1_fe *r); /** Weakly normalize a field element: reduce it magnitude to 1, but don't fully normalize. */ -static void secp256k1_fe_normalize_weak(secp256k1_fe_t *r); +static void secp256k1_fe_normalize_weak(secp256k1_fe *r); /** Normalize a field element, without constant-time guarantee. */ -static void secp256k1_fe_normalize_var(secp256k1_fe_t *r); +static void secp256k1_fe_normalize_var(secp256k1_fe *r); /** Verify whether a field element represents zero i.e. would normalize to a zero value. The field * implementation may optionally normalize the input, but this should not be relied upon. */ -static int secp256k1_fe_normalizes_to_zero(secp256k1_fe_t *r); +static int secp256k1_fe_normalizes_to_zero(secp256k1_fe *r); /** Verify whether a field element represents zero i.e. would normalize to a zero value. The field * implementation may optionally normalize the input, but this should not be relied upon. */ -static int secp256k1_fe_normalizes_to_zero_var(secp256k1_fe_t *r); +static int secp256k1_fe_normalizes_to_zero_var(secp256k1_fe *r); /** Set a field element equal to a small integer. Resulting field element is normalized. */ -static void secp256k1_fe_set_int(secp256k1_fe_t *r, int a); +static void secp256k1_fe_set_int(secp256k1_fe *r, int a); /** Verify whether a field element is zero. Requires the input to be normalized. */ -static int secp256k1_fe_is_zero(const secp256k1_fe_t *a); +static int secp256k1_fe_is_zero(const secp256k1_fe *a); /** Check the "oddness" of a field element. Requires the input to be normalized. */ -static int secp256k1_fe_is_odd(const secp256k1_fe_t *a); +static int secp256k1_fe_is_odd(const secp256k1_fe *a); /** Compare two field elements. Requires magnitude-1 inputs. */ -static int secp256k1_fe_equal_var(const secp256k1_fe_t *a, const secp256k1_fe_t *b); +static int secp256k1_fe_equal_var(const secp256k1_fe *a, const secp256k1_fe *b); /** Compare two field elements. Requires both inputs to be normalized */ -static int secp256k1_fe_cmp_var(const secp256k1_fe_t *a, const secp256k1_fe_t *b); +static int secp256k1_fe_cmp_var(const secp256k1_fe *a, const secp256k1_fe *b); -/** Set a field element equal to 32-byte big endian value. If succesful, the resulting field element is normalized. */ -static int secp256k1_fe_set_b32(secp256k1_fe_t *r, const unsigned char *a); +/** Set a field element equal to 32-byte big endian value. If successful, the resulting field element is normalized. */ +static int secp256k1_fe_set_b32(secp256k1_fe *r, const unsigned char *a); /** Convert a field element to a 32-byte big endian value. Requires the input to be normalized */ -static void secp256k1_fe_get_b32(unsigned char *r, const secp256k1_fe_t *a); +static void secp256k1_fe_get_b32(unsigned char *r, const secp256k1_fe *a); /** Set a field element equal to the additive inverse of another. Takes a maximum magnitude of the input * as an argument. The magnitude of the output is one higher. */ -static void secp256k1_fe_negate(secp256k1_fe_t *r, const secp256k1_fe_t *a, int m); +static void secp256k1_fe_negate(secp256k1_fe *r, const secp256k1_fe *a, int m); /** Multiplies the passed field element with a small integer constant. Multiplies the magnitude by that * small integer. */ -static void secp256k1_fe_mul_int(secp256k1_fe_t *r, int a); +static void secp256k1_fe_mul_int(secp256k1_fe *r, int a); /** Adds a field element to another. The result has the sum of the inputs' magnitudes as magnitude. */ -static void secp256k1_fe_add(secp256k1_fe_t *r, const secp256k1_fe_t *a); +static void secp256k1_fe_add(secp256k1_fe *r, const secp256k1_fe *a); /** Sets a field element to be the product of two others. Requires the inputs' magnitudes to be at most 8. * The output magnitude is 1 (but not guaranteed to be normalized). */ -static void secp256k1_fe_mul(secp256k1_fe_t *r, const secp256k1_fe_t *a, const secp256k1_fe_t * SECP256K1_RESTRICT b); +static void secp256k1_fe_mul(secp256k1_fe *r, const secp256k1_fe *a, const secp256k1_fe * SECP256K1_RESTRICT b); /** Sets a field element to be the square of another. Requires the input's magnitude to be at most 8. * The output magnitude is 1 (but not guaranteed to be normalized). */ -static void secp256k1_fe_sqr(secp256k1_fe_t *r, const secp256k1_fe_t *a); +static void secp256k1_fe_sqr(secp256k1_fe *r, const secp256k1_fe *a); /** Sets a field element to be the (modular) square root (if any exist) of another. Requires the * input's magnitude to be at most 8. The output magnitude is 1 (but not guaranteed to be * normalized). Return value indicates whether a square root was found. */ -static int secp256k1_fe_sqrt_var(secp256k1_fe_t *r, const secp256k1_fe_t *a); +static int secp256k1_fe_sqrt_var(secp256k1_fe *r, const secp256k1_fe *a); /** Sets a field element to be the (modular) inverse of another. Requires the input's magnitude to be * at most 8. The output magnitude is 1 (but not guaranteed to be normalized). */ -static void secp256k1_fe_inv(secp256k1_fe_t *r, const secp256k1_fe_t *a); +static void secp256k1_fe_inv(secp256k1_fe *r, const secp256k1_fe *a); /** Potentially faster version of secp256k1_fe_inv, without constant-time guarantee. */ -static void secp256k1_fe_inv_var(secp256k1_fe_t *r, const secp256k1_fe_t *a); +static void secp256k1_fe_inv_var(secp256k1_fe *r, const secp256k1_fe *a); /** Calculate the (modular) inverses of a batch of field elements. Requires the inputs' magnitudes to be * at most 8. The output magnitudes are 1 (but not guaranteed to be normalized). The inputs and * outputs must not overlap in memory. */ -static void secp256k1_fe_inv_all_var(size_t len, secp256k1_fe_t *r, const secp256k1_fe_t *a); +static void secp256k1_fe_inv_all_var(size_t len, secp256k1_fe *r, const secp256k1_fe *a); /** Convert a field element to the storage type. */ -static void secp256k1_fe_to_storage(secp256k1_fe_storage_t *r, const secp256k1_fe_t*); +static void secp256k1_fe_to_storage(secp256k1_fe_storage *r, const secp256k1_fe *a); /** Convert a field element back from the storage type. */ -static void secp256k1_fe_from_storage(secp256k1_fe_t *r, const secp256k1_fe_storage_t*); +static void secp256k1_fe_from_storage(secp256k1_fe *r, const secp256k1_fe_storage *a); /** If flag is true, set *r equal to *a; otherwise leave it. Constant-time. */ -static void secp256k1_fe_storage_cmov(secp256k1_fe_storage_t *r, const secp256k1_fe_storage_t *a, int flag); +static void secp256k1_fe_storage_cmov(secp256k1_fe_storage *r, const secp256k1_fe_storage *a, int flag); + +/** If flag is true, set *r equal to *a; otherwise leave it. Constant-time. */ +static void secp256k1_fe_cmov(secp256k1_fe *r, const secp256k1_fe *a, int flag); #endif diff --git a/crypto/secp256k1/secp256k1/src/field_10x26.h b/crypto/secp256k1/libsecp256k1/src/field_10x26.h index 44bce6525..61ee1e096 100644 --- a/crypto/secp256k1/secp256k1/src/field_10x26.h +++ b/crypto/secp256k1/libsecp256k1/src/field_10x26.h @@ -16,20 +16,20 @@ typedef struct { int magnitude; int normalized; #endif -} secp256k1_fe_t; +} secp256k1_fe; /* Unpacks a constant into a overlapping multi-limbed FE element. */ #define SECP256K1_FE_CONST_INNER(d7, d6, d5, d4, d3, d2, d1, d0) { \ (d0) & 0x3FFFFFFUL, \ - ((d0) >> 26) | ((d1) & 0xFFFFFUL) << 6, \ - ((d1) >> 20) | ((d2) & 0x3FFFUL) << 12, \ - ((d2) >> 14) | ((d3) & 0xFFUL) << 18, \ - ((d3) >> 8) | ((d4) & 0x3) << 24, \ - ((d4) >> 2) & 0x3FFFFFFUL, \ - ((d4) >> 28) | ((d5) & 0x3FFFFFUL) << 4, \ - ((d5) >> 22) | ((d6) & 0xFFFF) << 10, \ - ((d6) >> 16) | ((d7) & 0x3FF) << 16, \ - ((d7) >> 10) \ + (((uint32_t)d0) >> 26) | (((uint32_t)(d1) & 0xFFFFFUL) << 6), \ + (((uint32_t)d1) >> 20) | (((uint32_t)(d2) & 0x3FFFUL) << 12), \ + (((uint32_t)d2) >> 14) | (((uint32_t)(d3) & 0xFFUL) << 18), \ + (((uint32_t)d3) >> 8) | (((uint32_t)(d4) & 0x3UL) << 24), \ + (((uint32_t)d4) >> 2) & 0x3FFFFFFUL, \ + (((uint32_t)d4) >> 28) | (((uint32_t)(d5) & 0x3FFFFFUL) << 4), \ + (((uint32_t)d5) >> 22) | (((uint32_t)(d6) & 0xFFFFUL) << 10), \ + (((uint32_t)d6) >> 16) | (((uint32_t)(d7) & 0x3FFUL) << 16), \ + (((uint32_t)d7) >> 10) \ } #ifdef VERIFY @@ -40,8 +40,8 @@ typedef struct { typedef struct { uint32_t n[8]; -} secp256k1_fe_storage_t; +} secp256k1_fe_storage; #define SECP256K1_FE_STORAGE_CONST(d7, d6, d5, d4, d3, d2, d1, d0) {{ (d0), (d1), (d2), (d3), (d4), (d5), (d6), (d7) }} - +#define SECP256K1_FE_STORAGE_CONST_GET(d) d.n[7], d.n[6], d.n[5], d.n[4],d.n[3], d.n[2], d.n[1], d.n[0] #endif diff --git a/crypto/secp256k1/secp256k1/src/field_10x26_impl.h b/crypto/secp256k1/libsecp256k1/src/field_10x26_impl.h index b32a666f5..212cc5396 100644 --- a/crypto/secp256k1/secp256k1/src/field_10x26_impl.h +++ b/crypto/secp256k1/libsecp256k1/src/field_10x26_impl.h @@ -14,7 +14,7 @@ #include "field.h" #ifdef VERIFY -static void secp256k1_fe_verify(const secp256k1_fe_t *a) { +static void secp256k1_fe_verify(const secp256k1_fe *a) { const uint32_t *d = a->n; int m = a->normalized ? 1 : 2 * a->magnitude, r = 1; r &= (d[0] <= 0x3FFFFFFUL * m); @@ -41,12 +41,12 @@ static void secp256k1_fe_verify(const secp256k1_fe_t *a) { VERIFY_CHECK(r == 1); } #else -static void secp256k1_fe_verify(const secp256k1_fe_t *a) { +static void secp256k1_fe_verify(const secp256k1_fe *a) { (void)a; } #endif -static void secp256k1_fe_normalize(secp256k1_fe_t *r) { +static void secp256k1_fe_normalize(secp256k1_fe *r) { uint32_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4], t5 = r->n[5], t6 = r->n[6], t7 = r->n[7], t8 = r->n[8], t9 = r->n[9]; @@ -101,7 +101,7 @@ static void secp256k1_fe_normalize(secp256k1_fe_t *r) { #endif } -static void secp256k1_fe_normalize_weak(secp256k1_fe_t *r) { +static void secp256k1_fe_normalize_weak(secp256k1_fe *r) { uint32_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4], t5 = r->n[5], t6 = r->n[6], t7 = r->n[7], t8 = r->n[8], t9 = r->n[9]; @@ -132,7 +132,7 @@ static void secp256k1_fe_normalize_weak(secp256k1_fe_t *r) { #endif } -static void secp256k1_fe_normalize_var(secp256k1_fe_t *r) { +static void secp256k1_fe_normalize_var(secp256k1_fe *r) { uint32_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4], t5 = r->n[5], t6 = r->n[6], t7 = r->n[7], t8 = r->n[8], t9 = r->n[9]; @@ -188,7 +188,7 @@ static void secp256k1_fe_normalize_var(secp256k1_fe_t *r) { #endif } -static int secp256k1_fe_normalizes_to_zero(secp256k1_fe_t *r) { +static int secp256k1_fe_normalizes_to_zero(secp256k1_fe *r) { uint32_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4], t5 = r->n[5], t6 = r->n[6], t7 = r->n[7], t8 = r->n[8], t9 = r->n[9]; @@ -217,7 +217,7 @@ static int secp256k1_fe_normalizes_to_zero(secp256k1_fe_t *r) { return (z0 == 0) | (z1 == 0x3FFFFFFUL); } -static int secp256k1_fe_normalizes_to_zero_var(secp256k1_fe_t *r) { +static int secp256k1_fe_normalizes_to_zero_var(secp256k1_fe *r) { uint32_t t0, t1, t2, t3, t4, t5, t6, t7, t8, t9; uint32_t z0, z1; uint32_t x; @@ -252,7 +252,7 @@ static int secp256k1_fe_normalizes_to_zero_var(secp256k1_fe_t *r) { t9 &= 0x03FFFFFUL; t1 += (x << 6); - t1 += (t0 >> 26); t0 = z0; + t1 += (t0 >> 26); t2 += (t1 >> 26); t1 &= 0x3FFFFFFUL; z0 |= t1; z1 &= t1 ^ 0x40UL; t3 += (t2 >> 26); t2 &= 0x3FFFFFFUL; z0 |= t2; z1 &= t2; t4 += (t3 >> 26); t3 &= 0x3FFFFFFUL; z0 |= t3; z1 &= t3; @@ -269,7 +269,7 @@ static int secp256k1_fe_normalizes_to_zero_var(secp256k1_fe_t *r) { return (z0 == 0) | (z1 == 0x3FFFFFFUL); } -SECP256K1_INLINE static void secp256k1_fe_set_int(secp256k1_fe_t *r, int a) { +SECP256K1_INLINE static void secp256k1_fe_set_int(secp256k1_fe *r, int a) { r->n[0] = a; r->n[1] = r->n[2] = r->n[3] = r->n[4] = r->n[5] = r->n[6] = r->n[7] = r->n[8] = r->n[9] = 0; #ifdef VERIFY @@ -279,7 +279,7 @@ SECP256K1_INLINE static void secp256k1_fe_set_int(secp256k1_fe_t *r, int a) { #endif } -SECP256K1_INLINE static int secp256k1_fe_is_zero(const secp256k1_fe_t *a) { +SECP256K1_INLINE static int secp256k1_fe_is_zero(const secp256k1_fe *a) { const uint32_t *t = a->n; #ifdef VERIFY VERIFY_CHECK(a->normalized); @@ -288,7 +288,7 @@ SECP256K1_INLINE static int secp256k1_fe_is_zero(const secp256k1_fe_t *a) { return (t[0] | t[1] | t[2] | t[3] | t[4] | t[5] | t[6] | t[7] | t[8] | t[9]) == 0; } -SECP256K1_INLINE static int secp256k1_fe_is_odd(const secp256k1_fe_t *a) { +SECP256K1_INLINE static int secp256k1_fe_is_odd(const secp256k1_fe *a) { #ifdef VERIFY VERIFY_CHECK(a->normalized); secp256k1_fe_verify(a); @@ -296,7 +296,7 @@ SECP256K1_INLINE static int secp256k1_fe_is_odd(const secp256k1_fe_t *a) { return a->n[0] & 1; } -SECP256K1_INLINE static void secp256k1_fe_clear(secp256k1_fe_t *a) { +SECP256K1_INLINE static void secp256k1_fe_clear(secp256k1_fe *a) { int i; #ifdef VERIFY a->magnitude = 0; @@ -307,7 +307,7 @@ SECP256K1_INLINE static void secp256k1_fe_clear(secp256k1_fe_t *a) { } } -static int secp256k1_fe_cmp_var(const secp256k1_fe_t *a, const secp256k1_fe_t *b) { +static int secp256k1_fe_cmp_var(const secp256k1_fe *a, const secp256k1_fe *b) { int i; #ifdef VERIFY VERIFY_CHECK(a->normalized); @@ -326,7 +326,7 @@ static int secp256k1_fe_cmp_var(const secp256k1_fe_t *a, const secp256k1_fe_t *b return 0; } -static int secp256k1_fe_set_b32(secp256k1_fe_t *r, const unsigned char *a) { +static int secp256k1_fe_set_b32(secp256k1_fe *r, const unsigned char *a) { int i; r->n[0] = r->n[1] = r->n[2] = r->n[3] = r->n[4] = 0; r->n[5] = r->n[6] = r->n[7] = r->n[8] = r->n[9] = 0; @@ -350,7 +350,7 @@ static int secp256k1_fe_set_b32(secp256k1_fe_t *r, const unsigned char *a) { } /** Convert a field element to a 32-byte big endian value. Requires the input to be normalized */ -static void secp256k1_fe_get_b32(unsigned char *r, const secp256k1_fe_t *a) { +static void secp256k1_fe_get_b32(unsigned char *r, const secp256k1_fe *a) { int i; #ifdef VERIFY VERIFY_CHECK(a->normalized); @@ -368,7 +368,7 @@ static void secp256k1_fe_get_b32(unsigned char *r, const secp256k1_fe_t *a) { } } -SECP256K1_INLINE static void secp256k1_fe_negate(secp256k1_fe_t *r, const secp256k1_fe_t *a, int m) { +SECP256K1_INLINE static void secp256k1_fe_negate(secp256k1_fe *r, const secp256k1_fe *a, int m) { #ifdef VERIFY VERIFY_CHECK(a->magnitude <= m); secp256k1_fe_verify(a); @@ -390,7 +390,7 @@ SECP256K1_INLINE static void secp256k1_fe_negate(secp256k1_fe_t *r, const secp25 #endif } -SECP256K1_INLINE static void secp256k1_fe_mul_int(secp256k1_fe_t *r, int a) { +SECP256K1_INLINE static void secp256k1_fe_mul_int(secp256k1_fe *r, int a) { r->n[0] *= a; r->n[1] *= a; r->n[2] *= a; @@ -408,7 +408,7 @@ SECP256K1_INLINE static void secp256k1_fe_mul_int(secp256k1_fe_t *r, int a) { #endif } -SECP256K1_INLINE static void secp256k1_fe_add(secp256k1_fe_t *r, const secp256k1_fe_t *a) { +SECP256K1_INLINE static void secp256k1_fe_add(secp256k1_fe *r, const secp256k1_fe *a) { #ifdef VERIFY secp256k1_fe_verify(a); #endif @@ -1039,7 +1039,7 @@ SECP256K1_INLINE static void secp256k1_fe_sqr_inner(uint32_t *r, const uint32_t } -static void secp256k1_fe_mul(secp256k1_fe_t *r, const secp256k1_fe_t *a, const secp256k1_fe_t * SECP256K1_RESTRICT b) { +static void secp256k1_fe_mul(secp256k1_fe *r, const secp256k1_fe *a, const secp256k1_fe * SECP256K1_RESTRICT b) { #ifdef VERIFY VERIFY_CHECK(a->magnitude <= 8); VERIFY_CHECK(b->magnitude <= 8); @@ -1055,7 +1055,7 @@ static void secp256k1_fe_mul(secp256k1_fe_t *r, const secp256k1_fe_t *a, const s #endif } -static void secp256k1_fe_sqr(secp256k1_fe_t *r, const secp256k1_fe_t *a) { +static void secp256k1_fe_sqr(secp256k1_fe *r, const secp256k1_fe *a) { #ifdef VERIFY VERIFY_CHECK(a->magnitude <= 8); secp256k1_fe_verify(a); @@ -1068,7 +1068,29 @@ static void secp256k1_fe_sqr(secp256k1_fe_t *r, const secp256k1_fe_t *a) { #endif } -static SECP256K1_INLINE void secp256k1_fe_storage_cmov(secp256k1_fe_storage_t *r, const secp256k1_fe_storage_t *a, int flag) { +static SECP256K1_INLINE void secp256k1_fe_cmov(secp256k1_fe *r, const secp256k1_fe *a, int flag) { + uint32_t mask0, mask1; + mask0 = flag + ~((uint32_t)0); + mask1 = ~mask0; + r->n[0] = (r->n[0] & mask0) | (a->n[0] & mask1); + r->n[1] = (r->n[1] & mask0) | (a->n[1] & mask1); + r->n[2] = (r->n[2] & mask0) | (a->n[2] & mask1); + r->n[3] = (r->n[3] & mask0) | (a->n[3] & mask1); + r->n[4] = (r->n[4] & mask0) | (a->n[4] & mask1); + r->n[5] = (r->n[5] & mask0) | (a->n[5] & mask1); + r->n[6] = (r->n[6] & mask0) | (a->n[6] & mask1); + r->n[7] = (r->n[7] & mask0) | (a->n[7] & mask1); + r->n[8] = (r->n[8] & mask0) | (a->n[8] & mask1); + r->n[9] = (r->n[9] & mask0) | (a->n[9] & mask1); +#ifdef VERIFY + if (a->magnitude > r->magnitude) { + r->magnitude = a->magnitude; + } + r->normalized &= a->normalized; +#endif +} + +static SECP256K1_INLINE void secp256k1_fe_storage_cmov(secp256k1_fe_storage *r, const secp256k1_fe_storage *a, int flag) { uint32_t mask0, mask1; mask0 = flag + ~((uint32_t)0); mask1 = ~mask0; @@ -1082,7 +1104,7 @@ static SECP256K1_INLINE void secp256k1_fe_storage_cmov(secp256k1_fe_storage_t *r r->n[7] = (r->n[7] & mask0) | (a->n[7] & mask1); } -static void secp256k1_fe_to_storage(secp256k1_fe_storage_t *r, const secp256k1_fe_t *a) { +static void secp256k1_fe_to_storage(secp256k1_fe_storage *r, const secp256k1_fe *a) { #ifdef VERIFY VERIFY_CHECK(a->normalized); #endif @@ -1096,7 +1118,7 @@ static void secp256k1_fe_to_storage(secp256k1_fe_storage_t *r, const secp256k1_f r->n[7] = a->n[8] >> 16 | a->n[9] << 10; } -static SECP256K1_INLINE void secp256k1_fe_from_storage(secp256k1_fe_t *r, const secp256k1_fe_storage_t *a) { +static SECP256K1_INLINE void secp256k1_fe_from_storage(secp256k1_fe *r, const secp256k1_fe_storage *a) { r->n[0] = a->n[0] & 0x3FFFFFFUL; r->n[1] = a->n[0] >> 26 | ((a->n[1] << 6) & 0x3FFFFFFUL); r->n[2] = a->n[1] >> 20 | ((a->n[2] << 12) & 0x3FFFFFFUL); diff --git a/crypto/secp256k1/secp256k1/src/field_5x52.h b/crypto/secp256k1/libsecp256k1/src/field_5x52.h index 4513d36f4..8e69a560d 100644 --- a/crypto/secp256k1/secp256k1/src/field_5x52.h +++ b/crypto/secp256k1/libsecp256k1/src/field_5x52.h @@ -16,15 +16,15 @@ typedef struct { int magnitude; int normalized; #endif -} secp256k1_fe_t; +} secp256k1_fe; /* Unpacks a constant into a overlapping multi-limbed FE element. */ #define SECP256K1_FE_CONST_INNER(d7, d6, d5, d4, d3, d2, d1, d0) { \ - (d0) | ((uint64_t)(d1) & 0xFFFFFUL) << 32, \ - ((d1) >> 20) | ((uint64_t)(d2)) << 12 | ((uint64_t)(d3) & 0xFFUL) << 44, \ - ((d3) >> 8) | ((uint64_t)(d4) & 0xFFFFFFFUL) << 24, \ - ((d4) >> 28) | ((uint64_t)(d5)) << 4 | ((uint64_t)(d6) & 0xFFFFUL) << 36, \ - ((d6) >> 16) | ((uint64_t)(d7)) << 16 \ + (d0) | (((uint64_t)(d1) & 0xFFFFFUL) << 32), \ + ((uint64_t)(d1) >> 20) | (((uint64_t)(d2)) << 12) | (((uint64_t)(d3) & 0xFFUL) << 44), \ + ((uint64_t)(d3) >> 8) | (((uint64_t)(d4) & 0xFFFFFFFUL) << 24), \ + ((uint64_t)(d4) >> 28) | (((uint64_t)(d5)) << 4) | (((uint64_t)(d6) & 0xFFFFUL) << 36), \ + ((uint64_t)(d6) >> 16) | (((uint64_t)(d7)) << 16) \ } #ifdef VERIFY @@ -35,13 +35,13 @@ typedef struct { typedef struct { uint64_t n[4]; -} secp256k1_fe_storage_t; +} secp256k1_fe_storage; #define SECP256K1_FE_STORAGE_CONST(d7, d6, d5, d4, d3, d2, d1, d0) {{ \ - (d0) | ((uint64_t)(d1)) << 32, \ - (d2) | ((uint64_t)(d3)) << 32, \ - (d4) | ((uint64_t)(d5)) << 32, \ - (d6) | ((uint64_t)(d7)) << 32 \ + (d0) | (((uint64_t)(d1)) << 32), \ + (d2) | (((uint64_t)(d3)) << 32), \ + (d4) | (((uint64_t)(d5)) << 32), \ + (d6) | (((uint64_t)(d7)) << 32) \ }} #endif diff --git a/crypto/secp256k1/secp256k1/src/field_5x52_asm_impl.h b/crypto/secp256k1/libsecp256k1/src/field_5x52_asm_impl.h index 98cc004bf..98cc004bf 100644 --- a/crypto/secp256k1/secp256k1/src/field_5x52_asm_impl.h +++ b/crypto/secp256k1/libsecp256k1/src/field_5x52_asm_impl.h diff --git a/crypto/secp256k1/secp256k1/src/field_5x52_impl.h b/crypto/secp256k1/libsecp256k1/src/field_5x52_impl.h index 874d3caab..b31e24ab8 100644 --- a/crypto/secp256k1/secp256k1/src/field_5x52_impl.h +++ b/crypto/secp256k1/libsecp256k1/src/field_5x52_impl.h @@ -31,7 +31,7 @@ */ #ifdef VERIFY -static void secp256k1_fe_verify(const secp256k1_fe_t *a) { +static void secp256k1_fe_verify(const secp256k1_fe *a) { const uint64_t *d = a->n; int m = a->normalized ? 1 : 2 * a->magnitude, r = 1; /* secp256k1 'p' value defined in "Standards for Efficient Cryptography" (SEC2) 2.7.1. */ @@ -51,12 +51,12 @@ static void secp256k1_fe_verify(const secp256k1_fe_t *a) { VERIFY_CHECK(r == 1); } #else -static void secp256k1_fe_verify(const secp256k1_fe_t *a) { +static void secp256k1_fe_verify(const secp256k1_fe *a) { (void)a; } #endif -static void secp256k1_fe_normalize(secp256k1_fe_t *r) { +static void secp256k1_fe_normalize(secp256k1_fe *r) { uint64_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4]; /* Reduce t4 at the start so there will be at most a single carry from the first pass */ @@ -99,7 +99,7 @@ static void secp256k1_fe_normalize(secp256k1_fe_t *r) { #endif } -static void secp256k1_fe_normalize_weak(secp256k1_fe_t *r) { +static void secp256k1_fe_normalize_weak(secp256k1_fe *r) { uint64_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4]; /* Reduce t4 at the start so there will be at most a single carry from the first pass */ @@ -123,7 +123,7 @@ static void secp256k1_fe_normalize_weak(secp256k1_fe_t *r) { #endif } -static void secp256k1_fe_normalize_var(secp256k1_fe_t *r) { +static void secp256k1_fe_normalize_var(secp256k1_fe *r) { uint64_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4]; /* Reduce t4 at the start so there will be at most a single carry from the first pass */ @@ -167,7 +167,7 @@ static void secp256k1_fe_normalize_var(secp256k1_fe_t *r) { #endif } -static int secp256k1_fe_normalizes_to_zero(secp256k1_fe_t *r) { +static int secp256k1_fe_normalizes_to_zero(secp256k1_fe *r) { uint64_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4]; /* z0 tracks a possible raw value of 0, z1 tracks a possible raw value of P */ @@ -190,7 +190,7 @@ static int secp256k1_fe_normalizes_to_zero(secp256k1_fe_t *r) { return (z0 == 0) | (z1 == 0xFFFFFFFFFFFFFULL); } -static int secp256k1_fe_normalizes_to_zero_var(secp256k1_fe_t *r) { +static int secp256k1_fe_normalizes_to_zero_var(secp256k1_fe *r) { uint64_t t0, t1, t2, t3, t4; uint64_t z0, z1; uint64_t x; @@ -219,7 +219,7 @@ static int secp256k1_fe_normalizes_to_zero_var(secp256k1_fe_t *r) { t4 &= 0x0FFFFFFFFFFFFULL; - t1 += (t0 >> 52); t0 = z0; + t1 += (t0 >> 52); t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL; z0 |= t1; z1 &= t1; t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL; z0 |= t2; z1 &= t2; t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL; z0 |= t3; z1 &= t3; @@ -231,7 +231,7 @@ static int secp256k1_fe_normalizes_to_zero_var(secp256k1_fe_t *r) { return (z0 == 0) | (z1 == 0xFFFFFFFFFFFFFULL); } -SECP256K1_INLINE static void secp256k1_fe_set_int(secp256k1_fe_t *r, int a) { +SECP256K1_INLINE static void secp256k1_fe_set_int(secp256k1_fe *r, int a) { r->n[0] = a; r->n[1] = r->n[2] = r->n[3] = r->n[4] = 0; #ifdef VERIFY @@ -241,7 +241,7 @@ SECP256K1_INLINE static void secp256k1_fe_set_int(secp256k1_fe_t *r, int a) { #endif } -SECP256K1_INLINE static int secp256k1_fe_is_zero(const secp256k1_fe_t *a) { +SECP256K1_INLINE static int secp256k1_fe_is_zero(const secp256k1_fe *a) { const uint64_t *t = a->n; #ifdef VERIFY VERIFY_CHECK(a->normalized); @@ -250,7 +250,7 @@ SECP256K1_INLINE static int secp256k1_fe_is_zero(const secp256k1_fe_t *a) { return (t[0] | t[1] | t[2] | t[3] | t[4]) == 0; } -SECP256K1_INLINE static int secp256k1_fe_is_odd(const secp256k1_fe_t *a) { +SECP256K1_INLINE static int secp256k1_fe_is_odd(const secp256k1_fe *a) { #ifdef VERIFY VERIFY_CHECK(a->normalized); secp256k1_fe_verify(a); @@ -258,7 +258,7 @@ SECP256K1_INLINE static int secp256k1_fe_is_odd(const secp256k1_fe_t *a) { return a->n[0] & 1; } -SECP256K1_INLINE static void secp256k1_fe_clear(secp256k1_fe_t *a) { +SECP256K1_INLINE static void secp256k1_fe_clear(secp256k1_fe *a) { int i; #ifdef VERIFY a->magnitude = 0; @@ -269,7 +269,7 @@ SECP256K1_INLINE static void secp256k1_fe_clear(secp256k1_fe_t *a) { } } -static int secp256k1_fe_cmp_var(const secp256k1_fe_t *a, const secp256k1_fe_t *b) { +static int secp256k1_fe_cmp_var(const secp256k1_fe *a, const secp256k1_fe *b) { int i; #ifdef VERIFY VERIFY_CHECK(a->normalized); @@ -288,7 +288,7 @@ static int secp256k1_fe_cmp_var(const secp256k1_fe_t *a, const secp256k1_fe_t *b return 0; } -static int secp256k1_fe_set_b32(secp256k1_fe_t *r, const unsigned char *a) { +static int secp256k1_fe_set_b32(secp256k1_fe *r, const unsigned char *a) { int i; r->n[0] = r->n[1] = r->n[2] = r->n[3] = r->n[4] = 0; for (i=0; i<32; i++) { @@ -311,7 +311,7 @@ static int secp256k1_fe_set_b32(secp256k1_fe_t *r, const unsigned char *a) { } /** Convert a field element to a 32-byte big endian value. Requires the input to be normalized */ -static void secp256k1_fe_get_b32(unsigned char *r, const secp256k1_fe_t *a) { +static void secp256k1_fe_get_b32(unsigned char *r, const secp256k1_fe *a) { int i; #ifdef VERIFY VERIFY_CHECK(a->normalized); @@ -329,7 +329,7 @@ static void secp256k1_fe_get_b32(unsigned char *r, const secp256k1_fe_t *a) { } } -SECP256K1_INLINE static void secp256k1_fe_negate(secp256k1_fe_t *r, const secp256k1_fe_t *a, int m) { +SECP256K1_INLINE static void secp256k1_fe_negate(secp256k1_fe *r, const secp256k1_fe *a, int m) { #ifdef VERIFY VERIFY_CHECK(a->magnitude <= m); secp256k1_fe_verify(a); @@ -346,7 +346,7 @@ SECP256K1_INLINE static void secp256k1_fe_negate(secp256k1_fe_t *r, const secp25 #endif } -SECP256K1_INLINE static void secp256k1_fe_mul_int(secp256k1_fe_t *r, int a) { +SECP256K1_INLINE static void secp256k1_fe_mul_int(secp256k1_fe *r, int a) { r->n[0] *= a; r->n[1] *= a; r->n[2] *= a; @@ -359,7 +359,7 @@ SECP256K1_INLINE static void secp256k1_fe_mul_int(secp256k1_fe_t *r, int a) { #endif } -SECP256K1_INLINE static void secp256k1_fe_add(secp256k1_fe_t *r, const secp256k1_fe_t *a) { +SECP256K1_INLINE static void secp256k1_fe_add(secp256k1_fe *r, const secp256k1_fe *a) { #ifdef VERIFY secp256k1_fe_verify(a); #endif @@ -375,7 +375,7 @@ SECP256K1_INLINE static void secp256k1_fe_add(secp256k1_fe_t *r, const secp256k1 #endif } -static void secp256k1_fe_mul(secp256k1_fe_t *r, const secp256k1_fe_t *a, const secp256k1_fe_t * SECP256K1_RESTRICT b) { +static void secp256k1_fe_mul(secp256k1_fe *r, const secp256k1_fe *a, const secp256k1_fe * SECP256K1_RESTRICT b) { #ifdef VERIFY VERIFY_CHECK(a->magnitude <= 8); VERIFY_CHECK(b->magnitude <= 8); @@ -391,7 +391,7 @@ static void secp256k1_fe_mul(secp256k1_fe_t *r, const secp256k1_fe_t *a, const s #endif } -static void secp256k1_fe_sqr(secp256k1_fe_t *r, const secp256k1_fe_t *a) { +static void secp256k1_fe_sqr(secp256k1_fe *r, const secp256k1_fe *a) { #ifdef VERIFY VERIFY_CHECK(a->magnitude <= 8); secp256k1_fe_verify(a); @@ -404,7 +404,24 @@ static void secp256k1_fe_sqr(secp256k1_fe_t *r, const secp256k1_fe_t *a) { #endif } -static SECP256K1_INLINE void secp256k1_fe_storage_cmov(secp256k1_fe_storage_t *r, const secp256k1_fe_storage_t *a, int flag) { +static SECP256K1_INLINE void secp256k1_fe_cmov(secp256k1_fe *r, const secp256k1_fe *a, int flag) { + uint64_t mask0, mask1; + mask0 = flag + ~((uint64_t)0); + mask1 = ~mask0; + r->n[0] = (r->n[0] & mask0) | (a->n[0] & mask1); + r->n[1] = (r->n[1] & mask0) | (a->n[1] & mask1); + r->n[2] = (r->n[2] & mask0) | (a->n[2] & mask1); + r->n[3] = (r->n[3] & mask0) | (a->n[3] & mask1); + r->n[4] = (r->n[4] & mask0) | (a->n[4] & mask1); +#ifdef VERIFY + if (a->magnitude > r->magnitude) { + r->magnitude = a->magnitude; + } + r->normalized &= a->normalized; +#endif +} + +static SECP256K1_INLINE void secp256k1_fe_storage_cmov(secp256k1_fe_storage *r, const secp256k1_fe_storage *a, int flag) { uint64_t mask0, mask1; mask0 = flag + ~((uint64_t)0); mask1 = ~mask0; @@ -414,7 +431,7 @@ static SECP256K1_INLINE void secp256k1_fe_storage_cmov(secp256k1_fe_storage_t *r r->n[3] = (r->n[3] & mask0) | (a->n[3] & mask1); } -static void secp256k1_fe_to_storage(secp256k1_fe_storage_t *r, const secp256k1_fe_t *a) { +static void secp256k1_fe_to_storage(secp256k1_fe_storage *r, const secp256k1_fe *a) { #ifdef VERIFY VERIFY_CHECK(a->normalized); #endif @@ -424,7 +441,7 @@ static void secp256k1_fe_to_storage(secp256k1_fe_storage_t *r, const secp256k1_f r->n[3] = a->n[3] >> 36 | a->n[4] << 16; } -static SECP256K1_INLINE void secp256k1_fe_from_storage(secp256k1_fe_t *r, const secp256k1_fe_storage_t *a) { +static SECP256K1_INLINE void secp256k1_fe_from_storage(secp256k1_fe *r, const secp256k1_fe_storage *a) { r->n[0] = a->n[0] & 0xFFFFFFFFFFFFFULL; r->n[1] = a->n[0] >> 52 | ((a->n[1] << 12) & 0xFFFFFFFFFFFFFULL); r->n[2] = a->n[1] >> 40 | ((a->n[2] << 24) & 0xFFFFFFFFFFFFFULL); diff --git a/crypto/secp256k1/secp256k1/src/field_5x52_int128_impl.h b/crypto/secp256k1/libsecp256k1/src/field_5x52_int128_impl.h index 9280bb5ea..9280bb5ea 100644 --- a/crypto/secp256k1/secp256k1/src/field_5x52_int128_impl.h +++ b/crypto/secp256k1/libsecp256k1/src/field_5x52_int128_impl.h diff --git a/crypto/secp256k1/secp256k1/src/field_impl.h b/crypto/secp256k1/libsecp256k1/src/field_impl.h index e6ec11e8f..551a6243e 100644 --- a/crypto/secp256k1/secp256k1/src/field_impl.h +++ b/crypto/secp256k1/libsecp256k1/src/field_impl.h @@ -21,15 +21,15 @@ #error "Please select field implementation" #endif -SECP256K1_INLINE static int secp256k1_fe_equal_var(const secp256k1_fe_t *a, const secp256k1_fe_t *b) { - secp256k1_fe_t na; +SECP256K1_INLINE static int secp256k1_fe_equal_var(const secp256k1_fe *a, const secp256k1_fe *b) { + secp256k1_fe na; secp256k1_fe_negate(&na, a, 1); secp256k1_fe_add(&na, b); return secp256k1_fe_normalizes_to_zero_var(&na); } -static int secp256k1_fe_sqrt_var(secp256k1_fe_t *r, const secp256k1_fe_t *a) { - secp256k1_fe_t x2, x3, x6, x9, x11, x22, x44, x88, x176, x220, x223, t1; +static int secp256k1_fe_sqrt_var(secp256k1_fe *r, const secp256k1_fe *a) { + secp256k1_fe x2, x3, x6, x9, x11, x22, x44, x88, x176, x220, x223, t1; int j; /** The binary representation of (p + 1)/4 has 3 blocks of 1s, with lengths in @@ -117,8 +117,8 @@ static int secp256k1_fe_sqrt_var(secp256k1_fe_t *r, const secp256k1_fe_t *a) { return secp256k1_fe_equal_var(&t1, a); } -static void secp256k1_fe_inv(secp256k1_fe_t *r, const secp256k1_fe_t *a) { - secp256k1_fe_t x2, x3, x6, x9, x11, x22, x44, x88, x176, x220, x223, t1; +static void secp256k1_fe_inv(secp256k1_fe *r, const secp256k1_fe *a) { + secp256k1_fe x2, x3, x6, x9, x11, x22, x44, x88, x176, x220, x223, t1; int j; /** The binary representation of (p - 2) has 5 blocks of 1s, with lengths in @@ -207,11 +207,15 @@ static void secp256k1_fe_inv(secp256k1_fe_t *r, const secp256k1_fe_t *a) { secp256k1_fe_mul(r, a, &t1); } -static void secp256k1_fe_inv_var(secp256k1_fe_t *r, const secp256k1_fe_t *a) { +static void secp256k1_fe_inv_var(secp256k1_fe *r, const secp256k1_fe *a) { #if defined(USE_FIELD_INV_BUILTIN) secp256k1_fe_inv(r, a); #elif defined(USE_FIELD_INV_NUM) - secp256k1_num_t n, m; + secp256k1_num n, m; + static const secp256k1_fe negone = SECP256K1_FE_CONST( + 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, + 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFEUL, 0xFFFFFC2EUL + ); /* secp256k1 field prime, value p defined in "Standards for Efficient Cryptography" (SEC2) 2.7.1. */ static const unsigned char prime[32] = { 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, @@ -220,7 +224,7 @@ static void secp256k1_fe_inv_var(secp256k1_fe_t *r, const secp256k1_fe_t *a) { 0xFF,0xFF,0xFF,0xFE,0xFF,0xFF,0xFC,0x2F }; unsigned char b[32]; - secp256k1_fe_t c = *a; + secp256k1_fe c = *a; secp256k1_fe_normalize_var(&c); secp256k1_fe_get_b32(b, &c); secp256k1_num_set_bin(&n, b, 32); @@ -228,13 +232,17 @@ static void secp256k1_fe_inv_var(secp256k1_fe_t *r, const secp256k1_fe_t *a) { secp256k1_num_mod_inverse(&n, &n, &m); secp256k1_num_get_bin(b, 32, &n); VERIFY_CHECK(secp256k1_fe_set_b32(r, b)); + /* Verify the result is the (unique) valid inverse using non-GMP code. */ + secp256k1_fe_mul(&c, &c, r); + secp256k1_fe_add(&c, &negone); + CHECK(secp256k1_fe_normalizes_to_zero_var(&c)); #else #error "Please select field inverse implementation" #endif } -static void secp256k1_fe_inv_all_var(size_t len, secp256k1_fe_t *r, const secp256k1_fe_t *a) { - secp256k1_fe_t u; +static void secp256k1_fe_inv_all_var(size_t len, secp256k1_fe *r, const secp256k1_fe *a) { + secp256k1_fe u; size_t i; if (len < 1) { return; @@ -252,7 +260,7 @@ static void secp256k1_fe_inv_all_var(size_t len, secp256k1_fe_t *r, const secp25 secp256k1_fe_inv_var(&u, &r[--i]); while (i > 0) { - int j = i--; + size_t j = i--; secp256k1_fe_mul(&r[j], &r[i], &u); secp256k1_fe_mul(&u, &u, &a[j]); } diff --git a/crypto/secp256k1/libsecp256k1/src/gen_context.c b/crypto/secp256k1/libsecp256k1/src/gen_context.c new file mode 100644 index 000000000..1835fd491 --- /dev/null +++ b/crypto/secp256k1/libsecp256k1/src/gen_context.c @@ -0,0 +1,74 @@ +/********************************************************************** + * Copyright (c) 2013, 2014, 2015 Thomas Daede, Cory Fields * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or http://www.opensource.org/licenses/mit-license.php.* + **********************************************************************/ + +#define USE_BASIC_CONFIG 1 + +#include "basic-config.h" +#include "include/secp256k1.h" +#include "field_impl.h" +#include "scalar_impl.h" +#include "group_impl.h" +#include "ecmult_gen_impl.h" + +static void default_error_callback_fn(const char* str, void* data) { + (void)data; + fprintf(stderr, "[libsecp256k1] internal consistency check failed: %s\n", str); + abort(); +} + +static const secp256k1_callback default_error_callback = { + default_error_callback_fn, + NULL +}; + +int main(int argc, char **argv) { + secp256k1_ecmult_gen_context ctx; + int inner; + int outer; + FILE* fp; + + (void)argc; + (void)argv; + + fp = fopen("src/ecmult_static_context.h","w"); + if (fp == NULL) { + fprintf(stderr, "Could not open src/ecmult_static_context.h for writing!\n"); + return -1; + } + + fprintf(fp, "#ifndef _SECP256K1_ECMULT_STATIC_CONTEXT_\n"); + fprintf(fp, "#define _SECP256K1_ECMULT_STATIC_CONTEXT_\n"); + fprintf(fp, "#include \"group.h\"\n"); + fprintf(fp, "#define SC SECP256K1_GE_STORAGE_CONST\n"); + fprintf(fp, "static const secp256k1_ge_storage secp256k1_ecmult_static_context[64][16] = {\n"); + + secp256k1_ecmult_gen_context_init(&ctx); + secp256k1_ecmult_gen_context_build(&ctx, &default_error_callback); + for(outer = 0; outer != 64; outer++) { + fprintf(fp,"{\n"); + for(inner = 0; inner != 16; inner++) { + fprintf(fp," SC(%uu, %uu, %uu, %uu, %uu, %uu, %uu, %uu, %uu, %uu, %uu, %uu, %uu, %uu, %uu, %uu)", SECP256K1_GE_STORAGE_CONST_GET((*ctx.prec)[outer][inner])); + if (inner != 15) { + fprintf(fp,",\n"); + } else { + fprintf(fp,"\n"); + } + } + if (outer != 63) { + fprintf(fp,"},\n"); + } else { + fprintf(fp,"}\n"); + } + } + fprintf(fp,"};\n"); + secp256k1_ecmult_gen_context_clear(&ctx); + + fprintf(fp, "#undef SC\n"); + fprintf(fp, "#endif\n"); + fclose(fp); + + return 0; +} diff --git a/crypto/secp256k1/libsecp256k1/src/group.h b/crypto/secp256k1/libsecp256k1/src/group.h new file mode 100644 index 000000000..89b079d5c --- /dev/null +++ b/crypto/secp256k1/libsecp256k1/src/group.h @@ -0,0 +1,141 @@ +/********************************************************************** + * Copyright (c) 2013, 2014 Pieter Wuille * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or http://www.opensource.org/licenses/mit-license.php.* + **********************************************************************/ + +#ifndef _SECP256K1_GROUP_ +#define _SECP256K1_GROUP_ + +#include "num.h" +#include "field.h" + +/** A group element of the secp256k1 curve, in affine coordinates. */ +typedef struct { + secp256k1_fe x; + secp256k1_fe y; + int infinity; /* whether this represents the point at infinity */ +} secp256k1_ge; + +#define SECP256K1_GE_CONST(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) {SECP256K1_FE_CONST((a),(b),(c),(d),(e),(f),(g),(h)), SECP256K1_FE_CONST((i),(j),(k),(l),(m),(n),(o),(p)), 0} +#define SECP256K1_GE_CONST_INFINITY {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), 1} + +/** A group element of the secp256k1 curve, in jacobian coordinates. */ +typedef struct { + secp256k1_fe x; /* actual X: x/z^2 */ + secp256k1_fe y; /* actual Y: y/z^3 */ + secp256k1_fe z; + int infinity; /* whether this represents the point at infinity */ +} secp256k1_gej; + +#define SECP256K1_GEJ_CONST(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) {SECP256K1_FE_CONST((a),(b),(c),(d),(e),(f),(g),(h)), SECP256K1_FE_CONST((i),(j),(k),(l),(m),(n),(o),(p)), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 1), 0} +#define SECP256K1_GEJ_CONST_INFINITY {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), 1} + +typedef struct { + secp256k1_fe_storage x; + secp256k1_fe_storage y; +} secp256k1_ge_storage; + +#define SECP256K1_GE_STORAGE_CONST(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) {SECP256K1_FE_STORAGE_CONST((a),(b),(c),(d),(e),(f),(g),(h)), SECP256K1_FE_STORAGE_CONST((i),(j),(k),(l),(m),(n),(o),(p))} + +#define SECP256K1_GE_STORAGE_CONST_GET(t) SECP256K1_FE_STORAGE_CONST_GET(t.x), SECP256K1_FE_STORAGE_CONST_GET(t.y) + +/** Set a group element equal to the point at infinity */ +static void secp256k1_ge_set_infinity(secp256k1_ge *r); + +/** Set a group element equal to the point with given X and Y coordinates */ +static void secp256k1_ge_set_xy(secp256k1_ge *r, const secp256k1_fe *x, const secp256k1_fe *y); + +/** Set a group element (affine) equal to the point with the given X coordinate, and given oddness + * for Y. Return value indicates whether the result is valid. */ +static int secp256k1_ge_set_xo_var(secp256k1_ge *r, const secp256k1_fe *x, int odd); + +/** Check whether a group element is the point at infinity. */ +static int secp256k1_ge_is_infinity(const secp256k1_ge *a); + +/** Check whether a group element is valid (i.e., on the curve). */ +static int secp256k1_ge_is_valid_var(const secp256k1_ge *a); + +static void secp256k1_ge_neg(secp256k1_ge *r, const secp256k1_ge *a); + +/** Set a group element equal to another which is given in jacobian coordinates */ +static void secp256k1_ge_set_gej(secp256k1_ge *r, secp256k1_gej *a); + +/** Set a batch of group elements equal to the inputs given in jacobian coordinates */ +static void secp256k1_ge_set_all_gej_var(size_t len, secp256k1_ge *r, const secp256k1_gej *a, const secp256k1_callback *cb); + +/** Set a batch of group elements equal to the inputs given in jacobian + * coordinates (with known z-ratios). zr must contain the known z-ratios such + * that mul(a[i].z, zr[i+1]) == a[i+1].z. zr[0] is ignored. */ +static void secp256k1_ge_set_table_gej_var(size_t len, secp256k1_ge *r, const secp256k1_gej *a, const secp256k1_fe *zr); + +/** Bring a batch inputs given in jacobian coordinates (with known z-ratios) to + * the same global z "denominator". zr must contain the known z-ratios such + * that mul(a[i].z, zr[i+1]) == a[i+1].z. zr[0] is ignored. The x and y + * coordinates of the result are stored in r, the common z coordinate is + * stored in globalz. */ +static void secp256k1_ge_globalz_set_table_gej(size_t len, secp256k1_ge *r, secp256k1_fe *globalz, const secp256k1_gej *a, const secp256k1_fe *zr); + +/** Set a group element (jacobian) equal to the point at infinity. */ +static void secp256k1_gej_set_infinity(secp256k1_gej *r); + +/** Set a group element (jacobian) equal to the point with given X and Y coordinates. */ +static void secp256k1_gej_set_xy(secp256k1_gej *r, const secp256k1_fe *x, const secp256k1_fe *y); + +/** Set a group element (jacobian) equal to another which is given in affine coordinates. */ +static void secp256k1_gej_set_ge(secp256k1_gej *r, const secp256k1_ge *a); + +/** Compare the X coordinate of a group element (jacobian). */ +static int secp256k1_gej_eq_x_var(const secp256k1_fe *x, const secp256k1_gej *a); + +/** Set r equal to the inverse of a (i.e., mirrored around the X axis) */ +static void secp256k1_gej_neg(secp256k1_gej *r, const secp256k1_gej *a); + +/** Check whether a group element is the point at infinity. */ +static int secp256k1_gej_is_infinity(const secp256k1_gej *a); + +/** Set r equal to the double of a. If rzr is not-NULL, r->z = a->z * *rzr (where infinity means an implicit z = 0). + * a may not be zero. Constant time. */ +static void secp256k1_gej_double_nonzero(secp256k1_gej *r, const secp256k1_gej *a, secp256k1_fe *rzr); + +/** Set r equal to the double of a. If rzr is not-NULL, r->z = a->z * *rzr (where infinity means an implicit z = 0). */ +static void secp256k1_gej_double_var(secp256k1_gej *r, const secp256k1_gej *a, secp256k1_fe *rzr); + +/** Set r equal to the sum of a and b. If rzr is non-NULL, r->z = a->z * *rzr (a cannot be infinity in that case). */ +static void secp256k1_gej_add_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_gej *b, secp256k1_fe *rzr); + +/** Set r equal to the sum of a and b (with b given in affine coordinates, and not infinity). */ +static void secp256k1_gej_add_ge(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b); + +/** Set r equal to the sum of a and b (with b given in affine coordinates). This is more efficient + than secp256k1_gej_add_var. It is identical to secp256k1_gej_add_ge but without constant-time + guarantee, and b is allowed to be infinity. If rzr is non-NULL, r->z = a->z * *rzr (a cannot be infinity in that case). */ +static void secp256k1_gej_add_ge_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, secp256k1_fe *rzr); + +/** Set r equal to the sum of a and b (with the inverse of b's Z coordinate passed as bzinv). */ +static void secp256k1_gej_add_zinv_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, const secp256k1_fe *bzinv); + +#ifdef USE_ENDOMORPHISM +/** Set r to be equal to lambda times a, where lambda is chosen in a way such that this is very fast. */ +static void secp256k1_ge_mul_lambda(secp256k1_ge *r, const secp256k1_ge *a); +#endif + +/** Clear a secp256k1_gej to prevent leaking sensitive information. */ +static void secp256k1_gej_clear(secp256k1_gej *r); + +/** Clear a secp256k1_ge to prevent leaking sensitive information. */ +static void secp256k1_ge_clear(secp256k1_ge *r); + +/** Convert a group element to the storage type. */ +static void secp256k1_ge_to_storage(secp256k1_ge_storage *r, const secp256k1_ge *a); + +/** Convert a group element back from the storage type. */ +static void secp256k1_ge_from_storage(secp256k1_ge *r, const secp256k1_ge_storage *a); + +/** If flag is true, set *r equal to *a; otherwise leave it. Constant-time. */ +static void secp256k1_ge_storage_cmov(secp256k1_ge_storage *r, const secp256k1_ge_storage *a, int flag); + +/** Rescale a jacobian point by b which must be non-zero. Constant-time. */ +static void secp256k1_gej_rescale(secp256k1_gej *r, const secp256k1_fe *b); + +#endif diff --git a/crypto/secp256k1/libsecp256k1/src/group_impl.h b/crypto/secp256k1/libsecp256k1/src/group_impl.h new file mode 100644 index 000000000..fe0a35929 --- /dev/null +++ b/crypto/secp256k1/libsecp256k1/src/group_impl.h @@ -0,0 +1,632 @@ +/********************************************************************** + * Copyright (c) 2013, 2014 Pieter Wuille * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or http://www.opensource.org/licenses/mit-license.php.* + **********************************************************************/ + +#ifndef _SECP256K1_GROUP_IMPL_H_ +#define _SECP256K1_GROUP_IMPL_H_ + +#include <string.h> + +#include "num.h" +#include "field.h" +#include "group.h" + +/** Generator for secp256k1, value 'g' defined in + * "Standards for Efficient Cryptography" (SEC2) 2.7.1. + */ +static const secp256k1_ge secp256k1_ge_const_g = SECP256K1_GE_CONST( + 0x79BE667EUL, 0xF9DCBBACUL, 0x55A06295UL, 0xCE870B07UL, + 0x029BFCDBUL, 0x2DCE28D9UL, 0x59F2815BUL, 0x16F81798UL, + 0x483ADA77UL, 0x26A3C465UL, 0x5DA4FBFCUL, 0x0E1108A8UL, + 0xFD17B448UL, 0xA6855419UL, 0x9C47D08FUL, 0xFB10D4B8UL +); + +static void secp256k1_ge_set_gej_zinv(secp256k1_ge *r, const secp256k1_gej *a, const secp256k1_fe *zi) { + secp256k1_fe zi2; + secp256k1_fe zi3; + secp256k1_fe_sqr(&zi2, zi); + secp256k1_fe_mul(&zi3, &zi2, zi); + secp256k1_fe_mul(&r->x, &a->x, &zi2); + secp256k1_fe_mul(&r->y, &a->y, &zi3); + r->infinity = a->infinity; +} + +static void secp256k1_ge_set_infinity(secp256k1_ge *r) { + r->infinity = 1; +} + +static void secp256k1_ge_set_xy(secp256k1_ge *r, const secp256k1_fe *x, const secp256k1_fe *y) { + r->infinity = 0; + r->x = *x; + r->y = *y; +} + +static int secp256k1_ge_is_infinity(const secp256k1_ge *a) { + return a->infinity; +} + +static void secp256k1_ge_neg(secp256k1_ge *r, const secp256k1_ge *a) { + *r = *a; + secp256k1_fe_normalize_weak(&r->y); + secp256k1_fe_negate(&r->y, &r->y, 1); +} + +static void secp256k1_ge_set_gej(secp256k1_ge *r, secp256k1_gej *a) { + secp256k1_fe z2, z3; + r->infinity = a->infinity; + secp256k1_fe_inv(&a->z, &a->z); + secp256k1_fe_sqr(&z2, &a->z); + secp256k1_fe_mul(&z3, &a->z, &z2); + secp256k1_fe_mul(&a->x, &a->x, &z2); + secp256k1_fe_mul(&a->y, &a->y, &z3); + secp256k1_fe_set_int(&a->z, 1); + r->x = a->x; + r->y = a->y; +} + +static void secp256k1_ge_set_gej_var(secp256k1_ge *r, secp256k1_gej *a) { + secp256k1_fe z2, z3; + r->infinity = a->infinity; + if (a->infinity) { + return; + } + secp256k1_fe_inv_var(&a->z, &a->z); + secp256k1_fe_sqr(&z2, &a->z); + secp256k1_fe_mul(&z3, &a->z, &z2); + secp256k1_fe_mul(&a->x, &a->x, &z2); + secp256k1_fe_mul(&a->y, &a->y, &z3); + secp256k1_fe_set_int(&a->z, 1); + r->x = a->x; + r->y = a->y; +} + +static void secp256k1_ge_set_all_gej_var(size_t len, secp256k1_ge *r, const secp256k1_gej *a, const secp256k1_callback *cb) { + secp256k1_fe *az; + secp256k1_fe *azi; + size_t i; + size_t count = 0; + az = (secp256k1_fe *)checked_malloc(cb, sizeof(secp256k1_fe) * len); + for (i = 0; i < len; i++) { + if (!a[i].infinity) { + az[count++] = a[i].z; + } + } + + azi = (secp256k1_fe *)checked_malloc(cb, sizeof(secp256k1_fe) * count); + secp256k1_fe_inv_all_var(count, azi, az); + free(az); + + count = 0; + for (i = 0; i < len; i++) { + r[i].infinity = a[i].infinity; + if (!a[i].infinity) { + secp256k1_ge_set_gej_zinv(&r[i], &a[i], &azi[count++]); + } + } + free(azi); +} + +static void secp256k1_ge_set_table_gej_var(size_t len, secp256k1_ge *r, const secp256k1_gej *a, const secp256k1_fe *zr) { + size_t i = len - 1; + secp256k1_fe zi; + + if (len > 0) { + /* Compute the inverse of the last z coordinate, and use it to compute the last affine output. */ + secp256k1_fe_inv(&zi, &a[i].z); + secp256k1_ge_set_gej_zinv(&r[i], &a[i], &zi); + + /* Work out way backwards, using the z-ratios to scale the x/y values. */ + while (i > 0) { + secp256k1_fe_mul(&zi, &zi, &zr[i]); + i--; + secp256k1_ge_set_gej_zinv(&r[i], &a[i], &zi); + } + } +} + +static void secp256k1_ge_globalz_set_table_gej(size_t len, secp256k1_ge *r, secp256k1_fe *globalz, const secp256k1_gej *a, const secp256k1_fe *zr) { + size_t i = len - 1; + secp256k1_fe zs; + + if (len > 0) { + /* The z of the final point gives us the "global Z" for the table. */ + r[i].x = a[i].x; + r[i].y = a[i].y; + *globalz = a[i].z; + r[i].infinity = 0; + zs = zr[i]; + + /* Work our way backwards, using the z-ratios to scale the x/y values. */ + while (i > 0) { + if (i != len - 1) { + secp256k1_fe_mul(&zs, &zs, &zr[i]); + } + i--; + secp256k1_ge_set_gej_zinv(&r[i], &a[i], &zs); + } + } +} + +static void secp256k1_gej_set_infinity(secp256k1_gej *r) { + r->infinity = 1; + secp256k1_fe_set_int(&r->x, 0); + secp256k1_fe_set_int(&r->y, 0); + secp256k1_fe_set_int(&r->z, 0); +} + +static void secp256k1_gej_set_xy(secp256k1_gej *r, const secp256k1_fe *x, const secp256k1_fe *y) { + r->infinity = 0; + r->x = *x; + r->y = *y; + secp256k1_fe_set_int(&r->z, 1); +} + +static void secp256k1_gej_clear(secp256k1_gej *r) { + r->infinity = 0; + secp256k1_fe_clear(&r->x); + secp256k1_fe_clear(&r->y); + secp256k1_fe_clear(&r->z); +} + +static void secp256k1_ge_clear(secp256k1_ge *r) { + r->infinity = 0; + secp256k1_fe_clear(&r->x); + secp256k1_fe_clear(&r->y); +} + +static int secp256k1_ge_set_xo_var(secp256k1_ge *r, const secp256k1_fe *x, int odd) { + secp256k1_fe x2, x3, c; + r->x = *x; + secp256k1_fe_sqr(&x2, x); + secp256k1_fe_mul(&x3, x, &x2); + r->infinity = 0; + secp256k1_fe_set_int(&c, 7); + secp256k1_fe_add(&c, &x3); + if (!secp256k1_fe_sqrt_var(&r->y, &c)) { + return 0; + } + secp256k1_fe_normalize_var(&r->y); + if (secp256k1_fe_is_odd(&r->y) != odd) { + secp256k1_fe_negate(&r->y, &r->y, 1); + } + return 1; +} + +static void secp256k1_gej_set_ge(secp256k1_gej *r, const secp256k1_ge *a) { + r->infinity = a->infinity; + r->x = a->x; + r->y = a->y; + secp256k1_fe_set_int(&r->z, 1); +} + +static int secp256k1_gej_eq_x_var(const secp256k1_fe *x, const secp256k1_gej *a) { + secp256k1_fe r, r2; + VERIFY_CHECK(!a->infinity); + secp256k1_fe_sqr(&r, &a->z); secp256k1_fe_mul(&r, &r, x); + r2 = a->x; secp256k1_fe_normalize_weak(&r2); + return secp256k1_fe_equal_var(&r, &r2); +} + +static void secp256k1_gej_neg(secp256k1_gej *r, const secp256k1_gej *a) { + r->infinity = a->infinity; + r->x = a->x; + r->y = a->y; + r->z = a->z; + secp256k1_fe_normalize_weak(&r->y); + secp256k1_fe_negate(&r->y, &r->y, 1); +} + +static int secp256k1_gej_is_infinity(const secp256k1_gej *a) { + return a->infinity; +} + +static int secp256k1_gej_is_valid_var(const secp256k1_gej *a) { + secp256k1_fe y2, x3, z2, z6; + if (a->infinity) { + return 0; + } + /** y^2 = x^3 + 7 + * (Y/Z^3)^2 = (X/Z^2)^3 + 7 + * Y^2 / Z^6 = X^3 / Z^6 + 7 + * Y^2 = X^3 + 7*Z^6 + */ + secp256k1_fe_sqr(&y2, &a->y); + secp256k1_fe_sqr(&x3, &a->x); secp256k1_fe_mul(&x3, &x3, &a->x); + secp256k1_fe_sqr(&z2, &a->z); + secp256k1_fe_sqr(&z6, &z2); secp256k1_fe_mul(&z6, &z6, &z2); + secp256k1_fe_mul_int(&z6, 7); + secp256k1_fe_add(&x3, &z6); + secp256k1_fe_normalize_weak(&x3); + return secp256k1_fe_equal_var(&y2, &x3); +} + +static int secp256k1_ge_is_valid_var(const secp256k1_ge *a) { + secp256k1_fe y2, x3, c; + if (a->infinity) { + return 0; + } + /* y^2 = x^3 + 7 */ + secp256k1_fe_sqr(&y2, &a->y); + secp256k1_fe_sqr(&x3, &a->x); secp256k1_fe_mul(&x3, &x3, &a->x); + secp256k1_fe_set_int(&c, 7); + secp256k1_fe_add(&x3, &c); + secp256k1_fe_normalize_weak(&x3); + return secp256k1_fe_equal_var(&y2, &x3); +} + +static void secp256k1_gej_double_var(secp256k1_gej *r, const secp256k1_gej *a, secp256k1_fe *rzr) { + /* Operations: 3 mul, 4 sqr, 0 normalize, 12 mul_int/add/negate */ + secp256k1_fe t1,t2,t3,t4; + /** For secp256k1, 2Q is infinity if and only if Q is infinity. This is because if 2Q = infinity, + * Q must equal -Q, or that Q.y == -(Q.y), or Q.y is 0. For a point on y^2 = x^3 + 7 to have + * y=0, x^3 must be -7 mod p. However, -7 has no cube root mod p. + */ + r->infinity = a->infinity; + if (r->infinity) { + if (rzr != NULL) { + secp256k1_fe_set_int(rzr, 1); + } + return; + } + + if (rzr != NULL) { + *rzr = a->y; + secp256k1_fe_normalize_weak(rzr); + secp256k1_fe_mul_int(rzr, 2); + } + + secp256k1_fe_mul(&r->z, &a->z, &a->y); + secp256k1_fe_mul_int(&r->z, 2); /* Z' = 2*Y*Z (2) */ + secp256k1_fe_sqr(&t1, &a->x); + secp256k1_fe_mul_int(&t1, 3); /* T1 = 3*X^2 (3) */ + secp256k1_fe_sqr(&t2, &t1); /* T2 = 9*X^4 (1) */ + secp256k1_fe_sqr(&t3, &a->y); + secp256k1_fe_mul_int(&t3, 2); /* T3 = 2*Y^2 (2) */ + secp256k1_fe_sqr(&t4, &t3); + secp256k1_fe_mul_int(&t4, 2); /* T4 = 8*Y^4 (2) */ + secp256k1_fe_mul(&t3, &t3, &a->x); /* T3 = 2*X*Y^2 (1) */ + r->x = t3; + secp256k1_fe_mul_int(&r->x, 4); /* X' = 8*X*Y^2 (4) */ + secp256k1_fe_negate(&r->x, &r->x, 4); /* X' = -8*X*Y^2 (5) */ + secp256k1_fe_add(&r->x, &t2); /* X' = 9*X^4 - 8*X*Y^2 (6) */ + secp256k1_fe_negate(&t2, &t2, 1); /* T2 = -9*X^4 (2) */ + secp256k1_fe_mul_int(&t3, 6); /* T3 = 12*X*Y^2 (6) */ + secp256k1_fe_add(&t3, &t2); /* T3 = 12*X*Y^2 - 9*X^4 (8) */ + secp256k1_fe_mul(&r->y, &t1, &t3); /* Y' = 36*X^3*Y^2 - 27*X^6 (1) */ + secp256k1_fe_negate(&t2, &t4, 2); /* T2 = -8*Y^4 (3) */ + secp256k1_fe_add(&r->y, &t2); /* Y' = 36*X^3*Y^2 - 27*X^6 - 8*Y^4 (4) */ +} + +static SECP256K1_INLINE void secp256k1_gej_double_nonzero(secp256k1_gej *r, const secp256k1_gej *a, secp256k1_fe *rzr) { + VERIFY_CHECK(!secp256k1_gej_is_infinity(a)); + secp256k1_gej_double_var(r, a, rzr); +} + +static void secp256k1_gej_add_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_gej *b, secp256k1_fe *rzr) { + /* Operations: 12 mul, 4 sqr, 2 normalize, 12 mul_int/add/negate */ + secp256k1_fe z22, z12, u1, u2, s1, s2, h, i, i2, h2, h3, t; + + if (a->infinity) { + VERIFY_CHECK(rzr == NULL); + *r = *b; + return; + } + + if (b->infinity) { + if (rzr != NULL) { + secp256k1_fe_set_int(rzr, 1); + } + *r = *a; + return; + } + + r->infinity = 0; + secp256k1_fe_sqr(&z22, &b->z); + secp256k1_fe_sqr(&z12, &a->z); + secp256k1_fe_mul(&u1, &a->x, &z22); + secp256k1_fe_mul(&u2, &b->x, &z12); + secp256k1_fe_mul(&s1, &a->y, &z22); secp256k1_fe_mul(&s1, &s1, &b->z); + secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &a->z); + secp256k1_fe_negate(&h, &u1, 1); secp256k1_fe_add(&h, &u2); + secp256k1_fe_negate(&i, &s1, 1); secp256k1_fe_add(&i, &s2); + if (secp256k1_fe_normalizes_to_zero_var(&h)) { + if (secp256k1_fe_normalizes_to_zero_var(&i)) { + secp256k1_gej_double_var(r, a, rzr); + } else { + if (rzr != NULL) { + secp256k1_fe_set_int(rzr, 0); + } + r->infinity = 1; + } + return; + } + secp256k1_fe_sqr(&i2, &i); + secp256k1_fe_sqr(&h2, &h); + secp256k1_fe_mul(&h3, &h, &h2); + secp256k1_fe_mul(&h, &h, &b->z); + if (rzr != NULL) { + *rzr = h; + } + secp256k1_fe_mul(&r->z, &a->z, &h); + secp256k1_fe_mul(&t, &u1, &h2); + r->x = t; secp256k1_fe_mul_int(&r->x, 2); secp256k1_fe_add(&r->x, &h3); secp256k1_fe_negate(&r->x, &r->x, 3); secp256k1_fe_add(&r->x, &i2); + secp256k1_fe_negate(&r->y, &r->x, 5); secp256k1_fe_add(&r->y, &t); secp256k1_fe_mul(&r->y, &r->y, &i); + secp256k1_fe_mul(&h3, &h3, &s1); secp256k1_fe_negate(&h3, &h3, 1); + secp256k1_fe_add(&r->y, &h3); +} + +static void secp256k1_gej_add_ge_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, secp256k1_fe *rzr) { + /* 8 mul, 3 sqr, 4 normalize, 12 mul_int/add/negate */ + secp256k1_fe z12, u1, u2, s1, s2, h, i, i2, h2, h3, t; + if (a->infinity) { + VERIFY_CHECK(rzr == NULL); + secp256k1_gej_set_ge(r, b); + return; + } + if (b->infinity) { + if (rzr != NULL) { + secp256k1_fe_set_int(rzr, 1); + } + *r = *a; + return; + } + r->infinity = 0; + + secp256k1_fe_sqr(&z12, &a->z); + u1 = a->x; secp256k1_fe_normalize_weak(&u1); + secp256k1_fe_mul(&u2, &b->x, &z12); + s1 = a->y; secp256k1_fe_normalize_weak(&s1); + secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &a->z); + secp256k1_fe_negate(&h, &u1, 1); secp256k1_fe_add(&h, &u2); + secp256k1_fe_negate(&i, &s1, 1); secp256k1_fe_add(&i, &s2); + if (secp256k1_fe_normalizes_to_zero_var(&h)) { + if (secp256k1_fe_normalizes_to_zero_var(&i)) { + secp256k1_gej_double_var(r, a, rzr); + } else { + if (rzr != NULL) { + secp256k1_fe_set_int(rzr, 0); + } + r->infinity = 1; + } + return; + } + secp256k1_fe_sqr(&i2, &i); + secp256k1_fe_sqr(&h2, &h); + secp256k1_fe_mul(&h3, &h, &h2); + if (rzr != NULL) { + *rzr = h; + } + secp256k1_fe_mul(&r->z, &a->z, &h); + secp256k1_fe_mul(&t, &u1, &h2); + r->x = t; secp256k1_fe_mul_int(&r->x, 2); secp256k1_fe_add(&r->x, &h3); secp256k1_fe_negate(&r->x, &r->x, 3); secp256k1_fe_add(&r->x, &i2); + secp256k1_fe_negate(&r->y, &r->x, 5); secp256k1_fe_add(&r->y, &t); secp256k1_fe_mul(&r->y, &r->y, &i); + secp256k1_fe_mul(&h3, &h3, &s1); secp256k1_fe_negate(&h3, &h3, 1); + secp256k1_fe_add(&r->y, &h3); +} + +static void secp256k1_gej_add_zinv_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, const secp256k1_fe *bzinv) { + /* 9 mul, 3 sqr, 4 normalize, 12 mul_int/add/negate */ + secp256k1_fe az, z12, u1, u2, s1, s2, h, i, i2, h2, h3, t; + + if (b->infinity) { + *r = *a; + return; + } + if (a->infinity) { + secp256k1_fe bzinv2, bzinv3; + r->infinity = b->infinity; + secp256k1_fe_sqr(&bzinv2, bzinv); + secp256k1_fe_mul(&bzinv3, &bzinv2, bzinv); + secp256k1_fe_mul(&r->x, &b->x, &bzinv2); + secp256k1_fe_mul(&r->y, &b->y, &bzinv3); + secp256k1_fe_set_int(&r->z, 1); + return; + } + r->infinity = 0; + + /** We need to calculate (rx,ry,rz) = (ax,ay,az) + (bx,by,1/bzinv). Due to + * secp256k1's isomorphism we can multiply the Z coordinates on both sides + * by bzinv, and get: (rx,ry,rz*bzinv) = (ax,ay,az*bzinv) + (bx,by,1). + * This means that (rx,ry,rz) can be calculated as + * (ax,ay,az*bzinv) + (bx,by,1), when not applying the bzinv factor to rz. + * The variable az below holds the modified Z coordinate for a, which is used + * for the computation of rx and ry, but not for rz. + */ + secp256k1_fe_mul(&az, &a->z, bzinv); + + secp256k1_fe_sqr(&z12, &az); + u1 = a->x; secp256k1_fe_normalize_weak(&u1); + secp256k1_fe_mul(&u2, &b->x, &z12); + s1 = a->y; secp256k1_fe_normalize_weak(&s1); + secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &az); + secp256k1_fe_negate(&h, &u1, 1); secp256k1_fe_add(&h, &u2); + secp256k1_fe_negate(&i, &s1, 1); secp256k1_fe_add(&i, &s2); + if (secp256k1_fe_normalizes_to_zero_var(&h)) { + if (secp256k1_fe_normalizes_to_zero_var(&i)) { + secp256k1_gej_double_var(r, a, NULL); + } else { + r->infinity = 1; + } + return; + } + secp256k1_fe_sqr(&i2, &i); + secp256k1_fe_sqr(&h2, &h); + secp256k1_fe_mul(&h3, &h, &h2); + r->z = a->z; secp256k1_fe_mul(&r->z, &r->z, &h); + secp256k1_fe_mul(&t, &u1, &h2); + r->x = t; secp256k1_fe_mul_int(&r->x, 2); secp256k1_fe_add(&r->x, &h3); secp256k1_fe_negate(&r->x, &r->x, 3); secp256k1_fe_add(&r->x, &i2); + secp256k1_fe_negate(&r->y, &r->x, 5); secp256k1_fe_add(&r->y, &t); secp256k1_fe_mul(&r->y, &r->y, &i); + secp256k1_fe_mul(&h3, &h3, &s1); secp256k1_fe_negate(&h3, &h3, 1); + secp256k1_fe_add(&r->y, &h3); +} + + +static void secp256k1_gej_add_ge(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b) { + /* Operations: 7 mul, 5 sqr, 4 normalize, 21 mul_int/add/negate/cmov */ + static const secp256k1_fe fe_1 = SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 1); + secp256k1_fe zz, u1, u2, s1, s2, t, tt, m, n, q, rr; + secp256k1_fe m_alt, rr_alt; + int infinity, degenerate; + VERIFY_CHECK(!b->infinity); + VERIFY_CHECK(a->infinity == 0 || a->infinity == 1); + + /** In: + * Eric Brier and Marc Joye, Weierstrass Elliptic Curves and Side-Channel Attacks. + * In D. Naccache and P. Paillier, Eds., Public Key Cryptography, vol. 2274 of Lecture Notes in Computer Science, pages 335-345. Springer-Verlag, 2002. + * we find as solution for a unified addition/doubling formula: + * lambda = ((x1 + x2)^2 - x1 * x2 + a) / (y1 + y2), with a = 0 for secp256k1's curve equation. + * x3 = lambda^2 - (x1 + x2) + * 2*y3 = lambda * (x1 + x2 - 2 * x3) - (y1 + y2). + * + * Substituting x_i = Xi / Zi^2 and yi = Yi / Zi^3, for i=1,2,3, gives: + * U1 = X1*Z2^2, U2 = X2*Z1^2 + * S1 = Y1*Z2^3, S2 = Y2*Z1^3 + * Z = Z1*Z2 + * T = U1+U2 + * M = S1+S2 + * Q = T*M^2 + * R = T^2-U1*U2 + * X3 = 4*(R^2-Q) + * Y3 = 4*(R*(3*Q-2*R^2)-M^4) + * Z3 = 2*M*Z + * (Note that the paper uses xi = Xi / Zi and yi = Yi / Zi instead.) + * + * This formula has the benefit of being the same for both addition + * of distinct points and doubling. However, it breaks down in the + * case that either point is infinity, or that y1 = -y2. We handle + * these cases in the following ways: + * + * - If b is infinity we simply bail by means of a VERIFY_CHECK. + * + * - If a is infinity, we detect this, and at the end of the + * computation replace the result (which will be meaningless, + * but we compute to be constant-time) with b.x : b.y : 1. + * + * - If a = -b, we have y1 = -y2, which is a degenerate case. + * But here the answer is infinity, so we simply set the + * infinity flag of the result, overriding the computed values + * without even needing to cmov. + * + * - If y1 = -y2 but x1 != x2, which does occur thanks to certain + * properties of our curve (specifically, 1 has nontrivial cube + * roots in our field, and the curve equation has no x coefficient) + * then the answer is not infinity but also not given by the above + * equation. In this case, we cmov in place an alternate expression + * for lambda. Specifically (y1 - y2)/(x1 - x2). Where both these + * expressions for lambda are defined, they are equal, and can be + * obtained from each other by multiplication by (y1 + y2)/(y1 + y2) + * then substitution of x^3 + 7 for y^2 (using the curve equation). + * For all pairs of nonzero points (a, b) at least one is defined, + * so this covers everything. + */ + + secp256k1_fe_sqr(&zz, &a->z); /* z = Z1^2 */ + u1 = a->x; secp256k1_fe_normalize_weak(&u1); /* u1 = U1 = X1*Z2^2 (1) */ + secp256k1_fe_mul(&u2, &b->x, &zz); /* u2 = U2 = X2*Z1^2 (1) */ + s1 = a->y; secp256k1_fe_normalize_weak(&s1); /* s1 = S1 = Y1*Z2^3 (1) */ + secp256k1_fe_mul(&s2, &b->y, &zz); /* s2 = Y2*Z1^2 (1) */ + secp256k1_fe_mul(&s2, &s2, &a->z); /* s2 = S2 = Y2*Z1^3 (1) */ + t = u1; secp256k1_fe_add(&t, &u2); /* t = T = U1+U2 (2) */ + m = s1; secp256k1_fe_add(&m, &s2); /* m = M = S1+S2 (2) */ + secp256k1_fe_sqr(&rr, &t); /* rr = T^2 (1) */ + secp256k1_fe_negate(&m_alt, &u2, 1); /* Malt = -X2*Z1^2 */ + secp256k1_fe_mul(&tt, &u1, &m_alt); /* tt = -U1*U2 (2) */ + secp256k1_fe_add(&rr, &tt); /* rr = R = T^2-U1*U2 (3) */ + /** If lambda = R/M = 0/0 we have a problem (except in the "trivial" + * case that Z = z1z2 = 0, and this is special-cased later on). */ + degenerate = secp256k1_fe_normalizes_to_zero(&m) & + secp256k1_fe_normalizes_to_zero(&rr); + /* This only occurs when y1 == -y2 and x1^3 == x2^3, but x1 != x2. + * This means either x1 == beta*x2 or beta*x1 == x2, where beta is + * a nontrivial cube root of one. In either case, an alternate + * non-indeterminate expression for lambda is (y1 - y2)/(x1 - x2), + * so we set R/M equal to this. */ + rr_alt = s1; + secp256k1_fe_mul_int(&rr_alt, 2); /* rr = Y1*Z2^3 - Y2*Z1^3 (2) */ + secp256k1_fe_add(&m_alt, &u1); /* Malt = X1*Z2^2 - X2*Z1^2 */ + + secp256k1_fe_cmov(&rr_alt, &rr, !degenerate); + secp256k1_fe_cmov(&m_alt, &m, !degenerate); + /* Now Ralt / Malt = lambda and is guaranteed not to be 0/0. + * From here on out Ralt and Malt represent the numerator + * and denominator of lambda; R and M represent the explicit + * expressions x1^2 + x2^2 + x1x2 and y1 + y2. */ + secp256k1_fe_sqr(&n, &m_alt); /* n = Malt^2 (1) */ + secp256k1_fe_mul(&q, &n, &t); /* q = Q = T*Malt^2 (1) */ + /* These two lines use the observation that either M == Malt or M == 0, + * so M^3 * Malt is either Malt^4 (which is computed by squaring), or + * zero (which is "computed" by cmov). So the cost is one squaring + * versus two multiplications. */ + secp256k1_fe_sqr(&n, &n); + secp256k1_fe_cmov(&n, &m, degenerate); /* n = M^3 * Malt (2) */ + secp256k1_fe_sqr(&t, &rr_alt); /* t = Ralt^2 (1) */ + secp256k1_fe_mul(&r->z, &a->z, &m_alt); /* r->z = Malt*Z (1) */ + infinity = secp256k1_fe_normalizes_to_zero(&r->z) * (1 - a->infinity); + secp256k1_fe_mul_int(&r->z, 2); /* r->z = Z3 = 2*Malt*Z (2) */ + secp256k1_fe_negate(&q, &q, 1); /* q = -Q (2) */ + secp256k1_fe_add(&t, &q); /* t = Ralt^2-Q (3) */ + secp256k1_fe_normalize_weak(&t); + r->x = t; /* r->x = Ralt^2-Q (1) */ + secp256k1_fe_mul_int(&t, 2); /* t = 2*x3 (2) */ + secp256k1_fe_add(&t, &q); /* t = 2*x3 - Q: (4) */ + secp256k1_fe_mul(&t, &t, &rr_alt); /* t = Ralt*(2*x3 - Q) (1) */ + secp256k1_fe_add(&t, &n); /* t = Ralt*(2*x3 - Q) + M^3*Malt (3) */ + secp256k1_fe_negate(&r->y, &t, 3); /* r->y = Ralt*(Q - 2x3) - M^3*Malt (4) */ + secp256k1_fe_normalize_weak(&r->y); + secp256k1_fe_mul_int(&r->x, 4); /* r->x = X3 = 4*(Ralt^2-Q) */ + secp256k1_fe_mul_int(&r->y, 4); /* r->y = Y3 = 4*Ralt*(Q - 2x3) - 4*M^3*Malt (4) */ + + /** In case a->infinity == 1, replace r with (b->x, b->y, 1). */ + secp256k1_fe_cmov(&r->x, &b->x, a->infinity); + secp256k1_fe_cmov(&r->y, &b->y, a->infinity); + secp256k1_fe_cmov(&r->z, &fe_1, a->infinity); + r->infinity = infinity; +} + +static void secp256k1_gej_rescale(secp256k1_gej *r, const secp256k1_fe *s) { + /* Operations: 4 mul, 1 sqr */ + secp256k1_fe zz; + VERIFY_CHECK(!secp256k1_fe_is_zero(s)); + secp256k1_fe_sqr(&zz, s); + secp256k1_fe_mul(&r->x, &r->x, &zz); /* r->x *= s^2 */ + secp256k1_fe_mul(&r->y, &r->y, &zz); + secp256k1_fe_mul(&r->y, &r->y, s); /* r->y *= s^3 */ + secp256k1_fe_mul(&r->z, &r->z, s); /* r->z *= s */ +} + +static void secp256k1_ge_to_storage(secp256k1_ge_storage *r, const secp256k1_ge *a) { + secp256k1_fe x, y; + VERIFY_CHECK(!a->infinity); + x = a->x; + secp256k1_fe_normalize(&x); + y = a->y; + secp256k1_fe_normalize(&y); + secp256k1_fe_to_storage(&r->x, &x); + secp256k1_fe_to_storage(&r->y, &y); +} + +static void secp256k1_ge_from_storage(secp256k1_ge *r, const secp256k1_ge_storage *a) { + secp256k1_fe_from_storage(&r->x, &a->x); + secp256k1_fe_from_storage(&r->y, &a->y); + r->infinity = 0; +} + +static SECP256K1_INLINE void secp256k1_ge_storage_cmov(secp256k1_ge_storage *r, const secp256k1_ge_storage *a, int flag) { + secp256k1_fe_storage_cmov(&r->x, &a->x, flag); + secp256k1_fe_storage_cmov(&r->y, &a->y, flag); +} + +#ifdef USE_ENDOMORPHISM +static void secp256k1_ge_mul_lambda(secp256k1_ge *r, const secp256k1_ge *a) { + static const secp256k1_fe beta = SECP256K1_FE_CONST( + 0x7ae96a2bul, 0x657c0710ul, 0x6e64479eul, 0xac3434e9ul, + 0x9cf04975ul, 0x12f58995ul, 0xc1396c28ul, 0x719501eeul + ); + *r = *a; + secp256k1_fe_mul(&r->x, &r->x, &beta); +} +#endif + +#endif diff --git a/crypto/secp256k1/secp256k1/src/hash.h b/crypto/secp256k1/libsecp256k1/src/hash.h index 843423d7f..0ff01e63f 100644 --- a/crypto/secp256k1/secp256k1/src/hash.h +++ b/crypto/secp256k1/libsecp256k1/src/hash.h @@ -34,7 +34,7 @@ typedef struct { int retry; } secp256k1_rfc6979_hmac_sha256_t; -static void secp256k1_rfc6979_hmac_sha256_initialize(secp256k1_rfc6979_hmac_sha256_t *rng, const unsigned char *key, size_t keylen, const unsigned char *msg, size_t msglen, const unsigned char *rnd, size_t rndlen); +static void secp256k1_rfc6979_hmac_sha256_initialize(secp256k1_rfc6979_hmac_sha256_t *rng, const unsigned char *key, size_t keylen); static void secp256k1_rfc6979_hmac_sha256_generate(secp256k1_rfc6979_hmac_sha256_t *rng, unsigned char *out, size_t outlen); static void secp256k1_rfc6979_hmac_sha256_finalize(secp256k1_rfc6979_hmac_sha256_t *rng); diff --git a/crypto/secp256k1/secp256k1/src/hash_impl.h b/crypto/secp256k1/libsecp256k1/src/hash_impl.h index 9828827bc..ae55df6d8 100644 --- a/crypto/secp256k1/secp256k1/src/hash_impl.h +++ b/crypto/secp256k1/libsecp256k1/src/hash_impl.h @@ -202,7 +202,7 @@ static void secp256k1_hmac_sha256_finalize(secp256k1_hmac_sha256_t *hash, unsign } -static void secp256k1_rfc6979_hmac_sha256_initialize(secp256k1_rfc6979_hmac_sha256_t *rng, const unsigned char *key, size_t keylen, const unsigned char *msg, size_t msglen, const unsigned char *rnd, size_t rndlen) { +static void secp256k1_rfc6979_hmac_sha256_initialize(secp256k1_rfc6979_hmac_sha256_t *rng, const unsigned char *key, size_t keylen) { secp256k1_hmac_sha256_t hmac; static const unsigned char zero[1] = {0x00}; static const unsigned char one[1] = {0x01}; @@ -215,11 +215,6 @@ static void secp256k1_rfc6979_hmac_sha256_initialize(secp256k1_rfc6979_hmac_sha2 secp256k1_hmac_sha256_write(&hmac, rng->v, 32); secp256k1_hmac_sha256_write(&hmac, zero, 1); secp256k1_hmac_sha256_write(&hmac, key, keylen); - secp256k1_hmac_sha256_write(&hmac, msg, msglen); - if (rnd && rndlen) { - /* RFC6979 3.6 "Additional data". */ - secp256k1_hmac_sha256_write(&hmac, rnd, rndlen); - } secp256k1_hmac_sha256_finalize(&hmac, rng->k); secp256k1_hmac_sha256_initialize(&hmac, rng->k, 32); secp256k1_hmac_sha256_write(&hmac, rng->v, 32); @@ -230,11 +225,6 @@ static void secp256k1_rfc6979_hmac_sha256_initialize(secp256k1_rfc6979_hmac_sha2 secp256k1_hmac_sha256_write(&hmac, rng->v, 32); secp256k1_hmac_sha256_write(&hmac, one, 1); secp256k1_hmac_sha256_write(&hmac, key, keylen); - secp256k1_hmac_sha256_write(&hmac, msg, msglen); - if (rnd && rndlen) { - /* RFC6979 3.6 "Additional data". */ - secp256k1_hmac_sha256_write(&hmac, rnd, rndlen); - } secp256k1_hmac_sha256_finalize(&hmac, rng->k); secp256k1_hmac_sha256_initialize(&hmac, rng->k, 32); secp256k1_hmac_sha256_write(&hmac, rng->v, 32); diff --git a/crypto/secp256k1/secp256k1/src/java/org/bitcoin/NativeSecp256k1.java b/crypto/secp256k1/libsecp256k1/src/java/org/bitcoin/NativeSecp256k1.java index 90a498eaa..90a498eaa 100644 --- a/crypto/secp256k1/secp256k1/src/java/org/bitcoin/NativeSecp256k1.java +++ b/crypto/secp256k1/libsecp256k1/src/java/org/bitcoin/NativeSecp256k1.java diff --git a/crypto/secp256k1/secp256k1/src/java/org_bitcoin_NativeSecp256k1.c b/crypto/secp256k1/libsecp256k1/src/java/org_bitcoin_NativeSecp256k1.c index bb4cd7072..bb4cd7072 100644 --- a/crypto/secp256k1/secp256k1/src/java/org_bitcoin_NativeSecp256k1.c +++ b/crypto/secp256k1/libsecp256k1/src/java/org_bitcoin_NativeSecp256k1.c diff --git a/crypto/secp256k1/secp256k1/src/java/org_bitcoin_NativeSecp256k1.h b/crypto/secp256k1/libsecp256k1/src/java/org_bitcoin_NativeSecp256k1.h index d7fb004fa..d7fb004fa 100644 --- a/crypto/secp256k1/secp256k1/src/java/org_bitcoin_NativeSecp256k1.h +++ b/crypto/secp256k1/libsecp256k1/src/java/org_bitcoin_NativeSecp256k1.h diff --git a/crypto/secp256k1/libsecp256k1/src/modules/ecdh/Makefile.am.include b/crypto/secp256k1/libsecp256k1/src/modules/ecdh/Makefile.am.include new file mode 100644 index 000000000..8ef3aff92 --- /dev/null +++ b/crypto/secp256k1/libsecp256k1/src/modules/ecdh/Makefile.am.include @@ -0,0 +1,9 @@ +include_HEADERS += include/secp256k1_ecdh.h +noinst_HEADERS += src/modules/ecdh/main_impl.h +noinst_HEADERS += src/modules/ecdh/tests_impl.h +if USE_BENCHMARK +noinst_PROGRAMS += bench_ecdh +bench_ecdh_SOURCES = src/bench_ecdh.c +bench_ecdh_LDADD = libsecp256k1.la $(SECP_LIBS) +bench_ecdh_LDFLAGS = -static +endif diff --git a/crypto/secp256k1/libsecp256k1/src/modules/ecdh/main_impl.h b/crypto/secp256k1/libsecp256k1/src/modules/ecdh/main_impl.h new file mode 100644 index 000000000..c23e4f82f --- /dev/null +++ b/crypto/secp256k1/libsecp256k1/src/modules/ecdh/main_impl.h @@ -0,0 +1,54 @@ +/********************************************************************** + * Copyright (c) 2015 Andrew Poelstra * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or http://www.opensource.org/licenses/mit-license.php.* + **********************************************************************/ + +#ifndef _SECP256K1_MODULE_ECDH_MAIN_ +#define _SECP256K1_MODULE_ECDH_MAIN_ + +#include "include/secp256k1_ecdh.h" +#include "ecmult_const_impl.h" + +int secp256k1_ecdh(const secp256k1_context* ctx, unsigned char *result, const secp256k1_pubkey *point, const unsigned char *scalar) { + int ret = 0; + int overflow = 0; + secp256k1_gej res; + secp256k1_ge pt; + secp256k1_scalar s; + ARG_CHECK(result != NULL); + ARG_CHECK(point != NULL); + ARG_CHECK(scalar != NULL); + (void)ctx; + + secp256k1_pubkey_load(ctx, &pt, point); + secp256k1_scalar_set_b32(&s, scalar, &overflow); + if (overflow || secp256k1_scalar_is_zero(&s)) { + ret = 0; + } else { + unsigned char x[32]; + unsigned char y[1]; + secp256k1_sha256_t sha; + + secp256k1_ecmult_const(&res, &pt, &s); + secp256k1_ge_set_gej(&pt, &res); + /* Compute a hash of the point in compressed form + * Note we cannot use secp256k1_eckey_pubkey_serialize here since it does not + * expect its output to be secret and has a timing sidechannel. */ + secp256k1_fe_normalize(&pt.x); + secp256k1_fe_normalize(&pt.y); + secp256k1_fe_get_b32(x, &pt.x); + y[0] = 0x02 | secp256k1_fe_is_odd(&pt.y); + + secp256k1_sha256_initialize(&sha); + secp256k1_sha256_write(&sha, y, sizeof(y)); + secp256k1_sha256_write(&sha, x, sizeof(x)); + secp256k1_sha256_finalize(&sha, result); + ret = 1; + } + + secp256k1_scalar_clear(&s); + return ret; +} + +#endif diff --git a/crypto/secp256k1/libsecp256k1/src/modules/ecdh/tests_impl.h b/crypto/secp256k1/libsecp256k1/src/modules/ecdh/tests_impl.h new file mode 100644 index 000000000..7badc9033 --- /dev/null +++ b/crypto/secp256k1/libsecp256k1/src/modules/ecdh/tests_impl.h @@ -0,0 +1,75 @@ +/********************************************************************** + * Copyright (c) 2015 Andrew Poelstra * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or http://www.opensource.org/licenses/mit-license.php.* + **********************************************************************/ + +#ifndef _SECP256K1_MODULE_ECDH_TESTS_ +#define _SECP256K1_MODULE_ECDH_TESTS_ + +void test_ecdh_generator_basepoint(void) { + unsigned char s_one[32] = { 0 }; + secp256k1_pubkey point[2]; + int i; + + s_one[31] = 1; + /* Check against pubkey creation when the basepoint is the generator */ + for (i = 0; i < 100; ++i) { + secp256k1_sha256_t sha; + unsigned char s_b32[32]; + unsigned char output_ecdh[32]; + unsigned char output_ser[32]; + unsigned char point_ser[33]; + size_t point_ser_len = sizeof(point_ser); + secp256k1_scalar s; + + random_scalar_order(&s); + secp256k1_scalar_get_b32(s_b32, &s); + + /* compute using ECDH function */ + CHECK(secp256k1_ec_pubkey_create(ctx, &point[0], s_one) == 1); + CHECK(secp256k1_ecdh(ctx, output_ecdh, &point[0], s_b32) == 1); + /* compute "explicitly" */ + CHECK(secp256k1_ec_pubkey_create(ctx, &point[1], s_b32) == 1); + CHECK(secp256k1_ec_pubkey_serialize(ctx, point_ser, &point_ser_len, &point[1], SECP256K1_EC_COMPRESSED) == 1); + CHECK(point_ser_len == sizeof(point_ser)); + secp256k1_sha256_initialize(&sha); + secp256k1_sha256_write(&sha, point_ser, point_ser_len); + secp256k1_sha256_finalize(&sha, output_ser); + /* compare */ + CHECK(memcmp(output_ecdh, output_ser, sizeof(output_ser)) == 0); + } +} + +void test_bad_scalar(void) { + unsigned char s_zero[32] = { 0 }; + unsigned char s_overflow[32] = { + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, + 0xba, 0xae, 0xdc, 0xe6, 0xaf, 0x48, 0xa0, 0x3b, + 0xbf, 0xd2, 0x5e, 0x8c, 0xd0, 0x36, 0x41, 0x41 + }; + unsigned char s_rand[32] = { 0 }; + unsigned char output[32]; + secp256k1_scalar rand; + secp256k1_pubkey point; + + /* Create random point */ + random_scalar_order(&rand); + secp256k1_scalar_get_b32(s_rand, &rand); + CHECK(secp256k1_ec_pubkey_create(ctx, &point, s_rand) == 1); + + /* Try to multiply it by bad values */ + CHECK(secp256k1_ecdh(ctx, output, &point, s_zero) == 0); + CHECK(secp256k1_ecdh(ctx, output, &point, s_overflow) == 0); + /* ...and a good one */ + s_overflow[31] -= 1; + CHECK(secp256k1_ecdh(ctx, output, &point, s_overflow) == 1); +} + +void run_ecdh_tests(void) { + test_ecdh_generator_basepoint(); + test_bad_scalar(); +} + +#endif diff --git a/crypto/secp256k1/libsecp256k1/src/modules/recovery/Makefile.am.include b/crypto/secp256k1/libsecp256k1/src/modules/recovery/Makefile.am.include new file mode 100644 index 000000000..754469eeb --- /dev/null +++ b/crypto/secp256k1/libsecp256k1/src/modules/recovery/Makefile.am.include @@ -0,0 +1,9 @@ +include_HEADERS += include/secp256k1_recovery.h +noinst_HEADERS += src/modules/recovery/main_impl.h +noinst_HEADERS += src/modules/recovery/tests_impl.h +if USE_BENCHMARK +noinst_PROGRAMS += bench_recover +bench_recover_SOURCES = src/bench_recover.c +bench_recover_LDADD = libsecp256k1.la $(SECP_LIBS) +bench_recover_LDFLAGS = -static +endif diff --git a/crypto/secp256k1/libsecp256k1/src/modules/recovery/main_impl.h b/crypto/secp256k1/libsecp256k1/src/modules/recovery/main_impl.h new file mode 100644 index 000000000..75b695894 --- /dev/null +++ b/crypto/secp256k1/libsecp256k1/src/modules/recovery/main_impl.h @@ -0,0 +1,156 @@ +/********************************************************************** + * Copyright (c) 2013-2015 Pieter Wuille * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or http://www.opensource.org/licenses/mit-license.php.* + **********************************************************************/ + +#ifndef _SECP256K1_MODULE_RECOVERY_MAIN_ +#define _SECP256K1_MODULE_RECOVERY_MAIN_ + +#include "include/secp256k1_recovery.h" + +static void secp256k1_ecdsa_recoverable_signature_load(const secp256k1_context* ctx, secp256k1_scalar* r, secp256k1_scalar* s, int* recid, const secp256k1_ecdsa_recoverable_signature* sig) { + (void)ctx; + if (sizeof(secp256k1_scalar) == 32) { + /* When the secp256k1_scalar type is exactly 32 byte, use its + * representation inside secp256k1_ecdsa_signature, as conversion is very fast. + * Note that secp256k1_ecdsa_signature_save must use the same representation. */ + memcpy(r, &sig->data[0], 32); + memcpy(s, &sig->data[32], 32); + } else { + secp256k1_scalar_set_b32(r, &sig->data[0], NULL); + secp256k1_scalar_set_b32(s, &sig->data[32], NULL); + } + *recid = sig->data[64]; +} + +static void secp256k1_ecdsa_recoverable_signature_save(secp256k1_ecdsa_recoverable_signature* sig, const secp256k1_scalar* r, const secp256k1_scalar* s, int recid) { + if (sizeof(secp256k1_scalar) == 32) { + memcpy(&sig->data[0], r, 32); + memcpy(&sig->data[32], s, 32); + } else { + secp256k1_scalar_get_b32(&sig->data[0], r); + secp256k1_scalar_get_b32(&sig->data[32], s); + } + sig->data[64] = recid; +} + +int secp256k1_ecdsa_recoverable_signature_parse_compact(const secp256k1_context* ctx, secp256k1_ecdsa_recoverable_signature* sig, const unsigned char *input64, int recid) { + secp256k1_scalar r, s; + int ret = 1; + int overflow = 0; + + (void)ctx; + ARG_CHECK(sig != NULL); + ARG_CHECK(input64 != NULL); + ARG_CHECK(recid >= 0 && recid <= 3); + + secp256k1_scalar_set_b32(&r, &input64[0], &overflow); + ret &= !overflow; + secp256k1_scalar_set_b32(&s, &input64[32], &overflow); + ret &= !overflow; + if (ret) { + secp256k1_ecdsa_recoverable_signature_save(sig, &r, &s, recid); + } else { + memset(sig, 0, sizeof(*sig)); + } + return ret; +} + +int secp256k1_ecdsa_recoverable_signature_serialize_compact(const secp256k1_context* ctx, unsigned char *output64, int *recid, const secp256k1_ecdsa_recoverable_signature* sig) { + secp256k1_scalar r, s; + + (void)ctx; + ARG_CHECK(output64 != NULL); + ARG_CHECK(sig != NULL); + + secp256k1_ecdsa_recoverable_signature_load(ctx, &r, &s, recid, sig); + secp256k1_scalar_get_b32(&output64[0], &r); + secp256k1_scalar_get_b32(&output64[32], &s); + return 1; +} + +int secp256k1_ecdsa_recoverable_signature_convert(const secp256k1_context* ctx, secp256k1_ecdsa_signature* sig, const secp256k1_ecdsa_recoverable_signature* sigin) { + secp256k1_scalar r, s; + int recid; + + (void)ctx; + ARG_CHECK(sig != NULL); + ARG_CHECK(sigin != NULL); + + secp256k1_ecdsa_recoverable_signature_load(ctx, &r, &s, &recid, sigin); + secp256k1_ecdsa_signature_save(sig, &r, &s); + return 1; +} + +int secp256k1_ecdsa_sign_recoverable(const secp256k1_context* ctx, secp256k1_ecdsa_recoverable_signature *signature, const unsigned char *msg32, const unsigned char *seckey, secp256k1_nonce_function noncefp, const void* noncedata) { + secp256k1_scalar r, s; + secp256k1_scalar sec, non, msg; + int recid; + int ret = 0; + int overflow = 0; + VERIFY_CHECK(ctx != NULL); + ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx)); + ARG_CHECK(msg32 != NULL); + ARG_CHECK(signature != NULL); + ARG_CHECK(seckey != NULL); + if (noncefp == NULL) { + noncefp = secp256k1_nonce_function_default; + } + + secp256k1_scalar_set_b32(&sec, seckey, &overflow); + /* Fail if the secret key is invalid. */ + if (!overflow && !secp256k1_scalar_is_zero(&sec)) { + unsigned int count = 0; + secp256k1_scalar_set_b32(&msg, msg32, NULL); + while (1) { + unsigned char nonce32[32]; + ret = noncefp(nonce32, seckey, msg32, NULL, (void*)noncedata, count); + if (!ret) { + break; + } + secp256k1_scalar_set_b32(&non, nonce32, &overflow); + memset(nonce32, 0, 32); + if (!secp256k1_scalar_is_zero(&non) && !overflow) { + if (secp256k1_ecdsa_sig_sign(&ctx->ecmult_gen_ctx, &r, &s, &sec, &msg, &non, &recid)) { + break; + } + } + count++; + } + secp256k1_scalar_clear(&msg); + secp256k1_scalar_clear(&non); + secp256k1_scalar_clear(&sec); + } + if (ret) { + secp256k1_ecdsa_recoverable_signature_save(signature, &r, &s, recid); + } else { + memset(signature, 0, sizeof(*signature)); + } + return ret; +} + +int secp256k1_ecdsa_recover(const secp256k1_context* ctx, secp256k1_pubkey *pubkey, const secp256k1_ecdsa_recoverable_signature *signature, const unsigned char *msg32) { + secp256k1_ge q; + secp256k1_scalar r, s; + secp256k1_scalar m; + int recid; + VERIFY_CHECK(ctx != NULL); + ARG_CHECK(secp256k1_ecmult_context_is_built(&ctx->ecmult_ctx)); + ARG_CHECK(msg32 != NULL); + ARG_CHECK(signature != NULL); + ARG_CHECK(pubkey != NULL); + + secp256k1_ecdsa_recoverable_signature_load(ctx, &r, &s, &recid, signature); + ARG_CHECK(recid >= 0 && recid < 4); + secp256k1_scalar_set_b32(&m, msg32, NULL); + if (secp256k1_ecdsa_sig_recover(&ctx->ecmult_ctx, &r, &s, &q, &m, recid)) { + secp256k1_pubkey_save(pubkey, &q); + return 1; + } else { + memset(pubkey, 0, sizeof(*pubkey)); + return 0; + } +} + +#endif diff --git a/crypto/secp256k1/libsecp256k1/src/modules/recovery/tests_impl.h b/crypto/secp256k1/libsecp256k1/src/modules/recovery/tests_impl.h new file mode 100644 index 000000000..5a78fae92 --- /dev/null +++ b/crypto/secp256k1/libsecp256k1/src/modules/recovery/tests_impl.h @@ -0,0 +1,249 @@ +/********************************************************************** + * Copyright (c) 2013-2015 Pieter Wuille * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or http://www.opensource.org/licenses/mit-license.php.* + **********************************************************************/ + +#ifndef _SECP256K1_MODULE_RECOVERY_TESTS_ +#define _SECP256K1_MODULE_RECOVERY_TESTS_ + +void test_ecdsa_recovery_end_to_end(void) { + unsigned char extra[32] = {0x00}; + unsigned char privkey[32]; + unsigned char message[32]; + secp256k1_ecdsa_signature signature[5]; + secp256k1_ecdsa_recoverable_signature rsignature[5]; + unsigned char sig[74]; + secp256k1_pubkey pubkey; + secp256k1_pubkey recpubkey; + int recid = 0; + + /* Generate a random key and message. */ + { + secp256k1_scalar msg, key; + random_scalar_order_test(&msg); + random_scalar_order_test(&key); + secp256k1_scalar_get_b32(privkey, &key); + secp256k1_scalar_get_b32(message, &msg); + } + + /* Construct and verify corresponding public key. */ + CHECK(secp256k1_ec_seckey_verify(ctx, privkey) == 1); + CHECK(secp256k1_ec_pubkey_create(ctx, &pubkey, privkey) == 1); + + /* Serialize/parse compact and verify/recover. */ + extra[0] = 0; + CHECK(secp256k1_ecdsa_sign_recoverable(ctx, &rsignature[0], message, privkey, NULL, NULL) == 1); + CHECK(secp256k1_ecdsa_sign_recoverable(ctx, &rsignature[4], message, privkey, NULL, NULL) == 1); + CHECK(secp256k1_ecdsa_sign_recoverable(ctx, &rsignature[1], message, privkey, NULL, extra) == 1); + extra[31] = 1; + CHECK(secp256k1_ecdsa_sign_recoverable(ctx, &rsignature[2], message, privkey, NULL, extra) == 1); + extra[31] = 0; + extra[0] = 1; + CHECK(secp256k1_ecdsa_sign_recoverable(ctx, &rsignature[3], message, privkey, NULL, extra) == 1); + CHECK(secp256k1_ecdsa_recoverable_signature_serialize_compact(ctx, sig, &recid, &rsignature[4]) == 1); + CHECK(secp256k1_ecdsa_recoverable_signature_convert(ctx, &signature[4], &rsignature[4]) == 1); + CHECK(secp256k1_ecdsa_verify(ctx, &signature[4], message, &pubkey) == 1); + memset(&rsignature[4], 0, sizeof(rsignature[4])); + CHECK(secp256k1_ecdsa_recoverable_signature_parse_compact(ctx, &rsignature[4], sig, recid) == 1); + CHECK(secp256k1_ecdsa_recoverable_signature_convert(ctx, &signature[4], &rsignature[4]) == 1); + CHECK(secp256k1_ecdsa_verify(ctx, &signature[4], message, &pubkey) == 1); + /* Parse compact (with recovery id) and recover. */ + CHECK(secp256k1_ecdsa_recoverable_signature_parse_compact(ctx, &rsignature[4], sig, recid) == 1); + CHECK(secp256k1_ecdsa_recover(ctx, &recpubkey, &rsignature[4], message) == 1); + CHECK(memcmp(&pubkey, &recpubkey, sizeof(pubkey)) == 0); + /* Serialize/destroy/parse signature and verify again. */ + CHECK(secp256k1_ecdsa_recoverable_signature_serialize_compact(ctx, sig, &recid, &rsignature[4]) == 1); + sig[secp256k1_rand32() % 64] += 1 + (secp256k1_rand32() % 255); + CHECK(secp256k1_ecdsa_recoverable_signature_parse_compact(ctx, &rsignature[4], sig, recid) == 1); + CHECK(secp256k1_ecdsa_recoverable_signature_convert(ctx, &signature[4], &rsignature[4]) == 1); + CHECK(secp256k1_ecdsa_verify(ctx, &signature[4], message, &pubkey) == 0); + /* Recover again */ + CHECK(secp256k1_ecdsa_recover(ctx, &recpubkey, &rsignature[4], message) == 0 || + memcmp(&pubkey, &recpubkey, sizeof(pubkey)) != 0); +} + +/* Tests several edge cases. */ +void test_ecdsa_recovery_edge_cases(void) { + const unsigned char msg32[32] = { + 'T', 'h', 'i', 's', ' ', 'i', 's', ' ', + 'a', ' ', 'v', 'e', 'r', 'y', ' ', 's', + 'e', 'c', 'r', 'e', 't', ' ', 'm', 'e', + 's', 's', 'a', 'g', 'e', '.', '.', '.' + }; + const unsigned char sig64[64] = { + /* Generated by signing the above message with nonce 'This is the nonce we will use...' + * and secret key 0 (which is not valid), resulting in recid 0. */ + 0x67, 0xCB, 0x28, 0x5F, 0x9C, 0xD1, 0x94, 0xE8, + 0x40, 0xD6, 0x29, 0x39, 0x7A, 0xF5, 0x56, 0x96, + 0x62, 0xFD, 0xE4, 0x46, 0x49, 0x99, 0x59, 0x63, + 0x17, 0x9A, 0x7D, 0xD1, 0x7B, 0xD2, 0x35, 0x32, + 0x4B, 0x1B, 0x7D, 0xF3, 0x4C, 0xE1, 0xF6, 0x8E, + 0x69, 0x4F, 0xF6, 0xF1, 0x1A, 0xC7, 0x51, 0xDD, + 0x7D, 0xD7, 0x3E, 0x38, 0x7E, 0xE4, 0xFC, 0x86, + 0x6E, 0x1B, 0xE8, 0xEC, 0xC7, 0xDD, 0x95, 0x57 + }; + secp256k1_pubkey pubkey; + /* signature (r,s) = (4,4), which can be recovered with all 4 recids. */ + const unsigned char sigb64[64] = { + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04, + }; + secp256k1_pubkey pubkeyb; + secp256k1_ecdsa_recoverable_signature rsig; + secp256k1_ecdsa_signature sig; + int recid; + + CHECK(secp256k1_ecdsa_recoverable_signature_parse_compact(ctx, &rsig, sig64, 0)); + CHECK(!secp256k1_ecdsa_recover(ctx, &pubkey, &rsig, msg32)); + CHECK(secp256k1_ecdsa_recoverable_signature_parse_compact(ctx, &rsig, sig64, 1)); + CHECK(secp256k1_ecdsa_recover(ctx, &pubkey, &rsig, msg32)); + CHECK(secp256k1_ecdsa_recoverable_signature_parse_compact(ctx, &rsig, sig64, 2)); + CHECK(!secp256k1_ecdsa_recover(ctx, &pubkey, &rsig, msg32)); + CHECK(secp256k1_ecdsa_recoverable_signature_parse_compact(ctx, &rsig, sig64, 3)); + CHECK(!secp256k1_ecdsa_recover(ctx, &pubkey, &rsig, msg32)); + + for (recid = 0; recid < 4; recid++) { + int i; + int recid2; + /* (4,4) encoded in DER. */ + unsigned char sigbder[8] = {0x30, 0x06, 0x02, 0x01, 0x04, 0x02, 0x01, 0x04}; + unsigned char sigcder_zr[7] = {0x30, 0x05, 0x02, 0x00, 0x02, 0x01, 0x01}; + unsigned char sigcder_zs[7] = {0x30, 0x05, 0x02, 0x01, 0x01, 0x02, 0x00}; + unsigned char sigbderalt1[39] = { + 0x30, 0x25, 0x02, 0x20, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x04, 0x02, 0x01, 0x04, + }; + unsigned char sigbderalt2[39] = { + 0x30, 0x25, 0x02, 0x01, 0x04, 0x02, 0x20, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04, + }; + unsigned char sigbderalt3[40] = { + 0x30, 0x26, 0x02, 0x21, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x04, 0x02, 0x01, 0x04, + }; + unsigned char sigbderalt4[40] = { + 0x30, 0x26, 0x02, 0x01, 0x04, 0x02, 0x21, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04, + }; + /* (order + r,4) encoded in DER. */ + unsigned char sigbderlong[40] = { + 0x30, 0x26, 0x02, 0x21, 0x00, 0xFF, 0xFF, 0xFF, + 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, + 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xBA, 0xAE, 0xDC, + 0xE6, 0xAF, 0x48, 0xA0, 0x3B, 0xBF, 0xD2, 0x5E, + 0x8C, 0xD0, 0x36, 0x41, 0x45, 0x02, 0x01, 0x04 + }; + CHECK(secp256k1_ecdsa_recoverable_signature_parse_compact(ctx, &rsig, sigb64, recid) == 1); + CHECK(secp256k1_ecdsa_recover(ctx, &pubkeyb, &rsig, msg32) == 1); + CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &sig, sigbder, sizeof(sigbder)) == 1); + CHECK(secp256k1_ecdsa_verify(ctx, &sig, msg32, &pubkeyb) == 1); + for (recid2 = 0; recid2 < 4; recid2++) { + secp256k1_pubkey pubkey2b; + CHECK(secp256k1_ecdsa_recoverable_signature_parse_compact(ctx, &rsig, sigb64, recid2) == 1); + CHECK(secp256k1_ecdsa_recover(ctx, &pubkey2b, &rsig, msg32) == 1); + /* Verifying with (order + r,4) should always fail. */ + CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &sig, sigbderlong, sizeof(sigbderlong)) == 0); + } + /* DER parsing tests. */ + /* Zero length r/s. */ + CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &sig, sigcder_zr, sizeof(sigcder_zr)) == 0); + CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &sig, sigcder_zs, sizeof(sigcder_zs)) == 0); + /* Leading zeros. */ + CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &sig, sigbderalt1, sizeof(sigbderalt1)) == 1); + CHECK(secp256k1_ecdsa_verify(ctx, &sig, msg32, &pubkeyb) == 1); + CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &sig, sigbderalt2, sizeof(sigbderalt2)) == 1); + CHECK(secp256k1_ecdsa_verify(ctx, &sig, msg32, &pubkeyb) == 1); + CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &sig, sigbderalt3, sizeof(sigbderalt3)) == 1); + CHECK(secp256k1_ecdsa_verify(ctx, &sig, msg32, &pubkeyb) == 1); + CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &sig, sigbderalt4, sizeof(sigbderalt4)) == 1); + CHECK(secp256k1_ecdsa_verify(ctx, &sig, msg32, &pubkeyb) == 1); + sigbderalt3[4] = 1; + CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &sig, sigbderalt3, sizeof(sigbderalt3)) == 0); + sigbderalt4[7] = 1; + CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &sig, sigbderalt4, sizeof(sigbderalt4)) == 0); + /* Damage signature. */ + sigbder[7]++; + CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &sig, sigbder, sizeof(sigbder)) == 1); + CHECK(secp256k1_ecdsa_verify(ctx, &sig, msg32, &pubkeyb) == 0); + sigbder[7]--; + CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &sig, sigbder, 6) == 0); + CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &sig, sigbder, sizeof(sigbder) - 1) == 0); + for(i = 0; i < 8; i++) { + int c; + unsigned char orig = sigbder[i]; + /*Try every single-byte change.*/ + for (c = 0; c < 256; c++) { + if (c == orig ) { + continue; + } + sigbder[i] = c; + CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &sig, sigbder, sizeof(sigbder)) == 0 || secp256k1_ecdsa_verify(ctx, &sig, msg32, &pubkeyb) == 0); + } + sigbder[i] = orig; + } + } + + /* Test r/s equal to zero */ + { + /* (1,1) encoded in DER. */ + unsigned char sigcder[8] = {0x30, 0x06, 0x02, 0x01, 0x01, 0x02, 0x01, 0x01}; + unsigned char sigc64[64] = { + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, + }; + secp256k1_pubkey pubkeyc; + CHECK(secp256k1_ecdsa_recoverable_signature_parse_compact(ctx, &rsig, sigc64, 0) == 1); + CHECK(secp256k1_ecdsa_recover(ctx, &pubkeyc, &rsig, msg32) == 1); + CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &sig, sigcder, sizeof(sigcder)) == 1); + CHECK(secp256k1_ecdsa_verify(ctx, &sig, msg32, &pubkeyc) == 1); + sigcder[4] = 0; + sigc64[31] = 0; + CHECK(secp256k1_ecdsa_recoverable_signature_parse_compact(ctx, &rsig, sigc64, 0) == 1); + CHECK(secp256k1_ecdsa_recover(ctx, &pubkeyb, &rsig, msg32) == 0); + CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &sig, sigcder, sizeof(sigcder)) == 1); + CHECK(secp256k1_ecdsa_verify(ctx, &sig, msg32, &pubkeyc) == 0); + sigcder[4] = 1; + sigcder[7] = 0; + sigc64[31] = 1; + sigc64[63] = 0; + CHECK(secp256k1_ecdsa_recoverable_signature_parse_compact(ctx, &rsig, sigc64, 0) == 1); + CHECK(secp256k1_ecdsa_recover(ctx, &pubkeyb, &rsig, msg32) == 0); + CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &sig, sigcder, sizeof(sigcder)) == 1); + CHECK(secp256k1_ecdsa_verify(ctx, &sig, msg32, &pubkeyc) == 0); + } +} + +void run_recovery_tests(void) { + int i; + for (i = 0; i < 64*count; i++) { + test_ecdsa_recovery_end_to_end(); + } + test_ecdsa_recovery_edge_cases(); +} + +#endif diff --git a/crypto/secp256k1/libsecp256k1/src/modules/schnorr/Makefile.am.include b/crypto/secp256k1/libsecp256k1/src/modules/schnorr/Makefile.am.include new file mode 100644 index 000000000..bad4cb7c5 --- /dev/null +++ b/crypto/secp256k1/libsecp256k1/src/modules/schnorr/Makefile.am.include @@ -0,0 +1,11 @@ +include_HEADERS += include/secp256k1_schnorr.h +noinst_HEADERS += src/modules/schnorr/main_impl.h +noinst_HEADERS += src/modules/schnorr/schnorr.h +noinst_HEADERS += src/modules/schnorr/schnorr_impl.h +noinst_HEADERS += src/modules/schnorr/tests_impl.h +if USE_BENCHMARK +noinst_PROGRAMS += bench_schnorr_verify +bench_schnorr_verify_SOURCES = src/bench_schnorr_verify.c +bench_schnorr_verify_LDADD = libsecp256k1.la $(SECP_LIBS) +bench_schnorr_verify_LDFLAGS = -static +endif diff --git a/crypto/secp256k1/libsecp256k1/src/modules/schnorr/main_impl.h b/crypto/secp256k1/libsecp256k1/src/modules/schnorr/main_impl.h new file mode 100644 index 000000000..c10fd259f --- /dev/null +++ b/crypto/secp256k1/libsecp256k1/src/modules/schnorr/main_impl.h @@ -0,0 +1,164 @@ +/********************************************************************** + * Copyright (c) 2014-2015 Pieter Wuille * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or http://www.opensource.org/licenses/mit-license.php.* + **********************************************************************/ + +#ifndef SECP256K1_MODULE_SCHNORR_MAIN +#define SECP256K1_MODULE_SCHNORR_MAIN + +#include "include/secp256k1_schnorr.h" +#include "modules/schnorr/schnorr_impl.h" + +static void secp256k1_schnorr_msghash_sha256(unsigned char *h32, const unsigned char *r32, const unsigned char *msg32) { + secp256k1_sha256_t sha; + secp256k1_sha256_initialize(&sha); + secp256k1_sha256_write(&sha, r32, 32); + secp256k1_sha256_write(&sha, msg32, 32); + secp256k1_sha256_finalize(&sha, h32); +} + +static const unsigned char secp256k1_schnorr_algo16[17] = "Schnorr+SHA256 "; + +int secp256k1_schnorr_sign(const secp256k1_context* ctx, unsigned char *sig64, const unsigned char *msg32, const unsigned char *seckey, secp256k1_nonce_function noncefp, const void* noncedata) { + secp256k1_scalar sec, non; + int ret = 0; + int overflow = 0; + unsigned int count = 0; + VERIFY_CHECK(ctx != NULL); + ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx)); + ARG_CHECK(msg32 != NULL); + ARG_CHECK(sig64 != NULL); + ARG_CHECK(seckey != NULL); + if (noncefp == NULL) { + noncefp = secp256k1_nonce_function_default; + } + + secp256k1_scalar_set_b32(&sec, seckey, NULL); + while (1) { + unsigned char nonce32[32]; + ret = noncefp(nonce32, msg32, seckey, secp256k1_schnorr_algo16, (void*)noncedata, count); + if (!ret) { + break; + } + secp256k1_scalar_set_b32(&non, nonce32, &overflow); + memset(nonce32, 0, 32); + if (!secp256k1_scalar_is_zero(&non) && !overflow) { + if (secp256k1_schnorr_sig_sign(&ctx->ecmult_gen_ctx, sig64, &sec, &non, NULL, secp256k1_schnorr_msghash_sha256, msg32)) { + break; + } + } + count++; + } + if (!ret) { + memset(sig64, 0, 64); + } + secp256k1_scalar_clear(&non); + secp256k1_scalar_clear(&sec); + return ret; +} + +int secp256k1_schnorr_verify(const secp256k1_context* ctx, const unsigned char *sig64, const unsigned char *msg32, const secp256k1_pubkey *pubkey) { + secp256k1_ge q; + VERIFY_CHECK(ctx != NULL); + ARG_CHECK(secp256k1_ecmult_context_is_built(&ctx->ecmult_ctx)); + ARG_CHECK(msg32 != NULL); + ARG_CHECK(sig64 != NULL); + ARG_CHECK(pubkey != NULL); + + secp256k1_pubkey_load(ctx, &q, pubkey); + return secp256k1_schnorr_sig_verify(&ctx->ecmult_ctx, sig64, &q, secp256k1_schnorr_msghash_sha256, msg32); +} + +int secp256k1_schnorr_recover(const secp256k1_context* ctx, secp256k1_pubkey *pubkey, const unsigned char *sig64, const unsigned char *msg32) { + secp256k1_ge q; + + VERIFY_CHECK(ctx != NULL); + ARG_CHECK(secp256k1_ecmult_context_is_built(&ctx->ecmult_ctx)); + ARG_CHECK(msg32 != NULL); + ARG_CHECK(sig64 != NULL); + ARG_CHECK(pubkey != NULL); + + if (secp256k1_schnorr_sig_recover(&ctx->ecmult_ctx, sig64, &q, secp256k1_schnorr_msghash_sha256, msg32)) { + secp256k1_pubkey_save(pubkey, &q); + return 1; + } else { + memset(pubkey, 0, sizeof(*pubkey)); + return 0; + } +} + +int secp256k1_schnorr_generate_nonce_pair(const secp256k1_context* ctx, secp256k1_pubkey *pubnonce, unsigned char *privnonce32, const unsigned char *sec32, const unsigned char *msg32, secp256k1_nonce_function noncefp, const void* noncedata) { + int count = 0; + int ret = 1; + secp256k1_gej Qj; + secp256k1_ge Q; + secp256k1_scalar sec; + + VERIFY_CHECK(ctx != NULL); + ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx)); + ARG_CHECK(msg32 != NULL); + ARG_CHECK(sec32 != NULL); + ARG_CHECK(pubnonce != NULL); + ARG_CHECK(privnonce32 != NULL); + + if (noncefp == NULL) { + noncefp = secp256k1_nonce_function_default; + } + + do { + int overflow; + ret = noncefp(privnonce32, sec32, msg32, secp256k1_schnorr_algo16, (void*)noncedata, count++); + if (!ret) { + break; + } + secp256k1_scalar_set_b32(&sec, privnonce32, &overflow); + if (overflow || secp256k1_scalar_is_zero(&sec)) { + continue; + } + secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &Qj, &sec); + secp256k1_ge_set_gej(&Q, &Qj); + + secp256k1_pubkey_save(pubnonce, &Q); + break; + } while(1); + + secp256k1_scalar_clear(&sec); + if (!ret) { + memset(pubnonce, 0, sizeof(*pubnonce)); + } + return ret; +} + +int secp256k1_schnorr_partial_sign(const secp256k1_context* ctx, unsigned char *sig64, const unsigned char *msg32, const unsigned char *sec32, const secp256k1_pubkey *pubnonce_others, const unsigned char *secnonce32) { + int overflow = 0; + secp256k1_scalar sec, non; + secp256k1_ge pubnon; + VERIFY_CHECK(ctx != NULL); + ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx)); + ARG_CHECK(msg32 != NULL); + ARG_CHECK(sig64 != NULL); + ARG_CHECK(sec32 != NULL); + ARG_CHECK(secnonce32 != NULL); + ARG_CHECK(pubnonce_others != NULL); + + secp256k1_scalar_set_b32(&sec, sec32, &overflow); + if (overflow || secp256k1_scalar_is_zero(&sec)) { + return -1; + } + secp256k1_scalar_set_b32(&non, secnonce32, &overflow); + if (overflow || secp256k1_scalar_is_zero(&non)) { + return -1; + } + secp256k1_pubkey_load(ctx, &pubnon, pubnonce_others); + return secp256k1_schnorr_sig_sign(&ctx->ecmult_gen_ctx, sig64, &sec, &non, &pubnon, secp256k1_schnorr_msghash_sha256, msg32); +} + +int secp256k1_schnorr_partial_combine(const secp256k1_context* ctx, unsigned char *sig64, const unsigned char * const *sig64sin, int n) { + ARG_CHECK(sig64 != NULL); + ARG_CHECK(n >= 1); + ARG_CHECK(sig64sin != NULL); + return secp256k1_schnorr_sig_combine(sig64, n, sig64sin); +} + +#endif diff --git a/crypto/secp256k1/libsecp256k1/src/modules/schnorr/schnorr.h b/crypto/secp256k1/libsecp256k1/src/modules/schnorr/schnorr.h new file mode 100644 index 000000000..d227433d4 --- /dev/null +++ b/crypto/secp256k1/libsecp256k1/src/modules/schnorr/schnorr.h @@ -0,0 +1,20 @@ +/*********************************************************************** + * Copyright (c) 2014-2015 Pieter Wuille * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or http://www.opensource.org/licenses/mit-license.php. * + ***********************************************************************/ + +#ifndef _SECP256K1_MODULE_SCHNORR_H_ +#define _SECP256K1_MODULE_SCHNORR_H_ + +#include "scalar.h" +#include "group.h" + +typedef void (*secp256k1_schnorr_msghash)(unsigned char *h32, const unsigned char *r32, const unsigned char *msg32); + +static int secp256k1_schnorr_sig_sign(const secp256k1_ecmult_gen_context* ctx, unsigned char *sig64, const secp256k1_scalar *key, const secp256k1_scalar *nonce, const secp256k1_ge *pubnonce, secp256k1_schnorr_msghash hash, const unsigned char *msg32); +static int secp256k1_schnorr_sig_verify(const secp256k1_ecmult_context* ctx, const unsigned char *sig64, const secp256k1_ge *pubkey, secp256k1_schnorr_msghash hash, const unsigned char *msg32); +static int secp256k1_schnorr_sig_recover(const secp256k1_ecmult_context* ctx, const unsigned char *sig64, secp256k1_ge *pubkey, secp256k1_schnorr_msghash hash, const unsigned char *msg32); +static int secp256k1_schnorr_sig_combine(unsigned char *sig64, int n, const unsigned char * const *sig64ins); + +#endif diff --git a/crypto/secp256k1/libsecp256k1/src/modules/schnorr/schnorr_impl.h b/crypto/secp256k1/libsecp256k1/src/modules/schnorr/schnorr_impl.h new file mode 100644 index 000000000..ed70390bb --- /dev/null +++ b/crypto/secp256k1/libsecp256k1/src/modules/schnorr/schnorr_impl.h @@ -0,0 +1,207 @@ +/*********************************************************************** + * Copyright (c) 2014-2015 Pieter Wuille * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or http://www.opensource.org/licenses/mit-license.php. * + ***********************************************************************/ + +#ifndef _SECP256K1_SCHNORR_IMPL_H_ +#define _SECP256K1_SCHNORR_IMPL_H_ + +#include <string.h> + +#include "schnorr.h" +#include "num.h" +#include "field.h" +#include "group.h" +#include "ecmult.h" +#include "ecmult_gen.h" + +/** + * Custom Schnorr-based signature scheme. They support multiparty signing, public key + * recovery and batch validation. + * + * Rationale for verifying R's y coordinate: + * In order to support batch validation and public key recovery, the full R point must + * be known to verifiers, rather than just its x coordinate. In order to not risk + * being more strict in batch validation than normal validation, validators must be + * required to reject signatures with incorrect y coordinate. This is only possible + * by including a (relatively slow) field inverse, or a field square root. However, + * batch validation offers potentially much higher benefits than this cost. + * + * Rationale for having an implicit y coordinate oddness: + * If we commit to having the full R point known to verifiers, there are two mechanism. + * Either include its oddness in the signature, or give it an implicit fixed value. + * As the R y coordinate can be flipped by a simple negation of the nonce, we choose the + * latter, as it comes with nearly zero impact on signing or validation performance, and + * saves a byte in the signature. + * + * Signing: + * Inputs: 32-byte message m, 32-byte scalar key x (!=0), 32-byte scalar nonce k (!=0) + * + * Compute point R = k * G. Reject nonce if R's y coordinate is odd (or negate nonce). + * Compute 32-byte r, the serialization of R's x coordinate. + * Compute scalar h = Hash(r || m). Reject nonce if h == 0 or h >= order. + * Compute scalar s = k - h * x. + * The signature is (r, s). + * + * + * Verification: + * Inputs: 32-byte message m, public key point Q, signature: (32-byte r, scalar s) + * + * Signature is invalid if s >= order. + * Signature is invalid if r >= p. + * Compute scalar h = Hash(r || m). Signature is invalid if h == 0 or h >= order. + * Option 1 (faster for single verification): + * Compute point R = h * Q + s * G. Signature is invalid if R is infinity or R's y coordinate is odd. + * Signature is valid if the serialization of R's x coordinate equals r. + * Option 2 (allows batch validation and pubkey recovery): + * Decompress x coordinate r into point R, with odd y coordinate. Fail if R is not on the curve. + * Signature is valid if R + h * Q + s * G == 0. + */ + +static int secp256k1_schnorr_sig_sign(const secp256k1_ecmult_gen_context* ctx, unsigned char *sig64, const secp256k1_scalar *key, const secp256k1_scalar *nonce, const secp256k1_ge *pubnonce, secp256k1_schnorr_msghash hash, const unsigned char *msg32) { + secp256k1_gej Rj; + secp256k1_ge Ra; + unsigned char h32[32]; + secp256k1_scalar h, s; + int overflow; + secp256k1_scalar n; + + if (secp256k1_scalar_is_zero(key) || secp256k1_scalar_is_zero(nonce)) { + return 0; + } + n = *nonce; + + secp256k1_ecmult_gen(ctx, &Rj, &n); + if (pubnonce != NULL) { + secp256k1_gej_add_ge(&Rj, &Rj, pubnonce); + } + secp256k1_ge_set_gej(&Ra, &Rj); + secp256k1_fe_normalize(&Ra.y); + if (secp256k1_fe_is_odd(&Ra.y)) { + /* R's y coordinate is odd, which is not allowed (see rationale above). + Force it to be even by negating the nonce. Note that this even works + for multiparty signing, as the R point is known to all participants, + which can all decide to flip the sign in unison, resulting in the + overall R point to be negated too. */ + secp256k1_scalar_negate(&n, &n); + } + secp256k1_fe_normalize(&Ra.x); + secp256k1_fe_get_b32(sig64, &Ra.x); + hash(h32, sig64, msg32); + overflow = 0; + secp256k1_scalar_set_b32(&h, h32, &overflow); + if (overflow || secp256k1_scalar_is_zero(&h)) { + secp256k1_scalar_clear(&n); + return 0; + } + secp256k1_scalar_mul(&s, &h, key); + secp256k1_scalar_negate(&s, &s); + secp256k1_scalar_add(&s, &s, &n); + secp256k1_scalar_clear(&n); + secp256k1_scalar_get_b32(sig64 + 32, &s); + return 1; +} + +static int secp256k1_schnorr_sig_verify(const secp256k1_ecmult_context* ctx, const unsigned char *sig64, const secp256k1_ge *pubkey, secp256k1_schnorr_msghash hash, const unsigned char *msg32) { + secp256k1_gej Qj, Rj; + secp256k1_ge Ra; + secp256k1_fe Rx; + secp256k1_scalar h, s; + unsigned char hh[32]; + int overflow; + + if (secp256k1_ge_is_infinity(pubkey)) { + return 0; + } + hash(hh, sig64, msg32); + overflow = 0; + secp256k1_scalar_set_b32(&h, hh, &overflow); + if (overflow || secp256k1_scalar_is_zero(&h)) { + return 0; + } + overflow = 0; + secp256k1_scalar_set_b32(&s, sig64 + 32, &overflow); + if (overflow) { + return 0; + } + if (!secp256k1_fe_set_b32(&Rx, sig64)) { + return 0; + } + secp256k1_gej_set_ge(&Qj, pubkey); + secp256k1_ecmult(ctx, &Rj, &Qj, &h, &s); + if (secp256k1_gej_is_infinity(&Rj)) { + return 0; + } + secp256k1_ge_set_gej_var(&Ra, &Rj); + secp256k1_fe_normalize_var(&Ra.y); + if (secp256k1_fe_is_odd(&Ra.y)) { + return 0; + } + return secp256k1_fe_equal_var(&Rx, &Ra.x); +} + +static int secp256k1_schnorr_sig_recover(const secp256k1_ecmult_context* ctx, const unsigned char *sig64, secp256k1_ge *pubkey, secp256k1_schnorr_msghash hash, const unsigned char *msg32) { + secp256k1_gej Qj, Rj; + secp256k1_ge Ra; + secp256k1_fe Rx; + secp256k1_scalar h, s; + unsigned char hh[32]; + int overflow; + + hash(hh, sig64, msg32); + overflow = 0; + secp256k1_scalar_set_b32(&h, hh, &overflow); + if (overflow || secp256k1_scalar_is_zero(&h)) { + return 0; + } + overflow = 0; + secp256k1_scalar_set_b32(&s, sig64 + 32, &overflow); + if (overflow) { + return 0; + } + if (!secp256k1_fe_set_b32(&Rx, sig64)) { + return 0; + } + if (!secp256k1_ge_set_xo_var(&Ra, &Rx, 0)) { + return 0; + } + secp256k1_gej_set_ge(&Rj, &Ra); + secp256k1_scalar_inverse_var(&h, &h); + secp256k1_scalar_negate(&s, &s); + secp256k1_scalar_mul(&s, &s, &h); + secp256k1_ecmult(ctx, &Qj, &Rj, &h, &s); + if (secp256k1_gej_is_infinity(&Qj)) { + return 0; + } + secp256k1_ge_set_gej(pubkey, &Qj); + return 1; +} + +static int secp256k1_schnorr_sig_combine(unsigned char *sig64, int n, const unsigned char * const *sig64ins) { + secp256k1_scalar s = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 0); + int i; + for (i = 0; i < n; i++) { + secp256k1_scalar si; + int overflow; + secp256k1_scalar_set_b32(&si, sig64ins[i] + 32, &overflow); + if (overflow) { + return -1; + } + if (i) { + if (memcmp(sig64ins[i - 1], sig64ins[i], 32) != 0) { + return -1; + } + } + secp256k1_scalar_add(&s, &s, &si); + } + if (secp256k1_scalar_is_zero(&s)) { + return 0; + } + memcpy(sig64, sig64ins[0], 32); + secp256k1_scalar_get_b32(sig64 + 32, &s); + secp256k1_scalar_clear(&s); + return 1; +} + +#endif diff --git a/crypto/secp256k1/libsecp256k1/src/modules/schnorr/tests_impl.h b/crypto/secp256k1/libsecp256k1/src/modules/schnorr/tests_impl.h new file mode 100644 index 000000000..79737f748 --- /dev/null +++ b/crypto/secp256k1/libsecp256k1/src/modules/schnorr/tests_impl.h @@ -0,0 +1,175 @@ +/********************************************************************** + * Copyright (c) 2014-2015 Pieter Wuille * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or http://www.opensource.org/licenses/mit-license.php.* + **********************************************************************/ + +#ifndef SECP256K1_MODULE_SCHNORR_TESTS +#define SECP256K1_MODULE_SCHNORR_TESTS + +#include "include/secp256k1_schnorr.h" + +void test_schnorr_end_to_end(void) { + unsigned char privkey[32]; + unsigned char message[32]; + unsigned char schnorr_signature[64]; + secp256k1_pubkey pubkey, recpubkey; + + /* Generate a random key and message. */ + { + secp256k1_scalar key; + random_scalar_order_test(&key); + secp256k1_scalar_get_b32(privkey, &key); + secp256k1_rand256_test(message); + } + + /* Construct and verify corresponding public key. */ + CHECK(secp256k1_ec_seckey_verify(ctx, privkey) == 1); + CHECK(secp256k1_ec_pubkey_create(ctx, &pubkey, privkey) == 1); + + /* Schnorr sign. */ + CHECK(secp256k1_schnorr_sign(ctx, schnorr_signature, message, privkey, NULL, NULL) == 1); + CHECK(secp256k1_schnorr_verify(ctx, schnorr_signature, message, &pubkey) == 1); + CHECK(secp256k1_schnorr_recover(ctx, &recpubkey, schnorr_signature, message) == 1); + CHECK(memcmp(&pubkey, &recpubkey, sizeof(pubkey)) == 0); + /* Destroy signature and verify again. */ + schnorr_signature[secp256k1_rand32() % 64] += 1 + (secp256k1_rand32() % 255); + CHECK(secp256k1_schnorr_verify(ctx, schnorr_signature, message, &pubkey) == 0); + CHECK(secp256k1_schnorr_recover(ctx, &recpubkey, schnorr_signature, message) != 1 || + memcmp(&pubkey, &recpubkey, sizeof(pubkey)) != 0); +} + +/** Horribly broken hash function. Do not use for anything but tests. */ +void test_schnorr_hash(unsigned char *h32, const unsigned char *r32, const unsigned char *msg32) { + int i; + for (i = 0; i < 32; i++) { + h32[i] = r32[i] ^ msg32[i]; + } +} + +void test_schnorr_sign_verify(void) { + unsigned char msg32[32]; + unsigned char sig64[3][64]; + secp256k1_gej pubkeyj[3]; + secp256k1_ge pubkey[3]; + secp256k1_scalar nonce[3], key[3]; + int i = 0; + int k; + + secp256k1_rand256_test(msg32); + + for (k = 0; k < 3; k++) { + random_scalar_order_test(&key[k]); + + do { + random_scalar_order_test(&nonce[k]); + if (secp256k1_schnorr_sig_sign(&ctx->ecmult_gen_ctx, sig64[k], &key[k], &nonce[k], NULL, &test_schnorr_hash, msg32)) { + break; + } + } while(1); + + secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &pubkeyj[k], &key[k]); + secp256k1_ge_set_gej_var(&pubkey[k], &pubkeyj[k]); + CHECK(secp256k1_schnorr_sig_verify(&ctx->ecmult_ctx, sig64[k], &pubkey[k], &test_schnorr_hash, msg32)); + + for (i = 0; i < 4; i++) { + int pos = secp256k1_rand32() % 64; + int mod = 1 + (secp256k1_rand32() % 255); + sig64[k][pos] ^= mod; + CHECK(secp256k1_schnorr_sig_verify(&ctx->ecmult_ctx, sig64[k], &pubkey[k], &test_schnorr_hash, msg32) == 0); + sig64[k][pos] ^= mod; + } + } +} + +void test_schnorr_threshold(void) { + unsigned char msg[32]; + unsigned char sec[5][32]; + secp256k1_pubkey pub[5]; + unsigned char nonce[5][32]; + secp256k1_pubkey pubnonce[5]; + unsigned char sig[5][64]; + const unsigned char* sigs[5]; + unsigned char allsig[64]; + const secp256k1_pubkey* pubs[5]; + secp256k1_pubkey allpub; + int n, i; + int damage; + int ret = 0; + + damage = (secp256k1_rand32() % 2) ? (1 + (secp256k1_rand32() % 4)) : 0; + secp256k1_rand256_test(msg); + n = 2 + (secp256k1_rand32() % 4); + for (i = 0; i < n; i++) { + do { + secp256k1_rand256_test(sec[i]); + } while (!secp256k1_ec_seckey_verify(ctx, sec[i])); + CHECK(secp256k1_ec_pubkey_create(ctx, &pub[i], sec[i])); + CHECK(secp256k1_schnorr_generate_nonce_pair(ctx, &pubnonce[i], nonce[i], msg, sec[i], NULL, NULL)); + pubs[i] = &pub[i]; + } + if (damage == 1) { + nonce[secp256k1_rand32() % n][secp256k1_rand32() % 32] ^= 1 + (secp256k1_rand32() % 255); + } else if (damage == 2) { + sec[secp256k1_rand32() % n][secp256k1_rand32() % 32] ^= 1 + (secp256k1_rand32() % 255); + } + for (i = 0; i < n; i++) { + secp256k1_pubkey allpubnonce; + const secp256k1_pubkey *pubnonces[4]; + int j; + for (j = 0; j < i; j++) { + pubnonces[j] = &pubnonce[j]; + } + for (j = i + 1; j < n; j++) { + pubnonces[j - 1] = &pubnonce[j]; + } + CHECK(secp256k1_ec_pubkey_combine(ctx, &allpubnonce, pubnonces, n - 1)); + ret |= (secp256k1_schnorr_partial_sign(ctx, sig[i], msg, sec[i], &allpubnonce, nonce[i]) != 1) * 1; + sigs[i] = sig[i]; + } + if (damage == 3) { + sig[secp256k1_rand32() % n][secp256k1_rand32() % 64] ^= 1 + (secp256k1_rand32() % 255); + } + ret |= (secp256k1_ec_pubkey_combine(ctx, &allpub, pubs, n) != 1) * 2; + if ((ret & 1) == 0) { + ret |= (secp256k1_schnorr_partial_combine(ctx, allsig, sigs, n) != 1) * 4; + } + if (damage == 4) { + allsig[secp256k1_rand32() % 32] ^= 1 + (secp256k1_rand32() % 255); + } + if ((ret & 7) == 0) { + ret |= (secp256k1_schnorr_verify(ctx, allsig, msg, &allpub) != 1) * 8; + } + CHECK((ret == 0) == (damage == 0)); +} + +void test_schnorr_recovery(void) { + unsigned char msg32[32]; + unsigned char sig64[64]; + secp256k1_ge Q; + + secp256k1_rand256_test(msg32); + secp256k1_rand256_test(sig64); + secp256k1_rand256_test(sig64 + 32); + if (secp256k1_schnorr_sig_recover(&ctx->ecmult_ctx, sig64, &Q, &test_schnorr_hash, msg32) == 1) { + CHECK(secp256k1_schnorr_sig_verify(&ctx->ecmult_ctx, sig64, &Q, &test_schnorr_hash, msg32) == 1); + } +} + +void run_schnorr_tests(void) { + int i; + for (i = 0; i < 32*count; i++) { + test_schnorr_end_to_end(); + } + for (i = 0; i < 32 * count; i++) { + test_schnorr_sign_verify(); + } + for (i = 0; i < 16 * count; i++) { + test_schnorr_recovery(); + } + for (i = 0; i < 10 * count; i++) { + test_schnorr_threshold(); + } +} + +#endif diff --git a/crypto/secp256k1/secp256k1/src/num.h b/crypto/secp256k1/libsecp256k1/src/num.h index 339b6bb6e..ebfa71eb4 100644 --- a/crypto/secp256k1/secp256k1/src/num.h +++ b/crypto/secp256k1/libsecp256k1/src/num.h @@ -20,48 +20,48 @@ #endif /** Copy a number. */ -static void secp256k1_num_copy(secp256k1_num_t *r, const secp256k1_num_t *a); +static void secp256k1_num_copy(secp256k1_num *r, const secp256k1_num *a); /** Convert a number's absolute value to a binary big-endian string. * There must be enough place. */ -static void secp256k1_num_get_bin(unsigned char *r, unsigned int rlen, const secp256k1_num_t *a); +static void secp256k1_num_get_bin(unsigned char *r, unsigned int rlen, const secp256k1_num *a); /** Set a number to the value of a binary big-endian string. */ -static void secp256k1_num_set_bin(secp256k1_num_t *r, const unsigned char *a, unsigned int alen); +static void secp256k1_num_set_bin(secp256k1_num *r, const unsigned char *a, unsigned int alen); /** Compute a modular inverse. The input must be less than the modulus. */ -static void secp256k1_num_mod_inverse(secp256k1_num_t *r, const secp256k1_num_t *a, const secp256k1_num_t *m); +static void secp256k1_num_mod_inverse(secp256k1_num *r, const secp256k1_num *a, const secp256k1_num *m); /** Compare the absolute value of two numbers. */ -static int secp256k1_num_cmp(const secp256k1_num_t *a, const secp256k1_num_t *b); +static int secp256k1_num_cmp(const secp256k1_num *a, const secp256k1_num *b); /** Test whether two number are equal (including sign). */ -static int secp256k1_num_eq(const secp256k1_num_t *a, const secp256k1_num_t *b); +static int secp256k1_num_eq(const secp256k1_num *a, const secp256k1_num *b); /** Add two (signed) numbers. */ -static void secp256k1_num_add(secp256k1_num_t *r, const secp256k1_num_t *a, const secp256k1_num_t *b); +static void secp256k1_num_add(secp256k1_num *r, const secp256k1_num *a, const secp256k1_num *b); /** Subtract two (signed) numbers. */ -static void secp256k1_num_sub(secp256k1_num_t *r, const secp256k1_num_t *a, const secp256k1_num_t *b); +static void secp256k1_num_sub(secp256k1_num *r, const secp256k1_num *a, const secp256k1_num *b); /** Multiply two (signed) numbers. */ -static void secp256k1_num_mul(secp256k1_num_t *r, const secp256k1_num_t *a, const secp256k1_num_t *b); +static void secp256k1_num_mul(secp256k1_num *r, const secp256k1_num *a, const secp256k1_num *b); /** Replace a number by its remainder modulo m. M's sign is ignored. The result is a number between 0 and m-1, even if r was negative. */ -static void secp256k1_num_mod(secp256k1_num_t *r, const secp256k1_num_t *m); +static void secp256k1_num_mod(secp256k1_num *r, const secp256k1_num *m); /** Right-shift the passed number by bits bits. */ -static void secp256k1_num_shift(secp256k1_num_t *r, int bits); +static void secp256k1_num_shift(secp256k1_num *r, int bits); /** Check whether a number is zero. */ -static int secp256k1_num_is_zero(const secp256k1_num_t *a); +static int secp256k1_num_is_zero(const secp256k1_num *a); /** Check whether a number is strictly negative. */ -static int secp256k1_num_is_neg(const secp256k1_num_t *a); +static int secp256k1_num_is_neg(const secp256k1_num *a); /** Change a number's sign. */ -static void secp256k1_num_negate(secp256k1_num_t *r); +static void secp256k1_num_negate(secp256k1_num *r); #endif diff --git a/crypto/secp256k1/secp256k1/src/num_gmp.h b/crypto/secp256k1/libsecp256k1/src/num_gmp.h index baa1f2bf2..7dd813088 100644 --- a/crypto/secp256k1/secp256k1/src/num_gmp.h +++ b/crypto/secp256k1/libsecp256k1/src/num_gmp.h @@ -15,6 +15,6 @@ typedef struct { mp_limb_t data[2*NUM_LIMBS]; int neg; int limbs; -} secp256k1_num_t; +} secp256k1_num; #endif diff --git a/crypto/secp256k1/secp256k1/src/num_gmp_impl.h b/crypto/secp256k1/libsecp256k1/src/num_gmp_impl.h index dbbc458d5..f43e7a56c 100644 --- a/crypto/secp256k1/secp256k1/src/num_gmp_impl.h +++ b/crypto/secp256k1/libsecp256k1/src/num_gmp_impl.h @@ -15,18 +15,18 @@ #include "num.h" #ifdef VERIFY -static void secp256k1_num_sanity(const secp256k1_num_t *a) { +static void secp256k1_num_sanity(const secp256k1_num *a) { VERIFY_CHECK(a->limbs == 1 || (a->limbs > 1 && a->data[a->limbs-1] != 0)); } #else #define secp256k1_num_sanity(a) do { } while(0) #endif -static void secp256k1_num_copy(secp256k1_num_t *r, const secp256k1_num_t *a) { +static void secp256k1_num_copy(secp256k1_num *r, const secp256k1_num *a) { *r = *a; } -static void secp256k1_num_get_bin(unsigned char *r, unsigned int rlen, const secp256k1_num_t *a) { +static void secp256k1_num_get_bin(unsigned char *r, unsigned int rlen, const secp256k1_num *a) { unsigned char tmp[65]; int len = 0; int shift = 0; @@ -42,7 +42,7 @@ static void secp256k1_num_get_bin(unsigned char *r, unsigned int rlen, const sec memset(tmp, 0, sizeof(tmp)); } -static void secp256k1_num_set_bin(secp256k1_num_t *r, const unsigned char *a, unsigned int alen) { +static void secp256k1_num_set_bin(secp256k1_num *r, const unsigned char *a, unsigned int alen) { int len; VERIFY_CHECK(alen > 0); VERIFY_CHECK(alen <= 64); @@ -59,7 +59,7 @@ static void secp256k1_num_set_bin(secp256k1_num_t *r, const unsigned char *a, un } } -static void secp256k1_num_add_abs(secp256k1_num_t *r, const secp256k1_num_t *a, const secp256k1_num_t *b) { +static void secp256k1_num_add_abs(secp256k1_num *r, const secp256k1_num *a, const secp256k1_num *b) { mp_limb_t c = mpn_add(r->data, a->data, a->limbs, b->data, b->limbs); r->limbs = a->limbs; if (c != 0) { @@ -68,7 +68,7 @@ static void secp256k1_num_add_abs(secp256k1_num_t *r, const secp256k1_num_t *a, } } -static void secp256k1_num_sub_abs(secp256k1_num_t *r, const secp256k1_num_t *a, const secp256k1_num_t *b) { +static void secp256k1_num_sub_abs(secp256k1_num *r, const secp256k1_num *a, const secp256k1_num *b) { mp_limb_t c = mpn_sub(r->data, a->data, a->limbs, b->data, b->limbs); VERIFY_CHECK(c == 0); r->limbs = a->limbs; @@ -77,7 +77,7 @@ static void secp256k1_num_sub_abs(secp256k1_num_t *r, const secp256k1_num_t *a, } } -static void secp256k1_num_mod(secp256k1_num_t *r, const secp256k1_num_t *m) { +static void secp256k1_num_mod(secp256k1_num *r, const secp256k1_num *m) { secp256k1_num_sanity(r); secp256k1_num_sanity(m); @@ -97,7 +97,7 @@ static void secp256k1_num_mod(secp256k1_num_t *r, const secp256k1_num_t *m) { } } -static void secp256k1_num_mod_inverse(secp256k1_num_t *r, const secp256k1_num_t *a, const secp256k1_num_t *m) { +static void secp256k1_num_mod_inverse(secp256k1_num *r, const secp256k1_num *a, const secp256k1_num *m) { int i; mp_limb_t g[NUM_LIMBS+1]; mp_limb_t u[NUM_LIMBS+1]; @@ -142,15 +142,15 @@ static void secp256k1_num_mod_inverse(secp256k1_num_t *r, const secp256k1_num_t memset(v, 0, sizeof(v)); } -static int secp256k1_num_is_zero(const secp256k1_num_t *a) { +static int secp256k1_num_is_zero(const secp256k1_num *a) { return (a->limbs == 1 && a->data[0] == 0); } -static int secp256k1_num_is_neg(const secp256k1_num_t *a) { +static int secp256k1_num_is_neg(const secp256k1_num *a) { return (a->limbs > 1 || a->data[0] != 0) && a->neg; } -static int secp256k1_num_cmp(const secp256k1_num_t *a, const secp256k1_num_t *b) { +static int secp256k1_num_cmp(const secp256k1_num *a, const secp256k1_num *b) { if (a->limbs > b->limbs) { return 1; } @@ -160,7 +160,7 @@ static int secp256k1_num_cmp(const secp256k1_num_t *a, const secp256k1_num_t *b) return mpn_cmp(a->data, b->data, a->limbs); } -static int secp256k1_num_eq(const secp256k1_num_t *a, const secp256k1_num_t *b) { +static int secp256k1_num_eq(const secp256k1_num *a, const secp256k1_num *b) { if (a->limbs > b->limbs) { return 0; } @@ -173,7 +173,7 @@ static int secp256k1_num_eq(const secp256k1_num_t *a, const secp256k1_num_t *b) return mpn_cmp(a->data, b->data, a->limbs) == 0; } -static void secp256k1_num_subadd(secp256k1_num_t *r, const secp256k1_num_t *a, const secp256k1_num_t *b, int bneg) { +static void secp256k1_num_subadd(secp256k1_num *r, const secp256k1_num *a, const secp256k1_num *b, int bneg) { if (!(b->neg ^ bneg ^ a->neg)) { /* a and b have the same sign */ r->neg = a->neg; if (a->limbs >= b->limbs) { @@ -192,19 +192,19 @@ static void secp256k1_num_subadd(secp256k1_num_t *r, const secp256k1_num_t *a, c } } -static void secp256k1_num_add(secp256k1_num_t *r, const secp256k1_num_t *a, const secp256k1_num_t *b) { +static void secp256k1_num_add(secp256k1_num *r, const secp256k1_num *a, const secp256k1_num *b) { secp256k1_num_sanity(a); secp256k1_num_sanity(b); secp256k1_num_subadd(r, a, b, 0); } -static void secp256k1_num_sub(secp256k1_num_t *r, const secp256k1_num_t *a, const secp256k1_num_t *b) { +static void secp256k1_num_sub(secp256k1_num *r, const secp256k1_num *a, const secp256k1_num *b) { secp256k1_num_sanity(a); secp256k1_num_sanity(b); secp256k1_num_subadd(r, a, b, 1); } -static void secp256k1_num_mul(secp256k1_num_t *r, const secp256k1_num_t *a, const secp256k1_num_t *b) { +static void secp256k1_num_mul(secp256k1_num *r, const secp256k1_num *a, const secp256k1_num *b) { mp_limb_t tmp[2*NUM_LIMBS+1]; secp256k1_num_sanity(a); secp256k1_num_sanity(b); @@ -231,13 +231,13 @@ static void secp256k1_num_mul(secp256k1_num_t *r, const secp256k1_num_t *a, cons memset(tmp, 0, sizeof(tmp)); } -static void secp256k1_num_shift(secp256k1_num_t *r, int bits) { - int i; +static void secp256k1_num_shift(secp256k1_num *r, int bits) { if (bits % GMP_NUMB_BITS) { /* Shift within limbs. */ mpn_rshift(r->data, r->data, r->limbs, bits % GMP_NUMB_BITS); } if (bits >= GMP_NUMB_BITS) { + int i; /* Shift full limbs. */ for (i = 0; i < r->limbs; i++) { int index = i + (bits / GMP_NUMB_BITS); @@ -253,7 +253,7 @@ static void secp256k1_num_shift(secp256k1_num_t *r, int bits) { } } -static void secp256k1_num_negate(secp256k1_num_t *r) { +static void secp256k1_num_negate(secp256k1_num *r) { r->neg ^= 1; } diff --git a/crypto/secp256k1/secp256k1/src/num_impl.h b/crypto/secp256k1/libsecp256k1/src/num_impl.h index 0b0e3a072..0b0e3a072 100644 --- a/crypto/secp256k1/secp256k1/src/num_impl.h +++ b/crypto/secp256k1/libsecp256k1/src/num_impl.h diff --git a/crypto/secp256k1/libsecp256k1/src/scalar.h b/crypto/secp256k1/libsecp256k1/src/scalar.h new file mode 100644 index 000000000..b590ccd6d --- /dev/null +++ b/crypto/secp256k1/libsecp256k1/src/scalar.h @@ -0,0 +1,104 @@ +/********************************************************************** + * Copyright (c) 2014 Pieter Wuille * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or http://www.opensource.org/licenses/mit-license.php.* + **********************************************************************/ + +#ifndef _SECP256K1_SCALAR_ +#define _SECP256K1_SCALAR_ + +#include "num.h" + +#if defined HAVE_CONFIG_H +#include "libsecp256k1-config.h" +#endif + +#if defined(USE_SCALAR_4X64) +#include "scalar_4x64.h" +#elif defined(USE_SCALAR_8X32) +#include "scalar_8x32.h" +#else +#error "Please select scalar implementation" +#endif + +/** Clear a scalar to prevent the leak of sensitive data. */ +static void secp256k1_scalar_clear(secp256k1_scalar *r); + +/** Access bits from a scalar. All requested bits must belong to the same 32-bit limb. */ +static unsigned int secp256k1_scalar_get_bits(const secp256k1_scalar *a, unsigned int offset, unsigned int count); + +/** Access bits from a scalar. Not constant time. */ +static unsigned int secp256k1_scalar_get_bits_var(const secp256k1_scalar *a, unsigned int offset, unsigned int count); + +/** Set a scalar from a big endian byte array. */ +static void secp256k1_scalar_set_b32(secp256k1_scalar *r, const unsigned char *bin, int *overflow); + +/** Set a scalar to an unsigned integer. */ +static void secp256k1_scalar_set_int(secp256k1_scalar *r, unsigned int v); + +/** Convert a scalar to a byte array. */ +static void secp256k1_scalar_get_b32(unsigned char *bin, const secp256k1_scalar* a); + +/** Add two scalars together (modulo the group order). Returns whether it overflowed. */ +static int secp256k1_scalar_add(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b); + +/** Conditionally add a power of two to a scalar. The result is not allowed to overflow. */ +static void secp256k1_scalar_cadd_bit(secp256k1_scalar *r, unsigned int bit, int flag); + +/** Multiply two scalars (modulo the group order). */ +static void secp256k1_scalar_mul(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b); + +/** Shift a scalar right by some amount strictly between 0 and 16, returning + * the low bits that were shifted off */ +static int secp256k1_scalar_shr_int(secp256k1_scalar *r, int n); + +/** Compute the square of a scalar (modulo the group order). */ +static void secp256k1_scalar_sqr(secp256k1_scalar *r, const secp256k1_scalar *a); + +/** Compute the inverse of a scalar (modulo the group order). */ +static void secp256k1_scalar_inverse(secp256k1_scalar *r, const secp256k1_scalar *a); + +/** Compute the inverse of a scalar (modulo the group order), without constant-time guarantee. */ +static void secp256k1_scalar_inverse_var(secp256k1_scalar *r, const secp256k1_scalar *a); + +/** Compute the complement of a scalar (modulo the group order). */ +static void secp256k1_scalar_negate(secp256k1_scalar *r, const secp256k1_scalar *a); + +/** Check whether a scalar equals zero. */ +static int secp256k1_scalar_is_zero(const secp256k1_scalar *a); + +/** Check whether a scalar equals one. */ +static int secp256k1_scalar_is_one(const secp256k1_scalar *a); + +/** Check whether a scalar, considered as an nonnegative integer, is even. */ +static int secp256k1_scalar_is_even(const secp256k1_scalar *a); + +/** Check whether a scalar is higher than the group order divided by 2. */ +static int secp256k1_scalar_is_high(const secp256k1_scalar *a); + +/** Conditionally negate a number, in constant time. + * Returns -1 if the number was negated, 1 otherwise */ +static int secp256k1_scalar_cond_negate(secp256k1_scalar *a, int flag); + +#ifndef USE_NUM_NONE +/** Convert a scalar to a number. */ +static void secp256k1_scalar_get_num(secp256k1_num *r, const secp256k1_scalar *a); + +/** Get the order of the group as a number. */ +static void secp256k1_scalar_order_get_num(secp256k1_num *r); +#endif + +/** Compare two scalars. */ +static int secp256k1_scalar_eq(const secp256k1_scalar *a, const secp256k1_scalar *b); + +#ifdef USE_ENDOMORPHISM +/** Find r1 and r2 such that r1+r2*2^128 = a. */ +static void secp256k1_scalar_split_128(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *a); +/** Find r1 and r2 such that r1+r2*lambda = a, and r1 and r2 are maximum 128 bits long (see secp256k1_gej_mul_lambda). */ +static void secp256k1_scalar_split_lambda(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *a); +#endif + +/** Multiply a and b (without taking the modulus!), divide by 2**shift, and round to the nearest integer. Shift must be at least 256. */ +static void secp256k1_scalar_mul_shift_var(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b, unsigned int shift); + +#endif diff --git a/crypto/secp256k1/secp256k1/src/scalar_4x64.h b/crypto/secp256k1/libsecp256k1/src/scalar_4x64.h index 82899aa7b..cff406038 100644 --- a/crypto/secp256k1/secp256k1/src/scalar_4x64.h +++ b/crypto/secp256k1/libsecp256k1/src/scalar_4x64.h @@ -12,7 +12,7 @@ /** A scalar modulo the group order of the secp256k1 curve. */ typedef struct { uint64_t d[4]; -} secp256k1_scalar_t; +} secp256k1_scalar; #define SECP256K1_SCALAR_CONST(d7, d6, d5, d4, d3, d2, d1, d0) {{((uint64_t)(d1)) << 32 | (d0), ((uint64_t)(d3)) << 32 | (d2), ((uint64_t)(d5)) << 32 | (d4), ((uint64_t)(d7)) << 32 | (d6)}} diff --git a/crypto/secp256k1/secp256k1/src/scalar_4x64_impl.h b/crypto/secp256k1/libsecp256k1/src/scalar_4x64_impl.h index ff365292f..cbec34d71 100644 --- a/crypto/secp256k1/secp256k1/src/scalar_4x64_impl.h +++ b/crypto/secp256k1/libsecp256k1/src/scalar_4x64_impl.h @@ -24,26 +24,26 @@ #define SECP256K1_N_H_2 ((uint64_t)0xFFFFFFFFFFFFFFFFULL) #define SECP256K1_N_H_3 ((uint64_t)0x7FFFFFFFFFFFFFFFULL) -SECP256K1_INLINE static void secp256k1_scalar_clear(secp256k1_scalar_t *r) { +SECP256K1_INLINE static void secp256k1_scalar_clear(secp256k1_scalar *r) { r->d[0] = 0; r->d[1] = 0; r->d[2] = 0; r->d[3] = 0; } -SECP256K1_INLINE static void secp256k1_scalar_set_int(secp256k1_scalar_t *r, unsigned int v) { +SECP256K1_INLINE static void secp256k1_scalar_set_int(secp256k1_scalar *r, unsigned int v) { r->d[0] = v; r->d[1] = 0; r->d[2] = 0; r->d[3] = 0; } -SECP256K1_INLINE static unsigned int secp256k1_scalar_get_bits(const secp256k1_scalar_t *a, unsigned int offset, unsigned int count) { +SECP256K1_INLINE static unsigned int secp256k1_scalar_get_bits(const secp256k1_scalar *a, unsigned int offset, unsigned int count) { VERIFY_CHECK((offset + count - 1) >> 6 == offset >> 6); return (a->d[offset >> 6] >> (offset & 0x3F)) & ((((uint64_t)1) << count) - 1); } -SECP256K1_INLINE static unsigned int secp256k1_scalar_get_bits_var(const secp256k1_scalar_t *a, unsigned int offset, unsigned int count) { +SECP256K1_INLINE static unsigned int secp256k1_scalar_get_bits_var(const secp256k1_scalar *a, unsigned int offset, unsigned int count) { VERIFY_CHECK(count < 32); VERIFY_CHECK(offset + count <= 256); if ((offset + count - 1) >> 6 == offset >> 6) { @@ -54,7 +54,7 @@ SECP256K1_INLINE static unsigned int secp256k1_scalar_get_bits_var(const secp256 } } -SECP256K1_INLINE static int secp256k1_scalar_check_overflow(const secp256k1_scalar_t *a) { +SECP256K1_INLINE static int secp256k1_scalar_check_overflow(const secp256k1_scalar *a) { int yes = 0; int no = 0; no |= (a->d[3] < SECP256K1_N_3); /* No need for a > check. */ @@ -66,7 +66,7 @@ SECP256K1_INLINE static int secp256k1_scalar_check_overflow(const secp256k1_scal return yes; } -SECP256K1_INLINE static int secp256k1_scalar_reduce(secp256k1_scalar_t *r, unsigned int overflow) { +SECP256K1_INLINE static int secp256k1_scalar_reduce(secp256k1_scalar *r, unsigned int overflow) { uint128_t t; VERIFY_CHECK(overflow <= 1); t = (uint128_t)r->d[0] + overflow * SECP256K1_N_C_0; @@ -80,7 +80,7 @@ SECP256K1_INLINE static int secp256k1_scalar_reduce(secp256k1_scalar_t *r, unsig return overflow; } -static int secp256k1_scalar_add(secp256k1_scalar_t *r, const secp256k1_scalar_t *a, const secp256k1_scalar_t *b) { +static int secp256k1_scalar_add(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b) { int overflow; uint128_t t = (uint128_t)a->d[0] + b->d[0]; r->d[0] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64; @@ -96,9 +96,10 @@ static int secp256k1_scalar_add(secp256k1_scalar_t *r, const secp256k1_scalar_t return overflow; } -static void secp256k1_scalar_add_bit(secp256k1_scalar_t *r, unsigned int bit) { +static void secp256k1_scalar_cadd_bit(secp256k1_scalar *r, unsigned int bit, int flag) { uint128_t t; VERIFY_CHECK(bit < 256); + bit += ((uint32_t) flag - 1) & 0x100; /* forcing (bit >> 6) > 3 makes this a noop */ t = (uint128_t)r->d[0] + (((uint64_t)((bit >> 6) == 0)) << (bit & 0x3F)); r->d[0] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64; t += (uint128_t)r->d[1] + (((uint64_t)((bit >> 6) == 1)) << (bit & 0x3F)); @@ -113,7 +114,7 @@ static void secp256k1_scalar_add_bit(secp256k1_scalar_t *r, unsigned int bit) { #endif } -static void secp256k1_scalar_set_b32(secp256k1_scalar_t *r, const unsigned char *b32, int *overflow) { +static void secp256k1_scalar_set_b32(secp256k1_scalar *r, const unsigned char *b32, int *overflow) { int over; r->d[0] = (uint64_t)b32[31] | (uint64_t)b32[30] << 8 | (uint64_t)b32[29] << 16 | (uint64_t)b32[28] << 24 | (uint64_t)b32[27] << 32 | (uint64_t)b32[26] << 40 | (uint64_t)b32[25] << 48 | (uint64_t)b32[24] << 56; r->d[1] = (uint64_t)b32[23] | (uint64_t)b32[22] << 8 | (uint64_t)b32[21] << 16 | (uint64_t)b32[20] << 24 | (uint64_t)b32[19] << 32 | (uint64_t)b32[18] << 40 | (uint64_t)b32[17] << 48 | (uint64_t)b32[16] << 56; @@ -125,18 +126,18 @@ static void secp256k1_scalar_set_b32(secp256k1_scalar_t *r, const unsigned char } } -static void secp256k1_scalar_get_b32(unsigned char *bin, const secp256k1_scalar_t* a) { +static void secp256k1_scalar_get_b32(unsigned char *bin, const secp256k1_scalar* a) { bin[0] = a->d[3] >> 56; bin[1] = a->d[3] >> 48; bin[2] = a->d[3] >> 40; bin[3] = a->d[3] >> 32; bin[4] = a->d[3] >> 24; bin[5] = a->d[3] >> 16; bin[6] = a->d[3] >> 8; bin[7] = a->d[3]; bin[8] = a->d[2] >> 56; bin[9] = a->d[2] >> 48; bin[10] = a->d[2] >> 40; bin[11] = a->d[2] >> 32; bin[12] = a->d[2] >> 24; bin[13] = a->d[2] >> 16; bin[14] = a->d[2] >> 8; bin[15] = a->d[2]; bin[16] = a->d[1] >> 56; bin[17] = a->d[1] >> 48; bin[18] = a->d[1] >> 40; bin[19] = a->d[1] >> 32; bin[20] = a->d[1] >> 24; bin[21] = a->d[1] >> 16; bin[22] = a->d[1] >> 8; bin[23] = a->d[1]; bin[24] = a->d[0] >> 56; bin[25] = a->d[0] >> 48; bin[26] = a->d[0] >> 40; bin[27] = a->d[0] >> 32; bin[28] = a->d[0] >> 24; bin[29] = a->d[0] >> 16; bin[30] = a->d[0] >> 8; bin[31] = a->d[0]; } -SECP256K1_INLINE static int secp256k1_scalar_is_zero(const secp256k1_scalar_t *a) { +SECP256K1_INLINE static int secp256k1_scalar_is_zero(const secp256k1_scalar *a) { return (a->d[0] | a->d[1] | a->d[2] | a->d[3]) == 0; } -static void secp256k1_scalar_negate(secp256k1_scalar_t *r, const secp256k1_scalar_t *a) { +static void secp256k1_scalar_negate(secp256k1_scalar *r, const secp256k1_scalar *a) { uint64_t nonzero = 0xFFFFFFFFFFFFFFFFULL * (secp256k1_scalar_is_zero(a) == 0); uint128_t t = (uint128_t)(~a->d[0]) + SECP256K1_N_0 + 1; r->d[0] = t & nonzero; t >>= 64; @@ -148,11 +149,11 @@ static void secp256k1_scalar_negate(secp256k1_scalar_t *r, const secp256k1_scala r->d[3] = t & nonzero; } -SECP256K1_INLINE static int secp256k1_scalar_is_one(const secp256k1_scalar_t *a) { +SECP256K1_INLINE static int secp256k1_scalar_is_one(const secp256k1_scalar *a) { return ((a->d[0] ^ 1) | a->d[1] | a->d[2] | a->d[3]) == 0; } -static int secp256k1_scalar_is_high(const secp256k1_scalar_t *a) { +static int secp256k1_scalar_is_high(const secp256k1_scalar *a) { int yes = 0; int no = 0; no |= (a->d[3] < SECP256K1_N_H_3); @@ -164,6 +165,22 @@ static int secp256k1_scalar_is_high(const secp256k1_scalar_t *a) { return yes; } +static int secp256k1_scalar_cond_negate(secp256k1_scalar *r, int flag) { + /* If we are flag = 0, mask = 00...00 and this is a no-op; + * if we are flag = 1, mask = 11...11 and this is identical to secp256k1_scalar_negate */ + uint64_t mask = !flag - 1; + uint64_t nonzero = (secp256k1_scalar_is_zero(r) != 0) - 1; + uint128_t t = (uint128_t)(r->d[0] ^ mask) + ((SECP256K1_N_0 + 1) & mask); + r->d[0] = t & nonzero; t >>= 64; + t += (uint128_t)(r->d[1] ^ mask) + (SECP256K1_N_1 & mask); + r->d[1] = t & nonzero; t >>= 64; + t += (uint128_t)(r->d[2] ^ mask) + (SECP256K1_N_2 & mask); + r->d[2] = t & nonzero; t >>= 64; + t += (uint128_t)(r->d[3] ^ mask) + (SECP256K1_N_3 & mask); + r->d[3] = t & nonzero; + return 2 * (mask == 0) - 1; +} + /* Inspired by the macros in OpenSSL's crypto/bn/asm/x86_64-gcc.c. */ /** Add a*b to the number defined by (c0,c1,c2). c2 must never overflow. */ @@ -250,7 +267,7 @@ static int secp256k1_scalar_is_high(const secp256k1_scalar_t *a) { VERIFY_CHECK(c2 == 0); \ } -static void secp256k1_scalar_reduce_512(secp256k1_scalar_t *r, const uint64_t *l) { +static void secp256k1_scalar_reduce_512(secp256k1_scalar *r, const uint64_t *l) { #ifdef USE_ASM_X86_64 /* Reduce 512 bits into 385. */ uint64_t m0, m1, m2, m3, m4, m5, m6; @@ -559,7 +576,7 @@ static void secp256k1_scalar_reduce_512(secp256k1_scalar_t *r, const uint64_t *l secp256k1_scalar_reduce(r, c + secp256k1_scalar_check_overflow(r)); } -static void secp256k1_scalar_mul_512(uint64_t l[8], const secp256k1_scalar_t *a, const secp256k1_scalar_t *b) { +static void secp256k1_scalar_mul_512(uint64_t l[8], const secp256k1_scalar *a, const secp256k1_scalar *b) { #ifdef USE_ASM_X86_64 const uint64_t *pb = b->d; __asm__ __volatile__( @@ -721,12 +738,12 @@ static void secp256k1_scalar_mul_512(uint64_t l[8], const secp256k1_scalar_t *a, extract(l[5]); muladd_fast(a->d[3], b->d[3]); extract_fast(l[6]); - VERIFY_CHECK(c1 <= 0); + VERIFY_CHECK(c1 == 0); l[7] = c0; #endif } -static void secp256k1_scalar_sqr_512(uint64_t l[8], const secp256k1_scalar_t *a) { +static void secp256k1_scalar_sqr_512(uint64_t l[8], const secp256k1_scalar *a) { #ifdef USE_ASM_X86_64 __asm__ __volatile__( /* Preload */ @@ -871,19 +888,31 @@ static void secp256k1_scalar_sqr_512(uint64_t l[8], const secp256k1_scalar_t *a) #undef extract #undef extract_fast -static void secp256k1_scalar_mul(secp256k1_scalar_t *r, const secp256k1_scalar_t *a, const secp256k1_scalar_t *b) { +static void secp256k1_scalar_mul(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b) { uint64_t l[8]; secp256k1_scalar_mul_512(l, a, b); secp256k1_scalar_reduce_512(r, l); } -static void secp256k1_scalar_sqr(secp256k1_scalar_t *r, const secp256k1_scalar_t *a) { +static int secp256k1_scalar_shr_int(secp256k1_scalar *r, int n) { + int ret; + VERIFY_CHECK(n > 0); + VERIFY_CHECK(n < 16); + ret = r->d[0] & ((1 << n) - 1); + r->d[0] = (r->d[0] >> n) + (r->d[1] << (64 - n)); + r->d[1] = (r->d[1] >> n) + (r->d[2] << (64 - n)); + r->d[2] = (r->d[2] >> n) + (r->d[3] << (64 - n)); + r->d[3] = (r->d[3] >> n); + return ret; +} + +static void secp256k1_scalar_sqr(secp256k1_scalar *r, const secp256k1_scalar *a) { uint64_t l[8]; secp256k1_scalar_sqr_512(l, a); secp256k1_scalar_reduce_512(r, l); } -static void secp256k1_scalar_split_128(secp256k1_scalar_t *r1, secp256k1_scalar_t *r2, const secp256k1_scalar_t *a) { +static void secp256k1_scalar_split_128(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *a) { r1->d[0] = a->d[0]; r1->d[1] = a->d[1]; r1->d[2] = 0; @@ -894,11 +923,11 @@ static void secp256k1_scalar_split_128(secp256k1_scalar_t *r1, secp256k1_scalar_ r2->d[3] = 0; } -SECP256K1_INLINE static int secp256k1_scalar_eq(const secp256k1_scalar_t *a, const secp256k1_scalar_t *b) { +SECP256K1_INLINE static int secp256k1_scalar_eq(const secp256k1_scalar *a, const secp256k1_scalar *b) { return ((a->d[0] ^ b->d[0]) | (a->d[1] ^ b->d[1]) | (a->d[2] ^ b->d[2]) | (a->d[3] ^ b->d[3])) == 0; } -SECP256K1_INLINE static void secp256k1_scalar_mul_shift_var(secp256k1_scalar_t *r, const secp256k1_scalar_t *a, const secp256k1_scalar_t *b, unsigned int shift) { +SECP256K1_INLINE static void secp256k1_scalar_mul_shift_var(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b, unsigned int shift) { uint64_t l[8]; unsigned int shiftlimbs; unsigned int shiftlow; @@ -912,9 +941,7 @@ SECP256K1_INLINE static void secp256k1_scalar_mul_shift_var(secp256k1_scalar_t * r->d[1] = shift < 448 ? (l[1 + shiftlimbs] >> shiftlow | (shift < 384 && shiftlow ? (l[2 + shiftlimbs] << shifthigh) : 0)) : 0; r->d[2] = shift < 384 ? (l[2 + shiftlimbs] >> shiftlow | (shift < 320 && shiftlow ? (l[3 + shiftlimbs] << shifthigh) : 0)) : 0; r->d[3] = shift < 320 ? (l[3 + shiftlimbs] >> shiftlow) : 0; - if ((l[(shift - 1) >> 6] >> ((shift - 1) & 0x3f)) & 1) { - secp256k1_scalar_add_bit(r, 0); - } + secp256k1_scalar_cadd_bit(r, 0, (l[(shift - 1) >> 6] >> ((shift - 1) & 0x3f)) & 1); } #endif diff --git a/crypto/secp256k1/secp256k1/src/scalar_8x32.h b/crypto/secp256k1/libsecp256k1/src/scalar_8x32.h index f17017e24..1319664f6 100644 --- a/crypto/secp256k1/secp256k1/src/scalar_8x32.h +++ b/crypto/secp256k1/libsecp256k1/src/scalar_8x32.h @@ -12,7 +12,7 @@ /** A scalar modulo the group order of the secp256k1 curve. */ typedef struct { uint32_t d[8]; -} secp256k1_scalar_t; +} secp256k1_scalar; #define SECP256K1_SCALAR_CONST(d7, d6, d5, d4, d3, d2, d1, d0) {{(d0), (d1), (d2), (d3), (d4), (d5), (d6), (d7)}} diff --git a/crypto/secp256k1/secp256k1/src/scalar_8x32_impl.h b/crypto/secp256k1/libsecp256k1/src/scalar_8x32_impl.h index 22b31d411..aae4f35c0 100644 --- a/crypto/secp256k1/secp256k1/src/scalar_8x32_impl.h +++ b/crypto/secp256k1/libsecp256k1/src/scalar_8x32_impl.h @@ -34,7 +34,7 @@ #define SECP256K1_N_H_6 ((uint32_t)0xFFFFFFFFUL) #define SECP256K1_N_H_7 ((uint32_t)0x7FFFFFFFUL) -SECP256K1_INLINE static void secp256k1_scalar_clear(secp256k1_scalar_t *r) { +SECP256K1_INLINE static void secp256k1_scalar_clear(secp256k1_scalar *r) { r->d[0] = 0; r->d[1] = 0; r->d[2] = 0; @@ -45,7 +45,7 @@ SECP256K1_INLINE static void secp256k1_scalar_clear(secp256k1_scalar_t *r) { r->d[7] = 0; } -SECP256K1_INLINE static void secp256k1_scalar_set_int(secp256k1_scalar_t *r, unsigned int v) { +SECP256K1_INLINE static void secp256k1_scalar_set_int(secp256k1_scalar *r, unsigned int v) { r->d[0] = v; r->d[1] = 0; r->d[2] = 0; @@ -56,12 +56,12 @@ SECP256K1_INLINE static void secp256k1_scalar_set_int(secp256k1_scalar_t *r, uns r->d[7] = 0; } -SECP256K1_INLINE static unsigned int secp256k1_scalar_get_bits(const secp256k1_scalar_t *a, unsigned int offset, unsigned int count) { +SECP256K1_INLINE static unsigned int secp256k1_scalar_get_bits(const secp256k1_scalar *a, unsigned int offset, unsigned int count) { VERIFY_CHECK((offset + count - 1) >> 5 == offset >> 5); return (a->d[offset >> 5] >> (offset & 0x1F)) & ((1 << count) - 1); } -SECP256K1_INLINE static unsigned int secp256k1_scalar_get_bits_var(const secp256k1_scalar_t *a, unsigned int offset, unsigned int count) { +SECP256K1_INLINE static unsigned int secp256k1_scalar_get_bits_var(const secp256k1_scalar *a, unsigned int offset, unsigned int count) { VERIFY_CHECK(count < 32); VERIFY_CHECK(offset + count <= 256); if ((offset + count - 1) >> 5 == offset >> 5) { @@ -72,7 +72,7 @@ SECP256K1_INLINE static unsigned int secp256k1_scalar_get_bits_var(const secp256 } } -SECP256K1_INLINE static int secp256k1_scalar_check_overflow(const secp256k1_scalar_t *a) { +SECP256K1_INLINE static int secp256k1_scalar_check_overflow(const secp256k1_scalar *a) { int yes = 0; int no = 0; no |= (a->d[7] < SECP256K1_N_7); /* No need for a > check. */ @@ -90,7 +90,7 @@ SECP256K1_INLINE static int secp256k1_scalar_check_overflow(const secp256k1_scal return yes; } -SECP256K1_INLINE static int secp256k1_scalar_reduce(secp256k1_scalar_t *r, uint32_t overflow) { +SECP256K1_INLINE static int secp256k1_scalar_reduce(secp256k1_scalar *r, uint32_t overflow) { uint64_t t; VERIFY_CHECK(overflow <= 1); t = (uint64_t)r->d[0] + overflow * SECP256K1_N_C_0; @@ -112,7 +112,7 @@ SECP256K1_INLINE static int secp256k1_scalar_reduce(secp256k1_scalar_t *r, uint3 return overflow; } -static int secp256k1_scalar_add(secp256k1_scalar_t *r, const secp256k1_scalar_t *a, const secp256k1_scalar_t *b) { +static int secp256k1_scalar_add(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b) { int overflow; uint64_t t = (uint64_t)a->d[0] + b->d[0]; r->d[0] = t & 0xFFFFFFFFULL; t >>= 32; @@ -136,9 +136,10 @@ static int secp256k1_scalar_add(secp256k1_scalar_t *r, const secp256k1_scalar_t return overflow; } -static void secp256k1_scalar_add_bit(secp256k1_scalar_t *r, unsigned int bit) { +static void secp256k1_scalar_cadd_bit(secp256k1_scalar *r, unsigned int bit, int flag) { uint64_t t; VERIFY_CHECK(bit < 256); + bit += ((uint32_t) flag - 1) & 0x100; /* forcing (bit >> 5) > 7 makes this a noop */ t = (uint64_t)r->d[0] + (((uint32_t)((bit >> 5) == 0)) << (bit & 0x1F)); r->d[0] = t & 0xFFFFFFFFULL; t >>= 32; t += (uint64_t)r->d[1] + (((uint32_t)((bit >> 5) == 1)) << (bit & 0x1F)); @@ -161,7 +162,7 @@ static void secp256k1_scalar_add_bit(secp256k1_scalar_t *r, unsigned int bit) { #endif } -static void secp256k1_scalar_set_b32(secp256k1_scalar_t *r, const unsigned char *b32, int *overflow) { +static void secp256k1_scalar_set_b32(secp256k1_scalar *r, const unsigned char *b32, int *overflow) { int over; r->d[0] = (uint32_t)b32[31] | (uint32_t)b32[30] << 8 | (uint32_t)b32[29] << 16 | (uint32_t)b32[28] << 24; r->d[1] = (uint32_t)b32[27] | (uint32_t)b32[26] << 8 | (uint32_t)b32[25] << 16 | (uint32_t)b32[24] << 24; @@ -177,7 +178,7 @@ static void secp256k1_scalar_set_b32(secp256k1_scalar_t *r, const unsigned char } } -static void secp256k1_scalar_get_b32(unsigned char *bin, const secp256k1_scalar_t* a) { +static void secp256k1_scalar_get_b32(unsigned char *bin, const secp256k1_scalar* a) { bin[0] = a->d[7] >> 24; bin[1] = a->d[7] >> 16; bin[2] = a->d[7] >> 8; bin[3] = a->d[7]; bin[4] = a->d[6] >> 24; bin[5] = a->d[6] >> 16; bin[6] = a->d[6] >> 8; bin[7] = a->d[6]; bin[8] = a->d[5] >> 24; bin[9] = a->d[5] >> 16; bin[10] = a->d[5] >> 8; bin[11] = a->d[5]; @@ -188,11 +189,11 @@ static void secp256k1_scalar_get_b32(unsigned char *bin, const secp256k1_scalar_ bin[28] = a->d[0] >> 24; bin[29] = a->d[0] >> 16; bin[30] = a->d[0] >> 8; bin[31] = a->d[0]; } -SECP256K1_INLINE static int secp256k1_scalar_is_zero(const secp256k1_scalar_t *a) { +SECP256K1_INLINE static int secp256k1_scalar_is_zero(const secp256k1_scalar *a) { return (a->d[0] | a->d[1] | a->d[2] | a->d[3] | a->d[4] | a->d[5] | a->d[6] | a->d[7]) == 0; } -static void secp256k1_scalar_negate(secp256k1_scalar_t *r, const secp256k1_scalar_t *a) { +static void secp256k1_scalar_negate(secp256k1_scalar *r, const secp256k1_scalar *a) { uint32_t nonzero = 0xFFFFFFFFUL * (secp256k1_scalar_is_zero(a) == 0); uint64_t t = (uint64_t)(~a->d[0]) + SECP256K1_N_0 + 1; r->d[0] = t & nonzero; t >>= 32; @@ -212,11 +213,11 @@ static void secp256k1_scalar_negate(secp256k1_scalar_t *r, const secp256k1_scala r->d[7] = t & nonzero; } -SECP256K1_INLINE static int secp256k1_scalar_is_one(const secp256k1_scalar_t *a) { +SECP256K1_INLINE static int secp256k1_scalar_is_one(const secp256k1_scalar *a) { return ((a->d[0] ^ 1) | a->d[1] | a->d[2] | a->d[3] | a->d[4] | a->d[5] | a->d[6] | a->d[7]) == 0; } -static int secp256k1_scalar_is_high(const secp256k1_scalar_t *a) { +static int secp256k1_scalar_is_high(const secp256k1_scalar *a) { int yes = 0; int no = 0; no |= (a->d[7] < SECP256K1_N_H_7); @@ -234,6 +235,31 @@ static int secp256k1_scalar_is_high(const secp256k1_scalar_t *a) { return yes; } +static int secp256k1_scalar_cond_negate(secp256k1_scalar *r, int flag) { + /* If we are flag = 0, mask = 00...00 and this is a no-op; + * if we are flag = 1, mask = 11...11 and this is identical to secp256k1_scalar_negate */ + uint32_t mask = !flag - 1; + uint32_t nonzero = 0xFFFFFFFFUL * (secp256k1_scalar_is_zero(r) == 0); + uint64_t t = (uint64_t)(r->d[0] ^ mask) + ((SECP256K1_N_0 + 1) & mask); + r->d[0] = t & nonzero; t >>= 32; + t += (uint64_t)(r->d[1] ^ mask) + (SECP256K1_N_1 & mask); + r->d[1] = t & nonzero; t >>= 32; + t += (uint64_t)(r->d[2] ^ mask) + (SECP256K1_N_2 & mask); + r->d[2] = t & nonzero; t >>= 32; + t += (uint64_t)(r->d[3] ^ mask) + (SECP256K1_N_3 & mask); + r->d[3] = t & nonzero; t >>= 32; + t += (uint64_t)(r->d[4] ^ mask) + (SECP256K1_N_4 & mask); + r->d[4] = t & nonzero; t >>= 32; + t += (uint64_t)(r->d[5] ^ mask) + (SECP256K1_N_5 & mask); + r->d[5] = t & nonzero; t >>= 32; + t += (uint64_t)(r->d[6] ^ mask) + (SECP256K1_N_6 & mask); + r->d[6] = t & nonzero; t >>= 32; + t += (uint64_t)(r->d[7] ^ mask) + (SECP256K1_N_7 & mask); + r->d[7] = t & nonzero; + return 2 * (mask == 0) - 1; +} + + /* Inspired by the macros in OpenSSL's crypto/bn/asm/x86_64-gcc.c. */ /** Add a*b to the number defined by (c0,c1,c2). c2 must never overflow. */ @@ -320,7 +346,7 @@ static int secp256k1_scalar_is_high(const secp256k1_scalar_t *a) { VERIFY_CHECK(c2 == 0); \ } -static void secp256k1_scalar_reduce_512(secp256k1_scalar_t *r, const uint32_t *l) { +static void secp256k1_scalar_reduce_512(secp256k1_scalar *r, const uint32_t *l) { uint64_t c; uint32_t n0 = l[8], n1 = l[9], n2 = l[10], n3 = l[11], n4 = l[12], n5 = l[13], n6 = l[14], n7 = l[15]; uint32_t m0, m1, m2, m3, m4, m5, m6, m7, m8, m9, m10, m11, m12; @@ -462,7 +488,7 @@ static void secp256k1_scalar_reduce_512(secp256k1_scalar_t *r, const uint32_t *l secp256k1_scalar_reduce(r, c + secp256k1_scalar_check_overflow(r)); } -static void secp256k1_scalar_mul_512(uint32_t *l, const secp256k1_scalar_t *a, const secp256k1_scalar_t *b) { +static void secp256k1_scalar_mul_512(uint32_t *l, const secp256k1_scalar *a, const secp256k1_scalar *b) { /* 96 bit accumulator. */ uint32_t c0 = 0, c1 = 0, c2 = 0; @@ -550,7 +576,7 @@ static void secp256k1_scalar_mul_512(uint32_t *l, const secp256k1_scalar_t *a, c l[15] = c0; } -static void secp256k1_scalar_sqr_512(uint32_t *l, const secp256k1_scalar_t *a) { +static void secp256k1_scalar_sqr_512(uint32_t *l, const secp256k1_scalar *a) { /* 96 bit accumulator. */ uint32_t c0 = 0, c1 = 0, c2 = 0; @@ -618,20 +644,36 @@ static void secp256k1_scalar_sqr_512(uint32_t *l, const secp256k1_scalar_t *a) { #undef extract #undef extract_fast -static void secp256k1_scalar_mul(secp256k1_scalar_t *r, const secp256k1_scalar_t *a, const secp256k1_scalar_t *b) { +static void secp256k1_scalar_mul(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b) { uint32_t l[16]; secp256k1_scalar_mul_512(l, a, b); secp256k1_scalar_reduce_512(r, l); } -static void secp256k1_scalar_sqr(secp256k1_scalar_t *r, const secp256k1_scalar_t *a) { +static int secp256k1_scalar_shr_int(secp256k1_scalar *r, int n) { + int ret; + VERIFY_CHECK(n > 0); + VERIFY_CHECK(n < 16); + ret = r->d[0] & ((1 << n) - 1); + r->d[0] = (r->d[0] >> n) + (r->d[1] << (32 - n)); + r->d[1] = (r->d[1] >> n) + (r->d[2] << (32 - n)); + r->d[2] = (r->d[2] >> n) + (r->d[3] << (32 - n)); + r->d[3] = (r->d[3] >> n) + (r->d[4] << (32 - n)); + r->d[4] = (r->d[4] >> n) + (r->d[5] << (32 - n)); + r->d[5] = (r->d[5] >> n) + (r->d[6] << (32 - n)); + r->d[6] = (r->d[6] >> n) + (r->d[7] << (32 - n)); + r->d[7] = (r->d[7] >> n); + return ret; +} + +static void secp256k1_scalar_sqr(secp256k1_scalar *r, const secp256k1_scalar *a) { uint32_t l[16]; secp256k1_scalar_sqr_512(l, a); secp256k1_scalar_reduce_512(r, l); } #ifdef USE_ENDOMORPHISM -static void secp256k1_scalar_split_128(secp256k1_scalar_t *r1, secp256k1_scalar_t *r2, const secp256k1_scalar_t *a) { +static void secp256k1_scalar_split_128(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *a) { r1->d[0] = a->d[0]; r1->d[1] = a->d[1]; r1->d[2] = a->d[2]; @@ -651,11 +693,11 @@ static void secp256k1_scalar_split_128(secp256k1_scalar_t *r1, secp256k1_scalar_ } #endif -SECP256K1_INLINE static int secp256k1_scalar_eq(const secp256k1_scalar_t *a, const secp256k1_scalar_t *b) { +SECP256K1_INLINE static int secp256k1_scalar_eq(const secp256k1_scalar *a, const secp256k1_scalar *b) { return ((a->d[0] ^ b->d[0]) | (a->d[1] ^ b->d[1]) | (a->d[2] ^ b->d[2]) | (a->d[3] ^ b->d[3]) | (a->d[4] ^ b->d[4]) | (a->d[5] ^ b->d[5]) | (a->d[6] ^ b->d[6]) | (a->d[7] ^ b->d[7])) == 0; } -SECP256K1_INLINE static void secp256k1_scalar_mul_shift_var(secp256k1_scalar_t *r, const secp256k1_scalar_t *a, const secp256k1_scalar_t *b, unsigned int shift) { +SECP256K1_INLINE static void secp256k1_scalar_mul_shift_var(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b, unsigned int shift) { uint32_t l[16]; unsigned int shiftlimbs; unsigned int shiftlow; @@ -673,9 +715,7 @@ SECP256K1_INLINE static void secp256k1_scalar_mul_shift_var(secp256k1_scalar_t * r->d[5] = shift < 352 ? (l[5 + shiftlimbs] >> shiftlow | (shift < 320 && shiftlow ? (l[6 + shiftlimbs] << shifthigh) : 0)) : 0; r->d[6] = shift < 320 ? (l[6 + shiftlimbs] >> shiftlow | (shift < 288 && shiftlow ? (l[7 + shiftlimbs] << shifthigh) : 0)) : 0; r->d[7] = shift < 288 ? (l[7 + shiftlimbs] >> shiftlow) : 0; - if ((l[(shift - 1) >> 5] >> ((shift - 1) & 0x1f)) & 1) { - secp256k1_scalar_add_bit(r, 0); - } + secp256k1_scalar_cadd_bit(r, 0, (l[(shift - 1) >> 5] >> ((shift - 1) & 0x1f)) & 1); } #endif diff --git a/crypto/secp256k1/secp256k1/src/scalar_impl.h b/crypto/secp256k1/libsecp256k1/src/scalar_impl.h index 33824983e..88ea97de8 100644 --- a/crypto/secp256k1/secp256k1/src/scalar_impl.h +++ b/crypto/secp256k1/libsecp256k1/src/scalar_impl.h @@ -25,14 +25,14 @@ #endif #ifndef USE_NUM_NONE -static void secp256k1_scalar_get_num(secp256k1_num_t *r, const secp256k1_scalar_t *a) { +static void secp256k1_scalar_get_num(secp256k1_num *r, const secp256k1_scalar *a) { unsigned char c[32]; secp256k1_scalar_get_b32(c, a); secp256k1_num_set_bin(r, c, 32); } /** secp256k1 curve order, see secp256k1_ecdsa_const_order_as_fe in ecdsa_impl.h */ -static void secp256k1_scalar_order_get_num(secp256k1_num_t *r) { +static void secp256k1_scalar_order_get_num(secp256k1_num *r) { static const unsigned char order[32] = { 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFE, @@ -43,11 +43,11 @@ static void secp256k1_scalar_order_get_num(secp256k1_num_t *r) { } #endif -static void secp256k1_scalar_inverse(secp256k1_scalar_t *r, const secp256k1_scalar_t *x) { - secp256k1_scalar_t *t; +static void secp256k1_scalar_inverse(secp256k1_scalar *r, const secp256k1_scalar *x) { + secp256k1_scalar *t; int i; /* First compute x ^ (2^N - 1) for some values of N. */ - secp256k1_scalar_t x2, x3, x4, x6, x7, x8, x15, x30, x60, x120, x127; + secp256k1_scalar x2, x3, x4, x6, x7, x8, x15, x30, x60, x120, x127; secp256k1_scalar_sqr(&x2, x); secp256k1_scalar_mul(&x2, &x2, x); @@ -234,18 +234,27 @@ static void secp256k1_scalar_inverse(secp256k1_scalar_t *r, const secp256k1_scal secp256k1_scalar_mul(r, t, &x6); /* 111111 */ } -static void secp256k1_scalar_inverse_var(secp256k1_scalar_t *r, const secp256k1_scalar_t *x) { +SECP256K1_INLINE static int secp256k1_scalar_is_even(const secp256k1_scalar *a) { + /* d[0] is present and is the lowest word for all representations */ + return !(a->d[0] & 1); +} + +static void secp256k1_scalar_inverse_var(secp256k1_scalar *r, const secp256k1_scalar *x) { #if defined(USE_SCALAR_INV_BUILTIN) secp256k1_scalar_inverse(r, x); #elif defined(USE_SCALAR_INV_NUM) unsigned char b[32]; - secp256k1_num_t n, m; - secp256k1_scalar_get_b32(b, x); + secp256k1_num n, m; + secp256k1_scalar t = *x; + secp256k1_scalar_get_b32(b, &t); secp256k1_num_set_bin(&n, b, 32); secp256k1_scalar_order_get_num(&m); secp256k1_num_mod_inverse(&n, &n, &m); secp256k1_num_get_bin(b, 32, &n); secp256k1_scalar_set_b32(r, b, NULL); + /* Verify that the inverse was computed correctly, without GMP code. */ + secp256k1_scalar_mul(&t, &t, r); + CHECK(secp256k1_scalar_is_one(&t)); #else #error "Please select scalar inverse implementation" #endif @@ -290,30 +299,31 @@ static void secp256k1_scalar_inverse_var(secp256k1_scalar_t *r, const secp256k1_ * The function below splits a in r1 and r2, such that r1 + lambda * r2 == a (mod order). */ -static void secp256k1_scalar_split_lambda_var(secp256k1_scalar_t *r1, secp256k1_scalar_t *r2, const secp256k1_scalar_t *a) { - secp256k1_scalar_t c1, c2; - static const secp256k1_scalar_t minus_lambda = SECP256K1_SCALAR_CONST( +static void secp256k1_scalar_split_lambda(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *a) { + secp256k1_scalar c1, c2; + static const secp256k1_scalar minus_lambda = SECP256K1_SCALAR_CONST( 0xAC9C52B3UL, 0x3FA3CF1FUL, 0x5AD9E3FDUL, 0x77ED9BA4UL, 0xA880B9FCUL, 0x8EC739C2UL, 0xE0CFC810UL, 0xB51283CFUL ); - static const secp256k1_scalar_t minus_b1 = SECP256K1_SCALAR_CONST( + static const secp256k1_scalar minus_b1 = SECP256K1_SCALAR_CONST( 0x00000000UL, 0x00000000UL, 0x00000000UL, 0x00000000UL, 0xE4437ED6UL, 0x010E8828UL, 0x6F547FA9UL, 0x0ABFE4C3UL ); - static const secp256k1_scalar_t minus_b2 = SECP256K1_SCALAR_CONST( + static const secp256k1_scalar minus_b2 = SECP256K1_SCALAR_CONST( 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFEUL, 0x8A280AC5UL, 0x0774346DUL, 0xD765CDA8UL, 0x3DB1562CUL ); - static const secp256k1_scalar_t g1 = SECP256K1_SCALAR_CONST( + static const secp256k1_scalar g1 = SECP256K1_SCALAR_CONST( 0x00000000UL, 0x00000000UL, 0x00000000UL, 0x00003086UL, 0xD221A7D4UL, 0x6BCDE86CUL, 0x90E49284UL, 0xEB153DABUL ); - static const secp256k1_scalar_t g2 = SECP256K1_SCALAR_CONST( + static const secp256k1_scalar g2 = SECP256K1_SCALAR_CONST( 0x00000000UL, 0x00000000UL, 0x00000000UL, 0x0000E443UL, 0x7ED6010EUL, 0x88286F54UL, 0x7FA90ABFUL, 0xE4C42212UL ); VERIFY_CHECK(r1 != a); VERIFY_CHECK(r2 != a); + /* these _var calls are constant time since the shift amount is constant */ secp256k1_scalar_mul_shift_var(&c1, a, &g1, 272); secp256k1_scalar_mul_shift_var(&c2, a, &g2, 272); secp256k1_scalar_mul(&c1, &c1, &minus_b1); diff --git a/crypto/secp256k1/libsecp256k1/src/secp256k1.c b/crypto/secp256k1/libsecp256k1/src/secp256k1.c new file mode 100644 index 000000000..203f880af --- /dev/null +++ b/crypto/secp256k1/libsecp256k1/src/secp256k1.c @@ -0,0 +1,513 @@ +/********************************************************************** + * Copyright (c) 2013-2015 Pieter Wuille * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or http://www.opensource.org/licenses/mit-license.php.* + **********************************************************************/ + +#define SECP256K1_BUILD (1) + +#include "include/secp256k1.h" + +#include "util.h" +#include "num_impl.h" +#include "field_impl.h" +#include "scalar_impl.h" +#include "group_impl.h" +#include "ecmult_impl.h" +#include "ecmult_const_impl.h" +#include "ecmult_gen_impl.h" +#include "ecdsa_impl.h" +#include "eckey_impl.h" +#include "hash_impl.h" + +#define ARG_CHECK(cond) do { \ + if (EXPECT(!(cond), 0)) { \ + secp256k1_callback_call(&ctx->illegal_callback, #cond); \ + return 0; \ + } \ +} while(0) + +static void default_illegal_callback_fn(const char* str, void* data) { + (void)data; + fprintf(stderr, "[libsecp256k1] illegal argument: %s\n", str); + abort(); +} + +static const secp256k1_callback default_illegal_callback = { + default_illegal_callback_fn, + NULL +}; + +static void default_error_callback_fn(const char* str, void* data) { + (void)data; + fprintf(stderr, "[libsecp256k1] internal consistency check failed: %s\n", str); + abort(); +} + +static const secp256k1_callback default_error_callback = { + default_error_callback_fn, + NULL +}; + + +struct secp256k1_context_struct { + secp256k1_ecmult_context ecmult_ctx; + secp256k1_ecmult_gen_context ecmult_gen_ctx; + secp256k1_callback illegal_callback; + secp256k1_callback error_callback; +}; + +secp256k1_context* secp256k1_context_create(unsigned int flags) { + secp256k1_context* ret = (secp256k1_context*)checked_malloc(&default_error_callback, sizeof(secp256k1_context)); + ret->illegal_callback = default_illegal_callback; + ret->error_callback = default_error_callback; + + secp256k1_ecmult_context_init(&ret->ecmult_ctx); + secp256k1_ecmult_gen_context_init(&ret->ecmult_gen_ctx); + + if (flags & SECP256K1_CONTEXT_SIGN) { + secp256k1_ecmult_gen_context_build(&ret->ecmult_gen_ctx, &ret->error_callback); + } + if (flags & SECP256K1_CONTEXT_VERIFY) { + secp256k1_ecmult_context_build(&ret->ecmult_ctx, &ret->error_callback); + } + + return ret; +} + +secp256k1_context* secp256k1_context_clone(const secp256k1_context* ctx) { + secp256k1_context* ret = (secp256k1_context*)checked_malloc(&ctx->error_callback, sizeof(secp256k1_context)); + ret->illegal_callback = ctx->illegal_callback; + ret->error_callback = ctx->error_callback; + secp256k1_ecmult_context_clone(&ret->ecmult_ctx, &ctx->ecmult_ctx, &ctx->error_callback); + secp256k1_ecmult_gen_context_clone(&ret->ecmult_gen_ctx, &ctx->ecmult_gen_ctx, &ctx->error_callback); + return ret; +} + +void secp256k1_context_destroy(secp256k1_context* ctx) { + if (ctx != NULL) { + secp256k1_ecmult_context_clear(&ctx->ecmult_ctx); + secp256k1_ecmult_gen_context_clear(&ctx->ecmult_gen_ctx); + + free(ctx); + } +} + +void secp256k1_context_set_illegal_callback(secp256k1_context* ctx, void (*fun)(const char* message, void* data), const void* data) { + if (fun == NULL) { + fun = default_illegal_callback_fn; + } + ctx->illegal_callback.fn = fun; + ctx->illegal_callback.data = data; +} + +void secp256k1_context_set_error_callback(secp256k1_context* ctx, void (*fun)(const char* message, void* data), const void* data) { + if (fun == NULL) { + fun = default_error_callback_fn; + } + ctx->error_callback.fn = fun; + ctx->error_callback.data = data; +} + +static int secp256k1_pubkey_load(const secp256k1_context* ctx, secp256k1_ge* ge, const secp256k1_pubkey* pubkey) { + if (sizeof(secp256k1_ge_storage) == 64) { + /* When the secp256k1_ge_storage type is exactly 64 byte, use its + * representation inside secp256k1_pubkey, as conversion is very fast. + * Note that secp256k1_pubkey_save must use the same representation. */ + secp256k1_ge_storage s; + memcpy(&s, &pubkey->data[0], 64); + secp256k1_ge_from_storage(ge, &s); + } else { + /* Otherwise, fall back to 32-byte big endian for X and Y. */ + secp256k1_fe x, y; + secp256k1_fe_set_b32(&x, pubkey->data); + secp256k1_fe_set_b32(&y, pubkey->data + 32); + secp256k1_ge_set_xy(ge, &x, &y); + } + ARG_CHECK(!secp256k1_fe_is_zero(&ge->x)); + return 1; +} + +static void secp256k1_pubkey_save(secp256k1_pubkey* pubkey, secp256k1_ge* ge) { + if (sizeof(secp256k1_ge_storage) == 64) { + secp256k1_ge_storage s; + secp256k1_ge_to_storage(&s, ge); + memcpy(&pubkey->data[0], &s, 64); + } else { + VERIFY_CHECK(!secp256k1_ge_is_infinity(ge)); + secp256k1_fe_normalize_var(&ge->x); + secp256k1_fe_normalize_var(&ge->y); + secp256k1_fe_get_b32(pubkey->data, &ge->x); + secp256k1_fe_get_b32(pubkey->data + 32, &ge->y); + } +} + +int secp256k1_ec_pubkey_parse(const secp256k1_context* ctx, secp256k1_pubkey* pubkey, const unsigned char *input, size_t inputlen) { + secp256k1_ge Q; + + (void)ctx; + if (!secp256k1_eckey_pubkey_parse(&Q, input, inputlen)) { + memset(pubkey, 0, sizeof(*pubkey)); + return 0; + } + secp256k1_pubkey_save(pubkey, &Q); + secp256k1_ge_clear(&Q); + return 1; +} + +int secp256k1_ec_pubkey_serialize(const secp256k1_context* ctx, unsigned char *output, size_t *outputlen, const secp256k1_pubkey* pubkey, unsigned int flags) { + secp256k1_ge Q; + + (void)ctx; + return (secp256k1_pubkey_load(ctx, &Q, pubkey) && + secp256k1_eckey_pubkey_serialize(&Q, output, outputlen, flags)); +} + +static void secp256k1_ecdsa_signature_load(const secp256k1_context* ctx, secp256k1_scalar* r, secp256k1_scalar* s, const secp256k1_ecdsa_signature* sig) { + (void)ctx; + if (sizeof(secp256k1_scalar) == 32) { + /* When the secp256k1_scalar type is exactly 32 byte, use its + * representation inside secp256k1_ecdsa_signature, as conversion is very fast. + * Note that secp256k1_ecdsa_signature_save must use the same representation. */ + memcpy(r, &sig->data[0], 32); + memcpy(s, &sig->data[32], 32); + } else { + secp256k1_scalar_set_b32(r, &sig->data[0], NULL); + secp256k1_scalar_set_b32(s, &sig->data[32], NULL); + } +} + +static void secp256k1_ecdsa_signature_save(secp256k1_ecdsa_signature* sig, const secp256k1_scalar* r, const secp256k1_scalar* s) { + if (sizeof(secp256k1_scalar) == 32) { + memcpy(&sig->data[0], r, 32); + memcpy(&sig->data[32], s, 32); + } else { + secp256k1_scalar_get_b32(&sig->data[0], r); + secp256k1_scalar_get_b32(&sig->data[32], s); + } +} + +int secp256k1_ecdsa_signature_parse_der(const secp256k1_context* ctx, secp256k1_ecdsa_signature* sig, const unsigned char *input, size_t inputlen) { + secp256k1_scalar r, s; + + (void)ctx; + ARG_CHECK(sig != NULL); + ARG_CHECK(input != NULL); + + if (secp256k1_ecdsa_sig_parse(&r, &s, input, inputlen)) { + secp256k1_ecdsa_signature_save(sig, &r, &s); + return 1; + } else { + memset(sig, 0, sizeof(*sig)); + return 0; + } +} + +int secp256k1_ecdsa_signature_serialize_der(const secp256k1_context* ctx, unsigned char *output, size_t *outputlen, const secp256k1_ecdsa_signature* sig) { + secp256k1_scalar r, s; + + (void)ctx; + ARG_CHECK(output != NULL); + ARG_CHECK(outputlen != NULL); + ARG_CHECK(sig != NULL); + + secp256k1_ecdsa_signature_load(ctx, &r, &s, sig); + return secp256k1_ecdsa_sig_serialize(output, outputlen, &r, &s); +} + +int secp256k1_ecdsa_verify(const secp256k1_context* ctx, const secp256k1_ecdsa_signature *sig, const unsigned char *msg32, const secp256k1_pubkey *pubkey) { + secp256k1_ge q; + secp256k1_scalar r, s; + secp256k1_scalar m; + VERIFY_CHECK(ctx != NULL); + ARG_CHECK(secp256k1_ecmult_context_is_built(&ctx->ecmult_ctx)); + ARG_CHECK(msg32 != NULL); + ARG_CHECK(sig != NULL); + ARG_CHECK(pubkey != NULL); + + secp256k1_scalar_set_b32(&m, msg32, NULL); + secp256k1_ecdsa_signature_load(ctx, &r, &s, sig); + return (secp256k1_pubkey_load(ctx, &q, pubkey) && + secp256k1_ecdsa_sig_verify(&ctx->ecmult_ctx, &r, &s, &q, &m)); +} + +static int nonce_function_rfc6979(unsigned char *nonce32, const unsigned char *msg32, const unsigned char *key32, const unsigned char *algo16, void *data, unsigned int counter) { + unsigned char keydata[112]; + int keylen = 64; + secp256k1_rfc6979_hmac_sha256_t rng; + unsigned int i; + /* We feed a byte array to the PRNG as input, consisting of: + * - the private key (32 bytes) and message (32 bytes), see RFC 6979 3.2d. + * - optionally 32 extra bytes of data, see RFC 6979 3.6 Additional Data. + * - optionally 16 extra bytes with the algorithm name (the extra data bytes + * are set to zeroes when not present, while the algorithm name is). + */ + memcpy(keydata, key32, 32); + memcpy(keydata + 32, msg32, 32); + if (data != NULL) { + memcpy(keydata + 64, data, 32); + keylen = 96; + } + if (algo16 != NULL) { + memset(keydata + keylen, 0, 96 - keylen); + memcpy(keydata + 96, algo16, 16); + keylen = 112; + } + secp256k1_rfc6979_hmac_sha256_initialize(&rng, keydata, keylen); + memset(keydata, 0, sizeof(keydata)); + for (i = 0; i <= counter; i++) { + secp256k1_rfc6979_hmac_sha256_generate(&rng, nonce32, 32); + } + secp256k1_rfc6979_hmac_sha256_finalize(&rng); + return 1; +} + +const secp256k1_nonce_function secp256k1_nonce_function_rfc6979 = nonce_function_rfc6979; +const secp256k1_nonce_function secp256k1_nonce_function_default = nonce_function_rfc6979; + +int secp256k1_ecdsa_sign(const secp256k1_context* ctx, secp256k1_ecdsa_signature *signature, const unsigned char *msg32, const unsigned char *seckey, secp256k1_nonce_function noncefp, const void* noncedata) { + secp256k1_scalar r, s; + secp256k1_scalar sec, non, msg; + int ret = 0; + int overflow = 0; + VERIFY_CHECK(ctx != NULL); + ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx)); + ARG_CHECK(msg32 != NULL); + ARG_CHECK(signature != NULL); + ARG_CHECK(seckey != NULL); + if (noncefp == NULL) { + noncefp = secp256k1_nonce_function_default; + } + + secp256k1_scalar_set_b32(&sec, seckey, &overflow); + /* Fail if the secret key is invalid. */ + if (!overflow && !secp256k1_scalar_is_zero(&sec)) { + unsigned int count = 0; + secp256k1_scalar_set_b32(&msg, msg32, NULL); + while (1) { + unsigned char nonce32[32]; + ret = noncefp(nonce32, msg32, seckey, NULL, (void*)noncedata, count); + if (!ret) { + break; + } + secp256k1_scalar_set_b32(&non, nonce32, &overflow); + memset(nonce32, 0, 32); + if (!overflow && !secp256k1_scalar_is_zero(&non)) { + if (secp256k1_ecdsa_sig_sign(&ctx->ecmult_gen_ctx, &r, &s, &sec, &msg, &non, NULL)) { + break; + } + } + count++; + } + secp256k1_scalar_clear(&msg); + secp256k1_scalar_clear(&non); + secp256k1_scalar_clear(&sec); + } + if (ret) { + secp256k1_ecdsa_signature_save(signature, &r, &s); + } else { + memset(signature, 0, sizeof(*signature)); + } + return ret; +} + +int secp256k1_ec_seckey_verify(const secp256k1_context* ctx, const unsigned char *seckey) { + secp256k1_scalar sec; + int ret; + int overflow; + VERIFY_CHECK(ctx != NULL); + ARG_CHECK(seckey != NULL); + (void)ctx; + + secp256k1_scalar_set_b32(&sec, seckey, &overflow); + ret = !overflow && !secp256k1_scalar_is_zero(&sec); + secp256k1_scalar_clear(&sec); + return ret; +} + +int secp256k1_ec_pubkey_create(const secp256k1_context* ctx, secp256k1_pubkey *pubkey, const unsigned char *seckey) { + secp256k1_gej pj; + secp256k1_ge p; + secp256k1_scalar sec; + int overflow; + int ret = 0; + VERIFY_CHECK(ctx != NULL); + ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx)); + ARG_CHECK(pubkey != NULL); + ARG_CHECK(seckey != NULL); + + secp256k1_scalar_set_b32(&sec, seckey, &overflow); + ret = (!overflow) & (!secp256k1_scalar_is_zero(&sec)); + secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &pj, &sec); + secp256k1_ge_set_gej(&p, &pj); + secp256k1_pubkey_save(pubkey, &p); + secp256k1_scalar_clear(&sec); + if (!ret) { + memset(pubkey, 0, sizeof(*pubkey)); + } + return ret; +} + +int secp256k1_ec_privkey_tweak_add(const secp256k1_context* ctx, unsigned char *seckey, const unsigned char *tweak) { + secp256k1_scalar term; + secp256k1_scalar sec; + int ret = 0; + int overflow = 0; + VERIFY_CHECK(ctx != NULL); + ARG_CHECK(seckey != NULL); + ARG_CHECK(tweak != NULL); + (void)ctx; + + secp256k1_scalar_set_b32(&term, tweak, &overflow); + secp256k1_scalar_set_b32(&sec, seckey, NULL); + + ret = !overflow && secp256k1_eckey_privkey_tweak_add(&sec, &term); + if (ret) { + secp256k1_scalar_get_b32(seckey, &sec); + } + + secp256k1_scalar_clear(&sec); + secp256k1_scalar_clear(&term); + return ret; +} + +int secp256k1_ec_pubkey_tweak_add(const secp256k1_context* ctx, secp256k1_pubkey *pubkey, const unsigned char *tweak) { + secp256k1_ge p; + secp256k1_scalar term; + int ret = 0; + int overflow = 0; + VERIFY_CHECK(ctx != NULL); + ARG_CHECK(secp256k1_ecmult_context_is_built(&ctx->ecmult_ctx)); + ARG_CHECK(pubkey != NULL); + ARG_CHECK(tweak != NULL); + + secp256k1_scalar_set_b32(&term, tweak, &overflow); + if (!overflow && secp256k1_pubkey_load(ctx, &p, pubkey)) { + ret = secp256k1_eckey_pubkey_tweak_add(&ctx->ecmult_ctx, &p, &term); + if (ret) { + secp256k1_pubkey_save(pubkey, &p); + } else { + memset(pubkey, 0, sizeof(*pubkey)); + } + } + + return ret; +} + +int secp256k1_ec_privkey_tweak_mul(const secp256k1_context* ctx, unsigned char *seckey, const unsigned char *tweak) { + secp256k1_scalar factor; + secp256k1_scalar sec; + int ret = 0; + int overflow = 0; + VERIFY_CHECK(ctx != NULL); + ARG_CHECK(seckey != NULL); + ARG_CHECK(tweak != NULL); + (void)ctx; + + secp256k1_scalar_set_b32(&factor, tweak, &overflow); + secp256k1_scalar_set_b32(&sec, seckey, NULL); + ret = !overflow && secp256k1_eckey_privkey_tweak_mul(&sec, &factor); + if (ret) { + secp256k1_scalar_get_b32(seckey, &sec); + } + + secp256k1_scalar_clear(&sec); + secp256k1_scalar_clear(&factor); + return ret; +} + +int secp256k1_ec_pubkey_tweak_mul(const secp256k1_context* ctx, secp256k1_pubkey *pubkey, const unsigned char *tweak) { + secp256k1_ge p; + secp256k1_scalar factor; + int ret = 0; + int overflow = 0; + VERIFY_CHECK(ctx != NULL); + ARG_CHECK(secp256k1_ecmult_context_is_built(&ctx->ecmult_ctx)); + ARG_CHECK(pubkey != NULL); + ARG_CHECK(tweak != NULL); + + secp256k1_scalar_set_b32(&factor, tweak, &overflow); + if (!overflow && secp256k1_pubkey_load(ctx, &p, pubkey)) { + ret = secp256k1_eckey_pubkey_tweak_mul(&ctx->ecmult_ctx, &p, &factor); + if (ret) { + secp256k1_pubkey_save(pubkey, &p); + } else { + memset(pubkey, 0, sizeof(*pubkey)); + } + } + + return ret; +} + +int secp256k1_ec_privkey_export(const secp256k1_context* ctx, unsigned char *privkey, size_t *privkeylen, const unsigned char *seckey, unsigned int flags) { + secp256k1_scalar key; + int ret = 0; + VERIFY_CHECK(ctx != NULL); + ARG_CHECK(seckey != NULL); + ARG_CHECK(privkey != NULL); + ARG_CHECK(privkeylen != NULL); + ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx)); + + secp256k1_scalar_set_b32(&key, seckey, NULL); + ret = secp256k1_eckey_privkey_serialize(&ctx->ecmult_gen_ctx, privkey, privkeylen, &key, flags); + secp256k1_scalar_clear(&key); + return ret; +} + +int secp256k1_ec_privkey_import(const secp256k1_context* ctx, unsigned char *seckey, const unsigned char *privkey, size_t privkeylen) { + secp256k1_scalar key; + int ret = 0; + ARG_CHECK(seckey != NULL); + ARG_CHECK(privkey != NULL); + (void)ctx; + + ret = secp256k1_eckey_privkey_parse(&key, privkey, privkeylen); + if (ret) { + secp256k1_scalar_get_b32(seckey, &key); + } + secp256k1_scalar_clear(&key); + return ret; +} + +int secp256k1_context_randomize(secp256k1_context* ctx, const unsigned char *seed32) { + VERIFY_CHECK(ctx != NULL); + ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx)); + secp256k1_ecmult_gen_blind(&ctx->ecmult_gen_ctx, seed32); + return 1; +} + +int secp256k1_ec_pubkey_combine(const secp256k1_context* ctx, secp256k1_pubkey *pubnonce, const secp256k1_pubkey * const *pubnonces, int n) { + int i; + secp256k1_gej Qj; + secp256k1_ge Q; + + ARG_CHECK(pubnonce != NULL); + ARG_CHECK(n >= 1); + ARG_CHECK(pubnonces != NULL); + + secp256k1_gej_set_infinity(&Qj); + + for (i = 0; i < n; i++) { + secp256k1_pubkey_load(ctx, &Q, pubnonces[i]); + secp256k1_gej_add_ge(&Qj, &Qj, &Q); + } + if (secp256k1_gej_is_infinity(&Qj)) { + memset(pubnonce, 0, sizeof(*pubnonce)); + return 0; + } + secp256k1_ge_set_gej(&Q, &Qj); + secp256k1_pubkey_save(pubnonce, &Q); + return 1; +} + +#ifdef ENABLE_MODULE_ECDH +# include "modules/ecdh/main_impl.h" +#endif + +#ifdef ENABLE_MODULE_SCHNORR +# include "modules/schnorr/main_impl.h" +#endif + +#ifdef ENABLE_MODULE_RECOVERY +# include "modules/recovery/main_impl.h" +#endif diff --git a/crypto/secp256k1/secp256k1/src/testrand.h b/crypto/secp256k1/libsecp256k1/src/testrand.h index 041bb92c4..041bb92c4 100644 --- a/crypto/secp256k1/secp256k1/src/testrand.h +++ b/crypto/secp256k1/libsecp256k1/src/testrand.h diff --git a/crypto/secp256k1/secp256k1/src/testrand_impl.h b/crypto/secp256k1/libsecp256k1/src/testrand_impl.h index 21c69f1c5..7c3554266 100644 --- a/crypto/secp256k1/secp256k1/src/testrand_impl.h +++ b/crypto/secp256k1/libsecp256k1/src/testrand_impl.h @@ -18,7 +18,7 @@ static uint32_t secp256k1_test_rng_precomputed[8]; static int secp256k1_test_rng_precomputed_used = 8; SECP256K1_INLINE static void secp256k1_rand_seed(const unsigned char *seed16) { - secp256k1_rfc6979_hmac_sha256_initialize(&secp256k1_test_rng, (const unsigned char*)"TestRNG", 7, seed16, 16, NULL, 0); + secp256k1_rfc6979_hmac_sha256_initialize(&secp256k1_test_rng, seed16, 16); } SECP256K1_INLINE static uint32_t secp256k1_rand32(void) { diff --git a/crypto/secp256k1/secp256k1/src/tests.c b/crypto/secp256k1/libsecp256k1/src/tests.c index 6c473a0c1..3366d90fc 100644 --- a/crypto/secp256k1/secp256k1/src/tests.c +++ b/crypto/secp256k1/libsecp256k1/src/tests.c @@ -1,5 +1,5 @@ /********************************************************************** - * Copyright (c) 2013, 2014 Pieter Wuille * + * Copyright (c) 2013, 2014, 2015 Pieter Wuille, Gregory Maxwell * * Distributed under the MIT software license, see the accompanying * * file COPYING or http://www.opensource.org/licenses/mit-license.php.* **********************************************************************/ @@ -13,6 +13,7 @@ #include <time.h> +#include "include/secp256k1.h" #include "secp256k1.c" #include "testrand_impl.h" @@ -24,8 +25,9 @@ #endif static int count = 64; +static secp256k1_context *ctx = NULL; -void random_field_element_test(secp256k1_fe_t *fe) { +void random_field_element_test(secp256k1_fe *fe) { do { unsigned char b32[32]; secp256k1_rand256_test(b32); @@ -35,8 +37,8 @@ void random_field_element_test(secp256k1_fe_t *fe) { } while(1); } -void random_field_element_magnitude(secp256k1_fe_t *fe) { - secp256k1_fe_t zero; +void random_field_element_magnitude(secp256k1_fe *fe) { + secp256k1_fe zero; int n = secp256k1_rand32() % 9; secp256k1_fe_normalize(fe); if (n == 0) { @@ -46,23 +48,22 @@ void random_field_element_magnitude(secp256k1_fe_t *fe) { secp256k1_fe_negate(&zero, &zero, 0); secp256k1_fe_mul_int(&zero, n - 1); secp256k1_fe_add(fe, &zero); -#ifdef VERIFY - CHECK(fe->magnitude == n); -#endif + VERIFY_CHECK(fe->magnitude == n); } -void random_group_element_test(secp256k1_ge_t *ge) { - secp256k1_fe_t fe; +void random_group_element_test(secp256k1_ge *ge) { + secp256k1_fe fe; do { random_field_element_test(&fe); if (secp256k1_ge_set_xo_var(ge, &fe, secp256k1_rand32() & 1)) { + secp256k1_fe_normalize(&ge->y); break; } } while(1); } -void random_group_element_jacobian_test(secp256k1_gej_t *gej, const secp256k1_ge_t *ge) { - secp256k1_fe_t z2, z3; +void random_group_element_jacobian_test(secp256k1_gej *gej, const secp256k1_ge *ge) { + secp256k1_fe z2, z3; do { random_field_element_test(&gej->z); if (!secp256k1_fe_is_zero(&gej->z)) { @@ -76,7 +77,7 @@ void random_group_element_jacobian_test(secp256k1_gej_t *gej, const secp256k1_ge gej->infinity = ge->infinity; } -void random_scalar_order_test(secp256k1_scalar_t *num) { +void random_scalar_order_test(secp256k1_scalar *num) { do { unsigned char b32[32]; int overflow = 0; @@ -89,7 +90,7 @@ void random_scalar_order_test(secp256k1_scalar_t *num) { } while(1); } -void random_scalar_order(secp256k1_scalar_t *num) { +void random_scalar_order(secp256k1_scalar *num) { do { unsigned char b32[32]; int overflow = 0; @@ -102,6 +103,53 @@ void random_scalar_order(secp256k1_scalar_t *num) { } while(1); } +void run_context_tests(void) { + secp256k1_context *none = secp256k1_context_create(0); + secp256k1_context *sign = secp256k1_context_create(SECP256K1_CONTEXT_SIGN); + secp256k1_context *vrfy = secp256k1_context_create(SECP256K1_CONTEXT_VERIFY); + secp256k1_context *both = secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY); + + secp256k1_gej pubj; + secp256k1_ge pub; + secp256k1_scalar msg, key, nonce; + secp256k1_scalar sigr, sigs; + + /*** clone and destroy all of them to make sure cloning was complete ***/ + { + secp256k1_context *ctx_tmp; + + ctx_tmp = none; none = secp256k1_context_clone(none); secp256k1_context_destroy(ctx_tmp); + ctx_tmp = sign; sign = secp256k1_context_clone(sign); secp256k1_context_destroy(ctx_tmp); + ctx_tmp = vrfy; vrfy = secp256k1_context_clone(vrfy); secp256k1_context_destroy(ctx_tmp); + ctx_tmp = both; both = secp256k1_context_clone(both); secp256k1_context_destroy(ctx_tmp); + } + + /*** attempt to use them ***/ + random_scalar_order_test(&msg); + random_scalar_order_test(&key); + secp256k1_ecmult_gen(&both->ecmult_gen_ctx, &pubj, &key); + secp256k1_ge_set_gej(&pub, &pubj); + + /* obtain a working nonce */ + do { + random_scalar_order_test(&nonce); + } while(!secp256k1_ecdsa_sig_sign(&both->ecmult_gen_ctx, &sigr, &sigs, &key, &msg, &nonce, NULL)); + + /* try signing */ + CHECK(secp256k1_ecdsa_sig_sign(&sign->ecmult_gen_ctx, &sigr, &sigs, &key, &msg, &nonce, NULL)); + CHECK(secp256k1_ecdsa_sig_sign(&both->ecmult_gen_ctx, &sigr, &sigs, &key, &msg, &nonce, NULL)); + + /* try verifying */ + CHECK(secp256k1_ecdsa_sig_verify(&vrfy->ecmult_ctx, &sigr, &sigs, &pub, &msg)); + CHECK(secp256k1_ecdsa_sig_verify(&both->ecmult_ctx, &sigr, &sigs, &pub, &msg)); + + /* cleanup */ + secp256k1_context_destroy(none); + secp256k1_context_destroy(sign); + secp256k1_context_destroy(vrfy); + secp256k1_context_destroy(both); +} + /***** HASH TESTS *****/ void run_sha256_tests(void) { @@ -185,16 +233,14 @@ void run_hmac_sha256_tests(void) { } void run_rfc6979_hmac_sha256_tests(void) { - static const unsigned char key1[32] = {0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, 0x00}; - static const unsigned char msg1[32] = {0x4b, 0xf5, 0x12, 0x2f, 0x34, 0x45, 0x54, 0xc5, 0x3b, 0xde, 0x2e, 0xbb, 0x8c, 0xd2, 0xb7, 0xe3, 0xd1, 0x60, 0x0a, 0xd6, 0x31, 0xc3, 0x85, 0xa5, 0xd7, 0xcc, 0xe2, 0x3c, 0x77, 0x85, 0x45, 0x9a}; + static const unsigned char key1[65] = {0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, 0x00, 0x4b, 0xf5, 0x12, 0x2f, 0x34, 0x45, 0x54, 0xc5, 0x3b, 0xde, 0x2e, 0xbb, 0x8c, 0xd2, 0xb7, 0xe3, 0xd1, 0x60, 0x0a, 0xd6, 0x31, 0xc3, 0x85, 0xa5, 0xd7, 0xcc, 0xe2, 0x3c, 0x77, 0x85, 0x45, 0x9a, 0}; static const unsigned char out1[3][32] = { {0x4f, 0xe2, 0x95, 0x25, 0xb2, 0x08, 0x68, 0x09, 0x15, 0x9a, 0xcd, 0xf0, 0x50, 0x6e, 0xfb, 0x86, 0xb0, 0xec, 0x93, 0x2c, 0x7b, 0xa4, 0x42, 0x56, 0xab, 0x32, 0x1e, 0x42, 0x1e, 0x67, 0xe9, 0xfb}, {0x2b, 0xf0, 0xff, 0xf1, 0xd3, 0xc3, 0x78, 0xa2, 0x2d, 0xc5, 0xde, 0x1d, 0x85, 0x65, 0x22, 0x32, 0x5c, 0x65, 0xb5, 0x04, 0x49, 0x1a, 0x0c, 0xbd, 0x01, 0xcb, 0x8f, 0x3a, 0xa6, 0x7f, 0xfd, 0x4a}, {0xf5, 0x28, 0xb4, 0x10, 0xcb, 0x54, 0x1f, 0x77, 0x00, 0x0d, 0x7a, 0xfb, 0x6c, 0x5b, 0x53, 0xc5, 0xc4, 0x71, 0xea, 0xb4, 0x3e, 0x46, 0x6d, 0x9a, 0xc5, 0x19, 0x0c, 0x39, 0xc8, 0x2f, 0xd8, 0x2e} }; - static const unsigned char key2[32] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}; - static const unsigned char msg2[32] = {0xe3, 0xb0, 0xc4, 0x42, 0x98, 0xfc, 0x1c, 0x14, 0x9a, 0xfb, 0xf4, 0xc8, 0x99, 0x6f, 0xb9, 0x24, 0x27, 0xae, 0x41, 0xe4, 0x64, 0x9b, 0x93, 0x4c, 0xa4, 0x95, 0x99, 0x1b, 0x78, 0x52, 0xb8, 0x55}; + static const unsigned char key2[64] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xe3, 0xb0, 0xc4, 0x42, 0x98, 0xfc, 0x1c, 0x14, 0x9a, 0xfb, 0xf4, 0xc8, 0x99, 0x6f, 0xb9, 0x24, 0x27, 0xae, 0x41, 0xe4, 0x64, 0x9b, 0x93, 0x4c, 0xa4, 0x95, 0x99, 0x1b, 0x78, 0x52, 0xb8, 0x55}; static const unsigned char out2[3][32] = { {0x9c, 0x23, 0x6c, 0x16, 0x5b, 0x82, 0xae, 0x0c, 0xd5, 0x90, 0x65, 0x9e, 0x10, 0x0b, 0x6b, 0xab, 0x30, 0x36, 0xe7, 0xba, 0x8b, 0x06, 0x74, 0x9b, 0xaf, 0x69, 0x81, 0xe1, 0x6f, 0x1a, 0x2b, 0x95}, {0xdf, 0x47, 0x10, 0x61, 0x62, 0x5b, 0xc0, 0xea, 0x14, 0xb6, 0x82, 0xfe, 0xee, 0x2c, 0x9c, 0x02, 0xf2, 0x35, 0xda, 0x04, 0x20, 0x4c, 0x1d, 0x62, 0xa1, 0x53, 0x6c, 0x6e, 0x17, 0xae, 0xd7, 0xa9}, @@ -203,24 +249,23 @@ void run_rfc6979_hmac_sha256_tests(void) { secp256k1_rfc6979_hmac_sha256_t rng; unsigned char out[32]; - unsigned char zero[1] = {0}; int i; - secp256k1_rfc6979_hmac_sha256_initialize(&rng, key1, 32, msg1, 32, NULL, 1); + secp256k1_rfc6979_hmac_sha256_initialize(&rng, key1, 64); for (i = 0; i < 3; i++) { secp256k1_rfc6979_hmac_sha256_generate(&rng, out, 32); CHECK(memcmp(out, out1[i], 32) == 0); } secp256k1_rfc6979_hmac_sha256_finalize(&rng); - secp256k1_rfc6979_hmac_sha256_initialize(&rng, key1, 32, msg1, 32, zero, 1); + secp256k1_rfc6979_hmac_sha256_initialize(&rng, key1, 65); for (i = 0; i < 3; i++) { secp256k1_rfc6979_hmac_sha256_generate(&rng, out, 32); CHECK(memcmp(out, out1[i], 32) != 0); } secp256k1_rfc6979_hmac_sha256_finalize(&rng); - secp256k1_rfc6979_hmac_sha256_initialize(&rng, key2, 32, msg2, 32, zero, 0); + secp256k1_rfc6979_hmac_sha256_initialize(&rng, key2, 64); for (i = 0; i < 3; i++) { secp256k1_rfc6979_hmac_sha256_generate(&rng, out, 32); CHECK(memcmp(out, out2[i], 32) == 0); @@ -231,27 +276,27 @@ void run_rfc6979_hmac_sha256_tests(void) { /***** NUM TESTS *****/ #ifndef USE_NUM_NONE -void random_num_negate(secp256k1_num_t *num) { +void random_num_negate(secp256k1_num *num) { if (secp256k1_rand32() & 1) { secp256k1_num_negate(num); } } -void random_num_order_test(secp256k1_num_t *num) { - secp256k1_scalar_t sc; +void random_num_order_test(secp256k1_num *num) { + secp256k1_scalar sc; random_scalar_order_test(&sc); secp256k1_scalar_get_num(num, &sc); } -void random_num_order(secp256k1_num_t *num) { - secp256k1_scalar_t sc; +void random_num_order(secp256k1_num *num) { + secp256k1_scalar sc; random_scalar_order(&sc); secp256k1_scalar_get_num(num, &sc); } void test_num_negate(void) { - secp256k1_num_t n1; - secp256k1_num_t n2; + secp256k1_num n1; + secp256k1_num n2; random_num_order_test(&n1); /* n1 = R */ random_num_negate(&n1); secp256k1_num_copy(&n2, &n1); /* n2 = R */ @@ -270,9 +315,9 @@ void test_num_negate(void) { } void test_num_add_sub(void) { - secp256k1_num_t n1; - secp256k1_num_t n2; - secp256k1_num_t n1p2, n2p1, n1m2, n2m1; + secp256k1_num n1; + secp256k1_num n2; + secp256k1_num n1p2, n2p1, n1m2, n2m1; int r = secp256k1_rand32(); random_num_order_test(&n1); /* n1 = R1 */ if (r & 1) { @@ -310,12 +355,12 @@ void run_num_smalltests(void) { /***** SCALAR TESTS *****/ void scalar_test(void) { - secp256k1_scalar_t s; - secp256k1_scalar_t s1; - secp256k1_scalar_t s2; + secp256k1_scalar s; + secp256k1_scalar s1; + secp256k1_scalar s2; #ifndef USE_NUM_NONE - secp256k1_num_t snum, s1num, s2num; - secp256k1_num_t order, half_order; + secp256k1_num snum, s1num, s2num; + secp256k1_num order, half_order; #endif unsigned char c[32]; @@ -342,10 +387,10 @@ void scalar_test(void) { { int i; /* Test that fetching groups of 4 bits from a scalar and recursing n(i)=16*n(i-1)+p(i) reconstructs it. */ - secp256k1_scalar_t n; + secp256k1_scalar n; secp256k1_scalar_set_int(&n, 0); for (i = 0; i < 256; i += 4) { - secp256k1_scalar_t t; + secp256k1_scalar t; int j; secp256k1_scalar_set_int(&t, secp256k1_scalar_get_bits(&s, 256 - 4 - i, 4)); for (j = 0; j < 4; j++) { @@ -358,11 +403,11 @@ void scalar_test(void) { { /* Test that fetching groups of randomly-sized bits from a scalar and recursing n(i)=b*n(i-1)+p(i) reconstructs it. */ - secp256k1_scalar_t n; + secp256k1_scalar n; int i = 0; secp256k1_scalar_set_int(&n, 0); while (i < 256) { - secp256k1_scalar_t t; + secp256k1_scalar t; int j; int now = (secp256k1_rand32() % 15) + 1; if (now + i > 256) { @@ -381,9 +426,9 @@ void scalar_test(void) { #ifndef USE_NUM_NONE { /* Test that adding the scalars together is equal to adding their numbers together modulo the order. */ - secp256k1_num_t rnum; - secp256k1_num_t r2num; - secp256k1_scalar_t r; + secp256k1_num rnum; + secp256k1_num r2num; + secp256k1_scalar r; secp256k1_num_add(&rnum, &snum, &s2num); secp256k1_num_mod(&rnum, &order); secp256k1_scalar_add(&r, &s, &s2); @@ -393,9 +438,9 @@ void scalar_test(void) { { /* Test that multipying the scalars is equal to multiplying their numbers modulo the order. */ - secp256k1_scalar_t r; - secp256k1_num_t r2num; - secp256k1_num_t rnum; + secp256k1_scalar r; + secp256k1_num r2num; + secp256k1_num rnum; secp256k1_num_mul(&rnum, &snum, &s2num); secp256k1_num_mod(&rnum, &order); secp256k1_scalar_mul(&r, &s, &s2); @@ -409,9 +454,9 @@ void scalar_test(void) { } { - secp256k1_scalar_t neg; - secp256k1_num_t negnum; - secp256k1_num_t negnum2; + secp256k1_scalar neg; + secp256k1_num negnum; + secp256k1_num negnum2; /* Check that comparison with zero matches comparison with zero on the number. */ CHECK(secp256k1_num_is_zero(&snum) == secp256k1_scalar_is_zero(&s)); /* Check that comparison with the half order is equal to testing for high scalar. */ @@ -436,10 +481,10 @@ void scalar_test(void) { { /* Test secp256k1_scalar_mul_shift_var. */ - secp256k1_scalar_t r; - secp256k1_num_t one; - secp256k1_num_t rnum; - secp256k1_num_t rnum2; + secp256k1_scalar r; + secp256k1_num one; + secp256k1_num rnum; + secp256k1_num rnum2; unsigned char cone[1] = {0x01}; unsigned int shift = 256 + (secp256k1_rand32() % 257); secp256k1_scalar_mul_shift_var(&r, &s1, &s2, shift); @@ -451,15 +496,29 @@ void scalar_test(void) { secp256k1_scalar_get_num(&rnum2, &r); CHECK(secp256k1_num_eq(&rnum, &rnum2)); } + + { + /* test secp256k1_scalar_shr_int */ + secp256k1_scalar r; + int i; + random_scalar_order_test(&r); + for (i = 0; i < 100; ++i) { + int low; + int shift = 1 + (secp256k1_rand32() % 15); + int expected = r.d[0] % (1 << shift); + low = secp256k1_scalar_shr_int(&r, shift); + CHECK(expected == low); + } + } #endif { /* Test that scalar inverses are equal to the inverse of their number modulo the order. */ if (!secp256k1_scalar_is_zero(&s)) { - secp256k1_scalar_t inv; + secp256k1_scalar inv; #ifndef USE_NUM_NONE - secp256k1_num_t invnum; - secp256k1_num_t invnum2; + secp256k1_num invnum; + secp256k1_num invnum2; #endif secp256k1_scalar_inverse(&inv, &s); #ifndef USE_NUM_NONE @@ -478,15 +537,15 @@ void scalar_test(void) { { /* Test commutativity of add. */ - secp256k1_scalar_t r1, r2; + secp256k1_scalar r1, r2; secp256k1_scalar_add(&r1, &s1, &s2); secp256k1_scalar_add(&r2, &s2, &s1); CHECK(secp256k1_scalar_eq(&r1, &r2)); } { - secp256k1_scalar_t r1, r2; - secp256k1_scalar_t b; + secp256k1_scalar r1, r2; + secp256k1_scalar b; int i; /* Test add_bit. */ int bit = secp256k1_rand32() % 256; @@ -499,14 +558,17 @@ void scalar_test(void) { r2 = s1; if (!secp256k1_scalar_add(&r1, &r1, &b)) { /* No overflow happened. */ - secp256k1_scalar_add_bit(&r2, bit); + secp256k1_scalar_cadd_bit(&r2, bit, 1); + CHECK(secp256k1_scalar_eq(&r1, &r2)); + /* cadd is a noop when flag is zero */ + secp256k1_scalar_cadd_bit(&r2, bit, 0); CHECK(secp256k1_scalar_eq(&r1, &r2)); } } { /* Test commutativity of mul. */ - secp256k1_scalar_t r1, r2; + secp256k1_scalar r1, r2; secp256k1_scalar_mul(&r1, &s1, &s2); secp256k1_scalar_mul(&r2, &s2, &s1); CHECK(secp256k1_scalar_eq(&r1, &r2)); @@ -514,7 +576,7 @@ void scalar_test(void) { { /* Test associativity of add. */ - secp256k1_scalar_t r1, r2; + secp256k1_scalar r1, r2; secp256k1_scalar_add(&r1, &s1, &s2); secp256k1_scalar_add(&r1, &r1, &s); secp256k1_scalar_add(&r2, &s2, &s); @@ -524,7 +586,7 @@ void scalar_test(void) { { /* Test associativity of mul. */ - secp256k1_scalar_t r1, r2; + secp256k1_scalar r1, r2; secp256k1_scalar_mul(&r1, &s1, &s2); secp256k1_scalar_mul(&r1, &r1, &s); secp256k1_scalar_mul(&r2, &s2, &s); @@ -534,7 +596,7 @@ void scalar_test(void) { { /* Test distributitivity of mul over add. */ - secp256k1_scalar_t r1, r2, t; + secp256k1_scalar r1, r2, t; secp256k1_scalar_add(&r1, &s1, &s2); secp256k1_scalar_mul(&r1, &r1, &s); secp256k1_scalar_mul(&r2, &s1, &s); @@ -545,7 +607,7 @@ void scalar_test(void) { { /* Test square. */ - secp256k1_scalar_t r1, r2; + secp256k1_scalar r1, r2; secp256k1_scalar_sqr(&r1, &s1); secp256k1_scalar_mul(&r2, &s1, &s1); CHECK(secp256k1_scalar_eq(&r1, &r2)); @@ -553,7 +615,7 @@ void scalar_test(void) { { /* Test multiplicative identity. */ - secp256k1_scalar_t r1, v1; + secp256k1_scalar r1, v1; secp256k1_scalar_set_int(&v1,1); secp256k1_scalar_mul(&r1, &s1, &v1); CHECK(secp256k1_scalar_eq(&r1, &s1)); @@ -561,7 +623,7 @@ void scalar_test(void) { { /* Test additive identity. */ - secp256k1_scalar_t r1, v0; + secp256k1_scalar r1, v0; secp256k1_scalar_set_int(&v0,0); secp256k1_scalar_add(&r1, &s1, &v0); CHECK(secp256k1_scalar_eq(&r1, &s1)); @@ -569,7 +631,7 @@ void scalar_test(void) { { /* Test zero product property. */ - secp256k1_scalar_t r1, v0; + secp256k1_scalar r1, v0; secp256k1_scalar_set_int(&v0,0); secp256k1_scalar_mul(&r1, &s1, &v0); CHECK(secp256k1_scalar_eq(&r1, &v0)); @@ -585,7 +647,7 @@ void run_scalar_tests(void) { { /* (-1)+1 should be zero. */ - secp256k1_scalar_t s, o; + secp256k1_scalar s, o; secp256k1_scalar_set_int(&s, 1); CHECK(secp256k1_scalar_is_one(&s)); secp256k1_scalar_negate(&o, &s); @@ -598,8 +660,8 @@ void run_scalar_tests(void) { #ifndef USE_NUM_NONE { /* A scalar with value of the curve order should be 0. */ - secp256k1_num_t order; - secp256k1_scalar_t zero; + secp256k1_num order; + secp256k1_scalar zero; unsigned char bin[32]; int overflow = 0; secp256k1_scalar_order_get_num(&order); @@ -613,7 +675,7 @@ void run_scalar_tests(void) { /***** FIELD TESTS *****/ -void random_fe(secp256k1_fe_t *x) { +void random_fe(secp256k1_fe *x) { unsigned char bin[32]; do { secp256k1_rand256(bin); @@ -623,7 +685,7 @@ void random_fe(secp256k1_fe_t *x) { } while(1); } -void random_fe_non_zero(secp256k1_fe_t *nz) { +void random_fe_non_zero(secp256k1_fe *nz) { int tries = 10; while (--tries >= 0) { random_fe(nz); @@ -636,25 +698,25 @@ void random_fe_non_zero(secp256k1_fe_t *nz) { CHECK(tries >= 0); } -void random_fe_non_square(secp256k1_fe_t *ns) { - secp256k1_fe_t r; +void random_fe_non_square(secp256k1_fe *ns) { + secp256k1_fe r; random_fe_non_zero(ns); if (secp256k1_fe_sqrt_var(&r, ns)) { secp256k1_fe_negate(ns, ns, 1); } } -int check_fe_equal(const secp256k1_fe_t *a, const secp256k1_fe_t *b) { - secp256k1_fe_t an = *a; - secp256k1_fe_t bn = *b; +int check_fe_equal(const secp256k1_fe *a, const secp256k1_fe *b) { + secp256k1_fe an = *a; + secp256k1_fe bn = *b; secp256k1_fe_normalize_weak(&an); secp256k1_fe_normalize_var(&bn); return secp256k1_fe_equal_var(&an, &bn); } -int check_fe_inverse(const secp256k1_fe_t *a, const secp256k1_fe_t *ai) { - secp256k1_fe_t x; - secp256k1_fe_t one = SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 1); +int check_fe_inverse(const secp256k1_fe *a, const secp256k1_fe *ai) { + secp256k1_fe x; + secp256k1_fe one = SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 1); secp256k1_fe_mul(&x, a, ai); return check_fe_equal(&x, &one); } @@ -666,17 +728,17 @@ void run_field_convert(void) { 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x40 }; - static const secp256k1_fe_storage_t fes = SECP256K1_FE_STORAGE_CONST( + static const secp256k1_fe_storage fes = SECP256K1_FE_STORAGE_CONST( 0x00010203UL, 0x04050607UL, 0x11121314UL, 0x15161718UL, 0x22232425UL, 0x26272829UL, 0x33343536UL, 0x37383940UL ); - static const secp256k1_fe_t fe = SECP256K1_FE_CONST( + static const secp256k1_fe fe = SECP256K1_FE_CONST( 0x00010203UL, 0x04050607UL, 0x11121314UL, 0x15161718UL, 0x22232425UL, 0x26272829UL, 0x33343536UL, 0x37383940UL ); - secp256k1_fe_t fe2; + secp256k1_fe fe2; unsigned char b322[32]; - secp256k1_fe_storage_t fes2; + secp256k1_fe_storage fes2; /* Check conversions to fe. */ CHECK(secp256k1_fe_set_b32(&fe2, b32)); CHECK(secp256k1_fe_equal_var(&fe, &fe2)); @@ -689,15 +751,24 @@ void run_field_convert(void) { CHECK(memcmp(&fes2, &fes, sizeof(fes)) == 0); } +int fe_memcmp(const secp256k1_fe *a, const secp256k1_fe *b) { + secp256k1_fe t = *b; +#ifdef VERIFY + t.magnitude = a->magnitude; + t.normalized = a->normalized; +#endif + return memcmp(a, &t, sizeof(secp256k1_fe)); +} + void run_field_misc(void) { - secp256k1_fe_t x; - secp256k1_fe_t y; - secp256k1_fe_t z; - secp256k1_fe_t q; - secp256k1_fe_t fe5 = SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 5); - int i; + secp256k1_fe x; + secp256k1_fe y; + secp256k1_fe z; + secp256k1_fe q; + secp256k1_fe fe5 = SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 5); + int i, j; for (i = 0; i < 5*count; i++) { - secp256k1_fe_storage_t xs, ys, zs; + secp256k1_fe_storage xs, ys, zs; random_fe(&x); random_fe_non_zero(&y); /* Test the fe equality and comparison operations. */ @@ -705,12 +776,35 @@ void run_field_misc(void) { CHECK(secp256k1_fe_equal_var(&x, &x)); z = x; secp256k1_fe_add(&z,&y); - secp256k1_fe_normalize(&z); + /* Test fe conditional move; z is not normalized here. */ + q = x; + secp256k1_fe_cmov(&x, &z, 0); + VERIFY_CHECK(!x.normalized && x.magnitude == z.magnitude); + secp256k1_fe_cmov(&x, &x, 1); + CHECK(fe_memcmp(&x, &z) != 0); + CHECK(fe_memcmp(&x, &q) == 0); + secp256k1_fe_cmov(&q, &z, 1); + VERIFY_CHECK(!q.normalized && q.magnitude == z.magnitude); + CHECK(fe_memcmp(&q, &z) == 0); + secp256k1_fe_normalize_var(&x); + secp256k1_fe_normalize_var(&z); + CHECK(!secp256k1_fe_equal_var(&x, &z)); + secp256k1_fe_normalize_var(&q); + secp256k1_fe_cmov(&q, &z, (i&1)); + VERIFY_CHECK(q.normalized && q.magnitude == 1); + for (j = 0; j < 6; j++) { + secp256k1_fe_negate(&z, &z, j+1); + secp256k1_fe_normalize_var(&q); + secp256k1_fe_cmov(&q, &z, (j&1)); + VERIFY_CHECK(!q.normalized && q.magnitude == (j+2)); + } + secp256k1_fe_normalize_var(&z); /* Test storage conversion and conditional moves. */ secp256k1_fe_to_storage(&xs, &x); secp256k1_fe_to_storage(&ys, &y); secp256k1_fe_to_storage(&zs, &z); secp256k1_fe_storage_cmov(&zs, &xs, 0); + secp256k1_fe_storage_cmov(&zs, &zs, 1); CHECK(memcmp(&xs, &zs, sizeof(xs)) != 0); secp256k1_fe_storage_cmov(&ys, &xs, 1); CHECK(memcmp(&xs, &ys, sizeof(xs)) == 0); @@ -739,7 +833,7 @@ void run_field_misc(void) { } void run_field_inv(void) { - secp256k1_fe_t x, xi, xii; + secp256k1_fe x, xi, xii; int i; for (i = 0; i < 10*count; i++) { random_fe_non_zero(&x); @@ -751,7 +845,7 @@ void run_field_inv(void) { } void run_field_inv_var(void) { - secp256k1_fe_t x, xi, xii; + secp256k1_fe x, xi, xii; int i; for (i = 0; i < 10*count; i++) { random_fe_non_zero(&x); @@ -763,7 +857,7 @@ void run_field_inv_var(void) { } void run_field_inv_all_var(void) { - secp256k1_fe_t x[16], xi[16], xii[16]; + secp256k1_fe x[16], xi[16], xii[16]; int i; /* Check it's safe to call for 0 elements */ secp256k1_fe_inv_all_var(0, xi, x); @@ -785,7 +879,7 @@ void run_field_inv_all_var(void) { } void run_sqr(void) { - secp256k1_fe_t x, s; + secp256k1_fe x, s; { int i; @@ -800,8 +894,8 @@ void run_sqr(void) { } } -void test_sqrt(const secp256k1_fe_t *a, const secp256k1_fe_t *k) { - secp256k1_fe_t r1, r2; +void test_sqrt(const secp256k1_fe *a, const secp256k1_fe *k) { + secp256k1_fe r1, r2; int v = secp256k1_fe_sqrt_var(&r1, a); CHECK((v == 0) == (k == NULL)); @@ -815,7 +909,7 @@ void test_sqrt(const secp256k1_fe_t *a, const secp256k1_fe_t *k) { } void run_sqrt(void) { - secp256k1_fe_t ns, x, s, t; + secp256k1_fe ns, x, s, t; int i; /* Check sqrt(0) is 0 */ @@ -850,18 +944,40 @@ void run_sqrt(void) { /***** GROUP TESTS *****/ -void ge_equals_ge(const secp256k1_ge_t *a, const secp256k1_ge_t *b) { +void ge_equals_ge(const secp256k1_ge *a, const secp256k1_ge *b) { CHECK(a->infinity == b->infinity); if (a->infinity) { return; } CHECK(secp256k1_fe_equal_var(&a->x, &b->x)); - CHECK(secp256k1_fe_equal_var(&b->y, &b->y)); + CHECK(secp256k1_fe_equal_var(&a->y, &b->y)); } -void ge_equals_gej(const secp256k1_ge_t *a, const secp256k1_gej_t *b) { - secp256k1_fe_t z2s; - secp256k1_fe_t u1, u2, s1, s2; +/* This compares jacobian points including their Z, not just their geometric meaning. */ +int gej_xyz_equals_gej(const secp256k1_gej *a, const secp256k1_gej *b) { + secp256k1_gej a2; + secp256k1_gej b2; + int ret = 1; + ret &= a->infinity == b->infinity; + if (ret && !a->infinity) { + a2 = *a; + b2 = *b; + secp256k1_fe_normalize(&a2.x); + secp256k1_fe_normalize(&a2.y); + secp256k1_fe_normalize(&a2.z); + secp256k1_fe_normalize(&b2.x); + secp256k1_fe_normalize(&b2.y); + secp256k1_fe_normalize(&b2.z); + ret &= secp256k1_fe_cmp_var(&a2.x, &b2.x) == 0; + ret &= secp256k1_fe_cmp_var(&a2.y, &b2.y) == 0; + ret &= secp256k1_fe_cmp_var(&a2.z, &b2.z) == 0; + } + return ret; +} + +void ge_equals_gej(const secp256k1_ge *a, const secp256k1_gej *b) { + secp256k1_fe z2s; + secp256k1_fe u1, u2, s1, s2; CHECK(a->infinity == b->infinity); if (a->infinity) { return; @@ -878,21 +994,39 @@ void ge_equals_gej(const secp256k1_ge_t *a, const secp256k1_gej_t *b) { void test_ge(void) { int i, i1; +#ifdef USE_ENDOMORPHISM + int runs = 6; +#else int runs = 4; +#endif /* Points: (infinity, p1, p1, -p1, -p1, p2, p2, -p2, -p2, p3, p3, -p3, -p3, p4, p4, -p4, -p4). * The second in each pair of identical points uses a random Z coordinate in the Jacobian form. * All magnitudes are randomized. * All 17*17 combinations of points are added to eachother, using all applicable methods. + * + * When the endomorphism code is compiled in, p5 = lambda*p1 and p6 = lambda^2*p1 are added as well. */ - secp256k1_ge_t *ge = (secp256k1_ge_t *)malloc(sizeof(secp256k1_ge_t) * (1 + 4 * runs)); - secp256k1_gej_t *gej = (secp256k1_gej_t *)malloc(sizeof(secp256k1_gej_t) * (1 + 4 * runs)); + secp256k1_ge *ge = (secp256k1_ge *)malloc(sizeof(secp256k1_ge) * (1 + 4 * runs)); + secp256k1_gej *gej = (secp256k1_gej *)malloc(sizeof(secp256k1_gej) * (1 + 4 * runs)); + secp256k1_fe *zinv = (secp256k1_fe *)malloc(sizeof(secp256k1_fe) * (1 + 4 * runs)); + secp256k1_fe zf; + secp256k1_fe zfi2, zfi3; + secp256k1_gej_set_infinity(&gej[0]); secp256k1_ge_clear(&ge[0]); secp256k1_ge_set_gej_var(&ge[0], &gej[0]); for (i = 0; i < runs; i++) { int j; - secp256k1_ge_t g; + secp256k1_ge g; random_group_element_test(&g); +#ifdef USE_ENDOMORPHISM + if (i >= runs - 2) { + secp256k1_ge_mul_lambda(&g, &ge[1]); + } + if (i >= runs - 1) { + secp256k1_ge_mul_lambda(&g, &g); + } +#endif ge[1 + 4 * i] = g; ge[2 + 4 * i] = g; secp256k1_ge_neg(&ge[3 + 4 * i], &g); @@ -910,18 +1044,65 @@ void test_ge(void) { } } + /* Compute z inverses. */ + { + secp256k1_fe *zs = malloc(sizeof(secp256k1_fe) * (1 + 4 * runs)); + for (i = 0; i < 4 * runs + 1; i++) { + if (i == 0) { + /* The point at infinity does not have a meaningful z inverse. Any should do. */ + do { + random_field_element_test(&zs[i]); + } while(secp256k1_fe_is_zero(&zs[i])); + } else { + zs[i] = gej[i].z; + } + } + secp256k1_fe_inv_all_var(4 * runs + 1, zinv, zs); + free(zs); + } + + /* Generate random zf, and zfi2 = 1/zf^2, zfi3 = 1/zf^3 */ + do { + random_field_element_test(&zf); + } while(secp256k1_fe_is_zero(&zf)); + random_field_element_magnitude(&zf); + secp256k1_fe_inv_var(&zfi3, &zf); + secp256k1_fe_sqr(&zfi2, &zfi3); + secp256k1_fe_mul(&zfi3, &zfi3, &zfi2); + for (i1 = 0; i1 < 1 + 4 * runs; i1++) { int i2; for (i2 = 0; i2 < 1 + 4 * runs; i2++) { /* Compute reference result using gej + gej (var). */ - secp256k1_gej_t refj, resj; - secp256k1_ge_t ref; - secp256k1_gej_add_var(&refj, &gej[i1], &gej[i2]); + secp256k1_gej refj, resj; + secp256k1_ge ref; + secp256k1_fe zr; + secp256k1_gej_add_var(&refj, &gej[i1], &gej[i2], secp256k1_gej_is_infinity(&gej[i1]) ? NULL : &zr); + /* Check Z ratio. */ + if (!secp256k1_gej_is_infinity(&gej[i1]) && !secp256k1_gej_is_infinity(&refj)) { + secp256k1_fe zrz; secp256k1_fe_mul(&zrz, &zr, &gej[i1].z); + CHECK(secp256k1_fe_equal_var(&zrz, &refj.z)); + } secp256k1_ge_set_gej_var(&ref, &refj); - /* Test gej + ge (var). */ - secp256k1_gej_add_ge_var(&resj, &gej[i1], &ge[i2]); + /* Test gej + ge with Z ratio result (var). */ + secp256k1_gej_add_ge_var(&resj, &gej[i1], &ge[i2], secp256k1_gej_is_infinity(&gej[i1]) ? NULL : &zr); ge_equals_gej(&ref, &resj); + if (!secp256k1_gej_is_infinity(&gej[i1]) && !secp256k1_gej_is_infinity(&resj)) { + secp256k1_fe zrz; secp256k1_fe_mul(&zrz, &zr, &gej[i1].z); + CHECK(secp256k1_fe_equal_var(&zrz, &resj.z)); + } + + /* Test gej + ge (var, with additional Z factor). */ + { + secp256k1_ge ge2_zfi = ge[i2]; /* the second term with x and y rescaled for z = 1/zf */ + secp256k1_fe_mul(&ge2_zfi.x, &ge2_zfi.x, &zfi2); + secp256k1_fe_mul(&ge2_zfi.y, &ge2_zfi.y, &zfi3); + random_field_element_magnitude(&ge2_zfi.x); + random_field_element_magnitude(&ge2_zfi.y); + secp256k1_gej_add_zinv_var(&resj, &gej[i1], &ge2_zfi, &zf); + ge_equals_gej(&ref, &resj); + } /* Test gej + ge (const). */ if (i2 != 0) { @@ -932,10 +1113,15 @@ void test_ge(void) { /* Test doubling (var). */ if ((i1 == 0 && i2 == 0) || ((i1 + 3)/4 == (i2 + 3)/4 && ((i1 + 3)%4)/2 == ((i2 + 3)%4)/2)) { - /* Normal doubling. */ - secp256k1_gej_double_var(&resj, &gej[i1]); + secp256k1_fe zr2; + /* Normal doubling with Z ratio result. */ + secp256k1_gej_double_var(&resj, &gej[i1], &zr2); ge_equals_gej(&ref, &resj); - secp256k1_gej_double_var(&resj, &gej[i2]); + /* Check Z ratio. */ + secp256k1_fe_mul(&zr2, &zr2, &gej[i1].z); + CHECK(secp256k1_fe_equal_var(&zr2, &resj.z)); + /* Normal doubling. */ + secp256k1_gej_double_var(&resj, &gej[i2], NULL); ge_equals_gej(&ref, &resj); } @@ -960,38 +1146,121 @@ void test_ge(void) { /* Test adding all points together in random order equals infinity. */ { - secp256k1_gej_t sum = SECP256K1_GEJ_CONST_INFINITY; - secp256k1_gej_t *gej_shuffled = (secp256k1_gej_t *)malloc((4 * runs + 1) * sizeof(secp256k1_gej_t)); + secp256k1_gej sum = SECP256K1_GEJ_CONST_INFINITY; + secp256k1_gej *gej_shuffled = (secp256k1_gej *)malloc((4 * runs + 1) * sizeof(secp256k1_gej)); for (i = 0; i < 4 * runs + 1; i++) { gej_shuffled[i] = gej[i]; } for (i = 0; i < 4 * runs + 1; i++) { int swap = i + secp256k1_rand32() % (4 * runs + 1 - i); if (swap != i) { - secp256k1_gej_t t = gej_shuffled[i]; + secp256k1_gej t = gej_shuffled[i]; gej_shuffled[i] = gej_shuffled[swap]; gej_shuffled[swap] = t; } } for (i = 0; i < 4 * runs + 1; i++) { - secp256k1_gej_add_var(&sum, &sum, &gej_shuffled[i]); + secp256k1_gej_add_var(&sum, &sum, &gej_shuffled[i], NULL); } CHECK(secp256k1_gej_is_infinity(&sum)); free(gej_shuffled); } - /* Test batch gej -> ge conversion. */ + /* Test batch gej -> ge conversion with and without known z ratios. */ { - secp256k1_ge_t *ge_set_all = (secp256k1_ge_t *)malloc((4 * runs + 1) * sizeof(secp256k1_ge_t)); - secp256k1_ge_set_all_gej_var(4 * runs + 1, ge_set_all, gej); + secp256k1_fe *zr = (secp256k1_fe *)malloc((4 * runs + 1) * sizeof(secp256k1_fe)); + secp256k1_ge *ge_set_table = (secp256k1_ge *)malloc((4 * runs + 1) * sizeof(secp256k1_ge)); + secp256k1_ge *ge_set_all = (secp256k1_ge *)malloc((4 * runs + 1) * sizeof(secp256k1_ge)); + for (i = 0; i < 4 * runs + 1; i++) { + /* Compute gej[i + 1].z / gez[i].z (with gej[n].z taken to be 1). */ + if (i < 4 * runs) { + secp256k1_fe_mul(&zr[i + 1], &zinv[i], &gej[i + 1].z); + } + } + secp256k1_ge_set_table_gej_var(4 * runs + 1, ge_set_table, gej, zr); + secp256k1_ge_set_all_gej_var(4 * runs + 1, ge_set_all, gej, &ctx->error_callback); for (i = 0; i < 4 * runs + 1; i++) { + secp256k1_fe s; + random_fe_non_zero(&s); + secp256k1_gej_rescale(&gej[i], &s); + ge_equals_gej(&ge_set_table[i], &gej[i]); ge_equals_gej(&ge_set_all[i], &gej[i]); } + free(ge_set_table); free(ge_set_all); + free(zr); } free(ge); free(gej); + free(zinv); +} + +void test_add_neg_y_diff_x(void) { + /* The point of this test is to check that we can add two points + * whose y-coordinates are negatives of each other but whose x + * coordinates differ. If the x-coordinates were the same, these + * points would be negatives of each other and their sum is + * infinity. This is cool because it "covers up" any degeneracy + * in the addition algorithm that would cause the xy coordinates + * of the sum to be wrong (since infinity has no xy coordinates). + * HOWEVER, if the x-coordinates are different, infinity is the + * wrong answer, and such degeneracies are exposed. This is the + * root of https://github.com/bitcoin/secp256k1/issues/257 which + * this test is a regression test for. + * + * These points were generated in sage as + * # secp256k1 params + * F = FiniteField (0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F) + * C = EllipticCurve ([F (0), F (7)]) + * G = C.lift_x(0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798) + * N = FiniteField(G.order()) + * + * # endomorphism values (lambda is 1^{1/3} in N, beta is 1^{1/3} in F) + * x = polygen(N) + * lam = (1 - x^3).roots()[1][0] + * + * # random "bad pair" + * P = C.random_element() + * Q = -int(lam) * P + * print " P: %x %x" % P.xy() + * print " Q: %x %x" % Q.xy() + * print "P + Q: %x %x" % (P + Q).xy() + */ + secp256k1_gej aj = SECP256K1_GEJ_CONST( + 0x8d24cd95, 0x0a355af1, 0x3c543505, 0x44238d30, + 0x0643d79f, 0x05a59614, 0x2f8ec030, 0xd58977cb, + 0x001e337a, 0x38093dcd, 0x6c0f386d, 0x0b1293a8, + 0x4d72c879, 0xd7681924, 0x44e6d2f3, 0x9190117d + ); + secp256k1_gej bj = SECP256K1_GEJ_CONST( + 0xc7b74206, 0x1f788cd9, 0xabd0937d, 0x164a0d86, + 0x95f6ff75, 0xf19a4ce9, 0xd013bd7b, 0xbf92d2a7, + 0xffe1cc85, 0xc7f6c232, 0x93f0c792, 0xf4ed6c57, + 0xb28d3786, 0x2897e6db, 0xbb192d0b, 0x6e6feab2 + ); + secp256k1_gej sumj = SECP256K1_GEJ_CONST( + 0x671a63c0, 0x3efdad4c, 0x389a7798, 0x24356027, + 0xb3d69010, 0x278625c3, 0x5c86d390, 0x184a8f7a, + 0x5f6409c2, 0x2ce01f2b, 0x511fd375, 0x25071d08, + 0xda651801, 0x70e95caf, 0x8f0d893c, 0xbed8fbbe + ); + secp256k1_ge b; + secp256k1_gej resj; + secp256k1_ge res; + secp256k1_ge_set_gej(&b, &bj); + + secp256k1_gej_add_var(&resj, &aj, &bj, NULL); + secp256k1_ge_set_gej(&res, &resj); + ge_equals_gej(&res, &sumj); + + secp256k1_gej_add_ge(&resj, &aj, &b); + secp256k1_ge_set_gej(&res, &resj); + ge_equals_gej(&res, &sumj); + + secp256k1_gej_add_ge_var(&resj, &aj, &b, NULL); + secp256k1_ge_set_gej(&res, &resj); + ge_equals_gej(&res, &sumj); } void run_ge(void) { @@ -999,43 +1268,76 @@ void run_ge(void) { for (i = 0; i < count * 32; i++) { test_ge(); } + test_add_neg_y_diff_x(); +} + +void test_ec_combine(void) { + secp256k1_scalar sum = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 0); + secp256k1_pubkey data[6]; + const secp256k1_pubkey* d[6]; + secp256k1_pubkey sd; + secp256k1_pubkey sd2; + secp256k1_gej Qj; + secp256k1_ge Q; + int i; + for (i = 1; i <= 6; i++) { + secp256k1_scalar s; + random_scalar_order_test(&s); + secp256k1_scalar_add(&sum, &sum, &s); + secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &Qj, &s); + secp256k1_ge_set_gej(&Q, &Qj); + secp256k1_pubkey_save(&data[i - 1], &Q); + d[i - 1] = &data[i - 1]; + secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &Qj, &sum); + secp256k1_ge_set_gej(&Q, &Qj); + secp256k1_pubkey_save(&sd, &Q); + CHECK(secp256k1_ec_pubkey_combine(ctx, &sd2, d, i) == 1); + CHECK(memcmp(&sd, &sd2, sizeof(sd)) == 0); + } +} + +void run_ec_combine(void) { + int i; + for (i = 0; i < count * 8; i++) { + test_ec_combine(); + } } /***** ECMULT TESTS *****/ void run_ecmult_chain(void) { /* random starting point A (on the curve) */ - secp256k1_gej_t a = SECP256K1_GEJ_CONST( + secp256k1_gej a = SECP256K1_GEJ_CONST( 0x8b30bbe9, 0xae2a9906, 0x96b22f67, 0x0709dff3, 0x727fd8bc, 0x04d3362c, 0x6c7bf458, 0xe2846004, 0xa357ae91, 0x5c4a6528, 0x1309edf2, 0x0504740f, 0x0eb33439, 0x90216b4f, 0x81063cb6, 0x5f2f7e0f ); /* two random initial factors xn and gn */ - secp256k1_scalar_t xn = SECP256K1_SCALAR_CONST( + secp256k1_scalar xn = SECP256K1_SCALAR_CONST( 0x84cc5452, 0xf7fde1ed, 0xb4d38a8c, 0xe9b1b84c, 0xcef31f14, 0x6e569be9, 0x705d357a, 0x42985407 ); - secp256k1_scalar_t gn = SECP256K1_SCALAR_CONST( + secp256k1_scalar gn = SECP256K1_SCALAR_CONST( 0xa1e58d22, 0x553dcd42, 0xb2398062, 0x5d4c57a9, 0x6e9323d4, 0x2b3152e5, 0xca2c3990, 0xedc7c9de ); /* two small multipliers to be applied to xn and gn in every iteration: */ - static const secp256k1_scalar_t xf = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 0x1337); - static const secp256k1_scalar_t gf = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 0x7113); + static const secp256k1_scalar xf = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 0x1337); + static const secp256k1_scalar gf = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 0x7113); /* accumulators with the resulting coefficients to A and G */ - secp256k1_scalar_t ae = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 1); - secp256k1_scalar_t ge = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 0); + secp256k1_scalar ae = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 1); + secp256k1_scalar ge = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 0); /* actual points */ - secp256k1_gej_t x = a; - secp256k1_gej_t x2; + secp256k1_gej x; + secp256k1_gej x2; int i; /* the point being computed */ x = a; for (i = 0; i < 200*count; i++) { /* in each iteration, compute X = xn*X + gn*G; */ - secp256k1_ecmult(&x, &x, &xn, &gn); + secp256k1_ecmult(&ctx->ecmult_ctx, &x, &x, &xn, &gn); /* also compute ae and ge: the actual accumulated factors for A and G */ /* if X was (ae*A+ge*G), xn*X + gn*G results in (xn*ae*A + (xn*ge+gn)*G) */ secp256k1_scalar_mul(&ae, &ae, &xn); @@ -1048,7 +1350,7 @@ void run_ecmult_chain(void) { /* verify */ if (i == 19999) { /* expected result after 19999 iterations */ - secp256k1_gej_t rp = SECP256K1_GEJ_CONST( + secp256k1_gej rp = SECP256K1_GEJ_CONST( 0xD6E96687, 0xF9B10D09, 0x2A6F3543, 0x9D86CEBE, 0xA4535D0D, 0x409F5358, 0x6440BD74, 0xB933E830, 0xB95CBCA2, 0xC77DA786, 0x539BE8FD, 0x53354D2D, @@ -1056,30 +1358,32 @@ void run_ecmult_chain(void) { ); secp256k1_gej_neg(&rp, &rp); - secp256k1_gej_add_var(&rp, &rp, &x); + secp256k1_gej_add_var(&rp, &rp, &x, NULL); CHECK(secp256k1_gej_is_infinity(&rp)); } } /* redo the computation, but directly with the resulting ae and ge coefficients: */ - secp256k1_ecmult(&x2, &a, &ae, &ge); + secp256k1_ecmult(&ctx->ecmult_ctx, &x2, &a, &ae, &ge); secp256k1_gej_neg(&x2, &x2); - secp256k1_gej_add_var(&x2, &x2, &x); + secp256k1_gej_add_var(&x2, &x2, &x, NULL); CHECK(secp256k1_gej_is_infinity(&x2)); } -void test_point_times_order(const secp256k1_gej_t *point) { +void test_point_times_order(const secp256k1_gej *point) { /* X * (point + G) + (order-X) * (pointer + G) = 0 */ - secp256k1_scalar_t x; - secp256k1_scalar_t nx; - secp256k1_gej_t res1, res2; - secp256k1_ge_t res3; + secp256k1_scalar x; + secp256k1_scalar nx; + secp256k1_scalar zero = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 0); + secp256k1_scalar one = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 1); + secp256k1_gej res1, res2; + secp256k1_ge res3; unsigned char pub[65]; - int psize = 65; + size_t psize = 65; random_scalar_order_test(&x); secp256k1_scalar_negate(&nx, &x); - secp256k1_ecmult(&res1, point, &x, &x); /* calc res1 = x * point + x * G; */ - secp256k1_ecmult(&res2, point, &nx, &nx); /* calc res2 = (order - x) * point + (order - x) * G; */ - secp256k1_gej_add_var(&res1, &res1, &res2); + secp256k1_ecmult(&ctx->ecmult_ctx, &res1, point, &x, &x); /* calc res1 = x * point + x * G; */ + secp256k1_ecmult(&ctx->ecmult_ctx, &res2, point, &nx, &nx); /* calc res2 = (order - x) * point + (order - x) * G; */ + secp256k1_gej_add_var(&res1, &res1, &res2, NULL); CHECK(secp256k1_gej_is_infinity(&res1)); CHECK(secp256k1_gej_is_valid_var(&res1) == 0); secp256k1_ge_set_gej(&res3, &res1); @@ -1088,19 +1392,29 @@ void test_point_times_order(const secp256k1_gej_t *point) { CHECK(secp256k1_eckey_pubkey_serialize(&res3, pub, &psize, 0) == 0); psize = 65; CHECK(secp256k1_eckey_pubkey_serialize(&res3, pub, &psize, 1) == 0); + /* check zero/one edge cases */ + secp256k1_ecmult(&ctx->ecmult_ctx, &res1, point, &zero, &zero); + secp256k1_ge_set_gej(&res3, &res1); + CHECK(secp256k1_ge_is_infinity(&res3)); + secp256k1_ecmult(&ctx->ecmult_ctx, &res1, point, &one, &zero); + secp256k1_ge_set_gej(&res3, &res1); + ge_equals_gej(&res3, point); + secp256k1_ecmult(&ctx->ecmult_ctx, &res1, point, &zero, &one); + secp256k1_ge_set_gej(&res3, &res1); + ge_equals_ge(&res3, &secp256k1_ge_const_g); } void run_point_times_order(void) { int i; - secp256k1_fe_t x = SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 2); - static const secp256k1_fe_t xr = SECP256K1_FE_CONST( + secp256k1_fe x = SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 2); + static const secp256k1_fe xr = SECP256K1_FE_CONST( 0x7603CB59, 0xB0EF6C63, 0xFE608479, 0x2A0C378C, 0xDB3233A8, 0x0F8A9A09, 0xA877DEAD, 0x31B38C45 ); for (i = 0; i < 500; i++) { - secp256k1_ge_t p; + secp256k1_ge p; if (secp256k1_ge_set_xo_var(&p, &x, 1)) { - secp256k1_gej_t j; + secp256k1_gej j; CHECK(secp256k1_ge_is_valid_var(&p)); secp256k1_gej_set_ge(&j, &p); CHECK(secp256k1_gej_is_valid_var(&j)); @@ -1112,15 +1426,118 @@ void run_point_times_order(void) { CHECK(secp256k1_fe_equal_var(&x, &xr)); } -void test_wnaf(const secp256k1_scalar_t *number, int w) { - secp256k1_scalar_t x, two, t; +void ecmult_const_random_mult(void) { + /* random starting point A (on the curve) */ + secp256k1_ge a = SECP256K1_GE_CONST( + 0x6d986544, 0x57ff52b8, 0xcf1b8126, 0x5b802a5b, + 0xa97f9263, 0xb1e88044, 0x93351325, 0x91bc450a, + 0x535c59f7, 0x325e5d2b, 0xc391fbe8, 0x3c12787c, + 0x337e4a98, 0xe82a9011, 0x0123ba37, 0xdd769c7d + ); + /* random initial factor xn */ + secp256k1_scalar xn = SECP256K1_SCALAR_CONST( + 0x649d4f77, 0xc4242df7, 0x7f2079c9, 0x14530327, + 0xa31b876a, 0xd2d8ce2a, 0x2236d5c6, 0xd7b2029b + ); + /* expected xn * A (from sage) */ + secp256k1_ge expected_b = SECP256K1_GE_CONST( + 0x23773684, 0x4d209dc7, 0x098a786f, 0x20d06fcd, + 0x070a38bf, 0xc11ac651, 0x03004319, 0x1e2a8786, + 0xed8c3b8e, 0xc06dd57b, 0xd06ea66e, 0x45492b0f, + 0xb84e4e1b, 0xfb77e21f, 0x96baae2a, 0x63dec956 + ); + secp256k1_gej b; + secp256k1_ecmult_const(&b, &a, &xn); + + CHECK(secp256k1_ge_is_valid_var(&a)); + ge_equals_gej(&expected_b, &b); +} + +void ecmult_const_commutativity(void) { + secp256k1_scalar a; + secp256k1_scalar b; + secp256k1_gej res1; + secp256k1_gej res2; + secp256k1_ge mid1; + secp256k1_ge mid2; + random_scalar_order_test(&a); + random_scalar_order_test(&b); + + secp256k1_ecmult_const(&res1, &secp256k1_ge_const_g, &a); + secp256k1_ecmult_const(&res2, &secp256k1_ge_const_g, &b); + secp256k1_ge_set_gej(&mid1, &res1); + secp256k1_ge_set_gej(&mid2, &res2); + secp256k1_ecmult_const(&res1, &mid1, &b); + secp256k1_ecmult_const(&res2, &mid2, &a); + secp256k1_ge_set_gej(&mid1, &res1); + secp256k1_ge_set_gej(&mid2, &res2); + ge_equals_ge(&mid1, &mid2); +} + +void ecmult_const_mult_zero_one(void) { + secp256k1_scalar zero = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 0); + secp256k1_scalar one = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 1); + secp256k1_scalar negone; + secp256k1_gej res1; + secp256k1_ge res2; + secp256k1_ge point; + secp256k1_scalar_negate(&negone, &one); + + random_group_element_test(&point); + secp256k1_ecmult_const(&res1, &point, &zero); + secp256k1_ge_set_gej(&res2, &res1); + CHECK(secp256k1_ge_is_infinity(&res2)); + secp256k1_ecmult_const(&res1, &point, &one); + secp256k1_ge_set_gej(&res2, &res1); + ge_equals_ge(&res2, &point); + secp256k1_ecmult_const(&res1, &point, &negone); + secp256k1_gej_neg(&res1, &res1); + secp256k1_ge_set_gej(&res2, &res1); + ge_equals_ge(&res2, &point); +} + +void ecmult_const_chain_multiply(void) { + /* Check known result (randomly generated test problem from sage) */ + const secp256k1_scalar scalar = SECP256K1_SCALAR_CONST( + 0x4968d524, 0x2abf9b7a, 0x466abbcf, 0x34b11b6d, + 0xcd83d307, 0x827bed62, 0x05fad0ce, 0x18fae63b + ); + const secp256k1_gej expected_point = SECP256K1_GEJ_CONST( + 0x5494c15d, 0x32099706, 0xc2395f94, 0x348745fd, + 0x757ce30e, 0x4e8c90fb, 0xa2bad184, 0xf883c69f, + 0x5d195d20, 0xe191bf7f, 0x1be3e55f, 0x56a80196, + 0x6071ad01, 0xf1462f66, 0xc997fa94, 0xdb858435 + ); + secp256k1_gej point; + secp256k1_ge res; + int i; + + secp256k1_gej_set_ge(&point, &secp256k1_ge_const_g); + for (i = 0; i < 100; ++i) { + secp256k1_ge tmp; + secp256k1_ge_set_gej(&tmp, &point); + secp256k1_ecmult_const(&point, &tmp, &scalar); + } + secp256k1_ge_set_gej(&res, &point); + ge_equals_gej(&res, &expected_point); +} + +void run_ecmult_const_tests(void) { + ecmult_const_mult_zero_one(); + ecmult_const_random_mult(); + ecmult_const_commutativity(); + ecmult_const_chain_multiply(); +} + +void test_wnaf(const secp256k1_scalar *number, int w) { + secp256k1_scalar x, two, t; int wnaf[256]; int zeroes = -1; int i; int bits; secp256k1_scalar_set_int(&x, 0); secp256k1_scalar_set_int(&two, 2); - bits = secp256k1_ecmult_wnaf(wnaf, number, w); + bits = secp256k1_ecmult_wnaf(wnaf, 256, number, w); CHECK(bits <= 256); for (i = bits-1; i >= 0; i--) { int v = wnaf[i]; @@ -1146,43 +1563,223 @@ void test_wnaf(const secp256k1_scalar_t *number, int w) { CHECK(secp256k1_scalar_eq(&x, number)); /* check that wnaf represents number */ } +void test_constant_wnaf_negate(const secp256k1_scalar *number) { + secp256k1_scalar neg1 = *number; + secp256k1_scalar neg2 = *number; + int sign1 = 1; + int sign2 = 1; + + if (!secp256k1_scalar_get_bits(&neg1, 0, 1)) { + secp256k1_scalar_negate(&neg1, &neg1); + sign1 = -1; + } + sign2 = secp256k1_scalar_cond_negate(&neg2, secp256k1_scalar_is_even(&neg2)); + CHECK(sign1 == sign2); + CHECK(secp256k1_scalar_eq(&neg1, &neg2)); +} + +void test_constant_wnaf(const secp256k1_scalar *number, int w) { + secp256k1_scalar x, shift; + int wnaf[256] = {0}; + int i; +#ifdef USE_ENDOMORPHISM + int skew; +#endif + secp256k1_scalar num = *number; + + secp256k1_scalar_set_int(&x, 0); + secp256k1_scalar_set_int(&shift, 1 << w); + /* With USE_ENDOMORPHISM on we only consider 128-bit numbers */ +#ifdef USE_ENDOMORPHISM + for (i = 0; i < 16; ++i) { + secp256k1_scalar_shr_int(&num, 8); + } + skew = secp256k1_wnaf_const(wnaf, num, w); +#else + secp256k1_wnaf_const(wnaf, num, w); +#endif + + for (i = WNAF_SIZE(w); i >= 0; --i) { + secp256k1_scalar t; + int v = wnaf[i]; + CHECK(v != 0); /* check nonzero */ + CHECK(v & 1); /* check parity */ + CHECK(v > -(1 << w)); /* check range above */ + CHECK(v < (1 << w)); /* check range below */ + + secp256k1_scalar_mul(&x, &x, &shift); + if (v >= 0) { + secp256k1_scalar_set_int(&t, v); + } else { + secp256k1_scalar_set_int(&t, -v); + secp256k1_scalar_negate(&t, &t); + } + secp256k1_scalar_add(&x, &x, &t); + } +#ifdef USE_ENDOMORPHISM + /* Skew num because when encoding 128-bit numbers as odd we use an offset */ + secp256k1_scalar_cadd_bit(&num, skew == 2, 1); +#endif + CHECK(secp256k1_scalar_eq(&x, &num)); +} + void run_wnaf(void) { int i; - secp256k1_scalar_t n; + secp256k1_scalar n = {{0}}; + + /* Sanity check: 1 and 2 are the smallest odd and even numbers and should + * have easier-to-diagnose failure modes */ + n.d[0] = 1; + test_constant_wnaf(&n, 4); + n.d[0] = 2; + test_constant_wnaf(&n, 4); + /* Random tests */ for (i = 0; i < count; i++) { random_scalar_order(&n); test_wnaf(&n, 4+(i%10)); + test_constant_wnaf_negate(&n); + test_constant_wnaf(&n, 4 + (i % 10)); + } +} + +void test_ecmult_constants(void) { + /* Test ecmult_gen() for [0..36) and [order-36..0). */ + secp256k1_scalar x; + secp256k1_gej r; + secp256k1_ge ng; + int i; + int j; + secp256k1_ge_neg(&ng, &secp256k1_ge_const_g); + for (i = 0; i < 36; i++ ) { + secp256k1_scalar_set_int(&x, i); + secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &r, &x); + for (j = 0; j < i; j++) { + if (j == i - 1) { + ge_equals_gej(&secp256k1_ge_const_g, &r); + } + secp256k1_gej_add_ge(&r, &r, &ng); + } + CHECK(secp256k1_gej_is_infinity(&r)); + } + for (i = 1; i <= 36; i++ ) { + secp256k1_scalar_set_int(&x, i); + secp256k1_scalar_negate(&x, &x); + secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &r, &x); + for (j = 0; j < i; j++) { + if (j == i - 1) { + ge_equals_gej(&ng, &r); + } + secp256k1_gej_add_ge(&r, &r, &secp256k1_ge_const_g); + } + CHECK(secp256k1_gej_is_infinity(&r)); + } +} + +void run_ecmult_constants(void) { + test_ecmult_constants(); +} + +void test_ecmult_gen_blind(void) { + /* Test ecmult_gen() blinding and confirm that the blinding changes, the affline points match, and the z's don't match. */ + secp256k1_scalar key; + secp256k1_scalar b; + unsigned char seed32[32]; + secp256k1_gej pgej; + secp256k1_gej pgej2; + secp256k1_gej i; + secp256k1_ge pge; + random_scalar_order_test(&key); + secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &pgej, &key); + secp256k1_rand256(seed32); + b = ctx->ecmult_gen_ctx.blind; + i = ctx->ecmult_gen_ctx.initial; + secp256k1_ecmult_gen_blind(&ctx->ecmult_gen_ctx, seed32); + CHECK(!secp256k1_scalar_eq(&b, &ctx->ecmult_gen_ctx.blind)); + secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &pgej2, &key); + CHECK(!gej_xyz_equals_gej(&pgej, &pgej2)); + CHECK(!gej_xyz_equals_gej(&i, &ctx->ecmult_gen_ctx.initial)); + secp256k1_ge_set_gej(&pge, &pgej); + ge_equals_gej(&pge, &pgej2); +} + +void test_ecmult_gen_blind_reset(void) { + /* Test ecmult_gen() blinding reset and confirm that the blinding is consistent. */ + secp256k1_scalar b; + secp256k1_gej initial; + secp256k1_ecmult_gen_blind(&ctx->ecmult_gen_ctx, 0); + b = ctx->ecmult_gen_ctx.blind; + initial = ctx->ecmult_gen_ctx.initial; + secp256k1_ecmult_gen_blind(&ctx->ecmult_gen_ctx, 0); + CHECK(secp256k1_scalar_eq(&b, &ctx->ecmult_gen_ctx.blind)); + CHECK(gej_xyz_equals_gej(&initial, &ctx->ecmult_gen_ctx.initial)); +} + +void run_ecmult_gen_blind(void) { + int i; + test_ecmult_gen_blind_reset(); + for (i = 0; i < 10; i++) { + test_ecmult_gen_blind(); + } +} + +#ifdef USE_ENDOMORPHISM +/***** ENDOMORPHISH TESTS *****/ +void test_scalar_split(void) { + secp256k1_scalar full; + secp256k1_scalar s1, slam; + const unsigned char zero[32] = {0}; + unsigned char tmp[32]; + + random_scalar_order_test(&full); + secp256k1_scalar_split_lambda(&s1, &slam, &full); + + /* check that both are <= 128 bits in size */ + if (secp256k1_scalar_is_high(&s1)) { + secp256k1_scalar_negate(&s1, &s1); + } + if (secp256k1_scalar_is_high(&slam)) { + secp256k1_scalar_negate(&slam, &slam); } + + secp256k1_scalar_get_b32(tmp, &s1); + CHECK(memcmp(zero, tmp, 16) == 0); + secp256k1_scalar_get_b32(tmp, &slam); + CHECK(memcmp(zero, tmp, 16) == 0); +} + +void run_endomorphism_tests(void) { + test_scalar_split(); } +#endif -void random_sign(secp256k1_ecdsa_sig_t *sig, const secp256k1_scalar_t *key, const secp256k1_scalar_t *msg, int *recid) { - secp256k1_scalar_t nonce; +void random_sign(secp256k1_scalar *sigr, secp256k1_scalar *sigs, const secp256k1_scalar *key, const secp256k1_scalar *msg, int *recid) { + secp256k1_scalar nonce; do { random_scalar_order_test(&nonce); - } while(!secp256k1_ecdsa_sig_sign(sig, key, msg, &nonce, recid)); + } while(!secp256k1_ecdsa_sig_sign(&ctx->ecmult_gen_ctx, sigr, sigs, key, msg, &nonce, recid)); } void test_ecdsa_sign_verify(void) { - secp256k1_gej_t pubj; - secp256k1_ge_t pub; - secp256k1_scalar_t one; - secp256k1_scalar_t msg, key; - secp256k1_ecdsa_sig_t sig; + secp256k1_gej pubj; + secp256k1_ge pub; + secp256k1_scalar one; + secp256k1_scalar msg, key; + secp256k1_scalar sigr, sigs; int recid; int getrec; random_scalar_order_test(&msg); random_scalar_order_test(&key); - secp256k1_ecmult_gen(&pubj, &key); + secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &pubj, &key); secp256k1_ge_set_gej(&pub, &pubj); getrec = secp256k1_rand32()&1; - random_sign(&sig, &key, &msg, getrec?&recid:NULL); + random_sign(&sigr, &sigs, &key, &msg, getrec?&recid:NULL); if (getrec) { CHECK(recid >= 0 && recid < 4); } - CHECK(secp256k1_ecdsa_sig_verify(&sig, &pub, &msg)); + CHECK(secp256k1_ecdsa_sig_verify(&ctx->ecmult_ctx, &sigr, &sigs, &pub, &msg)); secp256k1_scalar_set_int(&one, 1); secp256k1_scalar_add(&msg, &msg, &one); - CHECK(!secp256k1_ecdsa_sig_verify(&sig, &pub, &msg)); + CHECK(!secp256k1_ecdsa_sig_verify(&ctx->ecmult_ctx, &sigr, &sigs, &pub, &msg)); } void run_ecdsa_sign_verify(void) { @@ -1193,22 +1790,23 @@ void run_ecdsa_sign_verify(void) { } /** Dummy nonce generation function that just uses a precomputed nonce, and fails if it is not accepted. Use only for testing. */ -static int precomputed_nonce_function(unsigned char *nonce32, const unsigned char *msg32, const unsigned char *key32, unsigned int counter, const void *data) { +static int precomputed_nonce_function(unsigned char *nonce32, const unsigned char *msg32, const unsigned char *key32, const unsigned char *algo16, void *data, unsigned int counter) { (void)msg32; (void)key32; + (void)algo16; memcpy(nonce32, data, 32); return (counter == 0); } -static int nonce_function_test_fail(unsigned char *nonce32, const unsigned char *msg32, const unsigned char *key32, unsigned int counter, const void *data) { +static int nonce_function_test_fail(unsigned char *nonce32, const unsigned char *msg32, const unsigned char *key32, const unsigned char *algo16, void *data, unsigned int counter) { /* Dummy nonce generator that has a fatal error on the first counter value. */ if (counter == 0) { return 0; } - return nonce_function_rfc6979(nonce32, msg32, key32, counter - 1, data); + return nonce_function_rfc6979(nonce32, msg32, key32, algo16, data, counter - 1); } -static int nonce_function_test_retry(unsigned char *nonce32, const unsigned char *msg32, const unsigned char *key32, unsigned int counter, const void *data) { +static int nonce_function_test_retry(unsigned char *nonce32, const unsigned char *msg32, const unsigned char *key32, const unsigned char *algo16, void *data, unsigned int counter) { /* Dummy nonce generator that produces unacceptable nonces for the first several counter values. */ if (counter < 3) { memset(nonce32, counter==0 ? 0 : 255, 32); @@ -1235,12 +1833,12 @@ static int nonce_function_test_retry(unsigned char *nonce32, const unsigned char if (counter > 5) { return 0; } - return nonce_function_rfc6979(nonce32, msg32, key32, counter - 5, data); + return nonce_function_rfc6979(nonce32, msg32, key32, algo16, data, counter - 5); } -int is_empty_compact_signature(const unsigned char *sig64) { - static const unsigned char res[64] = {0}; - return memcmp(sig64, res, 64) == 0; +int is_empty_signature(const secp256k1_ecdsa_signature *sig) { + static const unsigned char res[sizeof(secp256k1_ecdsa_signature)] = {0}; + return memcmp(sig, res, sizeof(secp256k1_ecdsa_signature)) == 0; } void test_ecdsa_end_to_end(void) { @@ -1248,26 +1846,18 @@ void test_ecdsa_end_to_end(void) { unsigned char privkey[32]; unsigned char message[32]; unsigned char privkey2[32]; - unsigned char csignature[64]; - unsigned char signature[72]; - unsigned char signature2[72]; - unsigned char signature3[72]; - unsigned char signature4[72]; - unsigned char pubkey[65]; - unsigned char recpubkey[65]; + secp256k1_ecdsa_signature signature[5]; + unsigned char sig[74]; + size_t siglen = 74; + unsigned char pubkeyc[65]; + size_t pubkeyclen = 65; + secp256k1_pubkey pubkey; unsigned char seckey[300]; - int signaturelen = 72; - int signaturelen2 = 72; - int signaturelen3 = 72; - int signaturelen4 = 72; - int recid = 0; - int recpubkeylen = 0; - int pubkeylen = 65; - int seckeylen = 300; + size_t seckeylen = 300; /* Generate a random key and message. */ { - secp256k1_scalar_t msg, key; + secp256k1_scalar msg, key; random_scalar_order_test(&msg); random_scalar_order_test(&key); secp256k1_scalar_get_b32(privkey, &key); @@ -1275,16 +1865,17 @@ void test_ecdsa_end_to_end(void) { } /* Construct and verify corresponding public key. */ - CHECK(secp256k1_ec_seckey_verify(privkey) == 1); - CHECK(secp256k1_ec_pubkey_create(pubkey, &pubkeylen, privkey, (secp256k1_rand32() & 3) != 0) == 1); - if (secp256k1_rand32() & 1) { - CHECK(secp256k1_ec_pubkey_decompress(pubkey, &pubkeylen)); - } - CHECK(secp256k1_ec_pubkey_verify(pubkey, pubkeylen)); + CHECK(secp256k1_ec_seckey_verify(ctx, privkey) == 1); + CHECK(secp256k1_ec_pubkey_create(ctx, &pubkey, privkey) == 1); + + /* Verify exporting and importing public key. */ + CHECK(secp256k1_ec_pubkey_serialize(ctx, pubkeyc, &pubkeyclen, &pubkey, secp256k1_rand32() % 2) == 1); + memset(&pubkey, 0, sizeof(pubkey)); + CHECK(secp256k1_ec_pubkey_parse(ctx, &pubkey, pubkeyc, pubkeyclen) == 1); /* Verify private key import and export. */ - CHECK(secp256k1_ec_privkey_export(privkey, seckey, &seckeylen, secp256k1_rand32() % 2) == 1); - CHECK(secp256k1_ec_privkey_import(privkey2, seckey, seckeylen) == 1); + CHECK(secp256k1_ec_privkey_export(ctx, seckey, &seckeylen, privkey, (secp256k1_rand32() % 2) == 1) ? SECP256K1_EC_COMPRESSED : 0); + CHECK(secp256k1_ec_privkey_import(ctx, privkey2, seckey, seckeylen) == 1); CHECK(memcmp(privkey, privkey2, 32) == 0); /* Optionally tweak the keys using addition. */ @@ -1292,17 +1883,16 @@ void test_ecdsa_end_to_end(void) { int ret1; int ret2; unsigned char rnd[32]; - unsigned char pubkey2[65]; - int pubkeylen2 = 65; + secp256k1_pubkey pubkey2; secp256k1_rand256_test(rnd); - ret1 = secp256k1_ec_privkey_tweak_add(privkey, rnd); - ret2 = secp256k1_ec_pubkey_tweak_add(pubkey, pubkeylen, rnd); + ret1 = secp256k1_ec_privkey_tweak_add(ctx, privkey, rnd); + ret2 = secp256k1_ec_pubkey_tweak_add(ctx, &pubkey, rnd); CHECK(ret1 == ret2); if (ret1 == 0) { return; } - CHECK(secp256k1_ec_pubkey_create(pubkey2, &pubkeylen2, privkey, pubkeylen == 33) == 1); - CHECK(memcmp(pubkey, pubkey2, pubkeylen) == 0); + CHECK(secp256k1_ec_pubkey_create(ctx, &pubkey2, privkey) == 1); + CHECK(memcmp(&pubkey, &pubkey2, sizeof(pubkey)) == 0); } /* Optionally tweak the keys using multiplication. */ @@ -1310,75 +1900,67 @@ void test_ecdsa_end_to_end(void) { int ret1; int ret2; unsigned char rnd[32]; - unsigned char pubkey2[65]; - int pubkeylen2 = 65; + secp256k1_pubkey pubkey2; secp256k1_rand256_test(rnd); - ret1 = secp256k1_ec_privkey_tweak_mul(privkey, rnd); - ret2 = secp256k1_ec_pubkey_tweak_mul(pubkey, pubkeylen, rnd); + ret1 = secp256k1_ec_privkey_tweak_mul(ctx, privkey, rnd); + ret2 = secp256k1_ec_pubkey_tweak_mul(ctx, &pubkey, rnd); CHECK(ret1 == ret2); if (ret1 == 0) { return; } - CHECK(secp256k1_ec_pubkey_create(pubkey2, &pubkeylen2, privkey, pubkeylen == 33) == 1); - CHECK(memcmp(pubkey, pubkey2, pubkeylen) == 0); + CHECK(secp256k1_ec_pubkey_create(ctx, &pubkey2, privkey) == 1); + CHECK(memcmp(&pubkey, &pubkey2, sizeof(pubkey)) == 0); } /* Sign. */ - CHECK(secp256k1_ecdsa_sign(message, signature, &signaturelen, privkey, NULL, NULL) == 1); - CHECK(signaturelen > 0); - CHECK(secp256k1_ecdsa_sign(message, signature2, &signaturelen2, privkey, NULL, extra) == 1); - CHECK(signaturelen2 > 0); + CHECK(secp256k1_ecdsa_sign(ctx, &signature[0], message, privkey, NULL, NULL) == 1); + CHECK(secp256k1_ecdsa_sign(ctx, &signature[4], message, privkey, NULL, NULL) == 1); + CHECK(secp256k1_ecdsa_sign(ctx, &signature[1], message, privkey, NULL, extra) == 1); extra[31] = 1; - CHECK(secp256k1_ecdsa_sign(message, signature3, &signaturelen3, privkey, NULL, extra) == 1); - CHECK(signaturelen3 > 0); + CHECK(secp256k1_ecdsa_sign(ctx, &signature[2], message, privkey, NULL, extra) == 1); extra[31] = 0; extra[0] = 1; - CHECK(secp256k1_ecdsa_sign(message, signature4, &signaturelen4, privkey, NULL, extra) == 1); - CHECK(signaturelen3 > 0); - CHECK((signaturelen != signaturelen2) || (memcmp(signature, signature2, signaturelen) != 0)); - CHECK((signaturelen != signaturelen3) || (memcmp(signature, signature3, signaturelen) != 0)); - CHECK((signaturelen3 != signaturelen2) || (memcmp(signature3, signature2, signaturelen3) != 0)); - CHECK((signaturelen4 != signaturelen3) || (memcmp(signature4, signature3, signaturelen4) != 0)); - CHECK((signaturelen4 != signaturelen2) || (memcmp(signature4, signature2, signaturelen4) != 0)); - CHECK((signaturelen4 != signaturelen) || (memcmp(signature4, signature, signaturelen4) != 0)); + CHECK(secp256k1_ecdsa_sign(ctx, &signature[3], message, privkey, NULL, extra) == 1); + CHECK(memcmp(&signature[0], &signature[4], sizeof(signature[0])) == 0); + CHECK(memcmp(&signature[0], &signature[1], sizeof(signature[0])) != 0); + CHECK(memcmp(&signature[0], &signature[2], sizeof(signature[0])) != 0); + CHECK(memcmp(&signature[0], &signature[3], sizeof(signature[0])) != 0); + CHECK(memcmp(&signature[1], &signature[2], sizeof(signature[0])) != 0); + CHECK(memcmp(&signature[1], &signature[3], sizeof(signature[0])) != 0); + CHECK(memcmp(&signature[2], &signature[3], sizeof(signature[0])) != 0); /* Verify. */ - CHECK(secp256k1_ecdsa_verify(message, signature, signaturelen, pubkey, pubkeylen) == 1); - CHECK(secp256k1_ecdsa_verify(message, signature2, signaturelen2, pubkey, pubkeylen) == 1); - CHECK(secp256k1_ecdsa_verify(message, signature3, signaturelen3, pubkey, pubkeylen) == 1); - CHECK(secp256k1_ecdsa_verify(message, signature4, signaturelen4, pubkey, pubkeylen) == 1); - /* Destroy signature and verify again. */ - signature[signaturelen - 1 - secp256k1_rand32() % 20] += 1 + (secp256k1_rand32() % 255); - CHECK(secp256k1_ecdsa_verify(message, signature, signaturelen, pubkey, pubkeylen) != 1); - - /* Compact sign. */ - CHECK(secp256k1_ecdsa_sign_compact(message, csignature, privkey, NULL, NULL, &recid) == 1); - CHECK(!is_empty_compact_signature(csignature)); - /* Recover. */ - CHECK(secp256k1_ecdsa_recover_compact(message, csignature, recpubkey, &recpubkeylen, pubkeylen == 33, recid) == 1); - CHECK(recpubkeylen == pubkeylen); - CHECK(memcmp(pubkey, recpubkey, pubkeylen) == 0); - /* Destroy signature and verify again. */ - csignature[secp256k1_rand32() % 64] += 1 + (secp256k1_rand32() % 255); - CHECK(secp256k1_ecdsa_recover_compact(message, csignature, recpubkey, &recpubkeylen, pubkeylen == 33, recid) != 1 || - memcmp(pubkey, recpubkey, pubkeylen) != 0); - CHECK(recpubkeylen == pubkeylen); - + CHECK(secp256k1_ecdsa_verify(ctx, &signature[0], message, &pubkey) == 1); + CHECK(secp256k1_ecdsa_verify(ctx, &signature[1], message, &pubkey) == 1); + CHECK(secp256k1_ecdsa_verify(ctx, &signature[2], message, &pubkey) == 1); + CHECK(secp256k1_ecdsa_verify(ctx, &signature[3], message, &pubkey) == 1); + + /* Serialize/parse DER and verify again */ + CHECK(secp256k1_ecdsa_signature_serialize_der(ctx, sig, &siglen, &signature[0]) == 1); + memset(&signature[0], 0, sizeof(signature[0])); + CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &signature[0], sig, siglen) == 1); + CHECK(secp256k1_ecdsa_verify(ctx, &signature[0], message, &pubkey) == 1); + /* Serialize/destroy/parse DER and verify again. */ + siglen = 74; + CHECK(secp256k1_ecdsa_signature_serialize_der(ctx, sig, &siglen, &signature[0]) == 1); + sig[secp256k1_rand32() % siglen] += 1 + (secp256k1_rand32() % 255); + CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &signature[0], sig, siglen) == 0 || + secp256k1_ecdsa_verify(ctx, &signature[0], message, &pubkey) == 0); } void test_random_pubkeys(void) { - secp256k1_ge_t elem; - secp256k1_ge_t elem2; + secp256k1_ge elem; + secp256k1_ge elem2; unsigned char in[65]; /* Generate some randomly sized pubkeys. */ uint32_t r = secp256k1_rand32(); - int len = (r & 3) == 0 ? 65 : 33; + size_t len = (r & 3) == 0 ? 65 : 33; r>>=2; if ((r & 3) == 0) { len = (r & 252) >> 3; } r>>=8; if (len == 65) { - in[0] = (r & 2) ? 4 : (r & 1? 6 : 7); + in[0] = (r & 2) ? 4 : ((r & 1)? 6 : 7); } else { in[0] = (r & 1) ? 2 : 3; } @@ -1397,10 +1979,10 @@ void test_random_pubkeys(void) { unsigned char out[65]; unsigned char firstb; int res; - int size = len; + size_t size = len; firstb = in[0]; /* If the pubkey can be parsed, it should round-trip... */ - CHECK(secp256k1_eckey_pubkey_serialize(&elem, out, &size, len == 33)); + CHECK(secp256k1_eckey_pubkey_serialize(&elem, out, &size, (len == 33) ? SECP256K1_EC_COMPRESSED : 0)); CHECK(size == len); CHECK(memcmp(&in[1], &out[1], len-1) == 0); /* ... except for the type of hybrid inputs. */ @@ -1446,182 +2028,29 @@ void run_ecdsa_end_to_end(void) { /* Tests several edge cases. */ void test_ecdsa_edge_cases(void) { - const unsigned char msg32[32] = { - 'T', 'h', 'i', 's', ' ', 'i', 's', ' ', - 'a', ' ', 'v', 'e', 'r', 'y', ' ', 's', - 'e', 'c', 'r', 'e', 't', ' ', 'm', 'e', - 's', 's', 'a', 'g', 'e', '.', '.', '.' - }; - const unsigned char sig64[64] = { - /* Generated by signing the above message with nonce 'This is the nonce we will use...' - * and secret key 0 (which is not valid), resulting in recid 0. */ - 0x67, 0xCB, 0x28, 0x5F, 0x9C, 0xD1, 0x94, 0xE8, - 0x40, 0xD6, 0x29, 0x39, 0x7A, 0xF5, 0x56, 0x96, - 0x62, 0xFD, 0xE4, 0x46, 0x49, 0x99, 0x59, 0x63, - 0x17, 0x9A, 0x7D, 0xD1, 0x7B, 0xD2, 0x35, 0x32, - 0x4B, 0x1B, 0x7D, 0xF3, 0x4C, 0xE1, 0xF6, 0x8E, - 0x69, 0x4F, 0xF6, 0xF1, 0x1A, 0xC7, 0x51, 0xDD, - 0x7D, 0xD7, 0x3E, 0x38, 0x7E, 0xE4, 0xFC, 0x86, - 0x6E, 0x1B, 0xE8, 0xEC, 0xC7, 0xDD, 0x95, 0x57 - }; - unsigned char pubkey[65]; int t; - int pubkeylen = 65; - /* signature (r,s) = (4,4), which can be recovered with all 4 recids. */ - const unsigned char sigb64[64] = { - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04, - }; - unsigned char pubkeyb[33]; - int pubkeyblen = 33; - int recid; - - CHECK(!secp256k1_ecdsa_recover_compact(msg32, sig64, pubkey, &pubkeylen, 0, 0)); - CHECK(secp256k1_ecdsa_recover_compact(msg32, sig64, pubkey, &pubkeylen, 0, 1)); - CHECK(!secp256k1_ecdsa_recover_compact(msg32, sig64, pubkey, &pubkeylen, 0, 2)); - CHECK(!secp256k1_ecdsa_recover_compact(msg32, sig64, pubkey, &pubkeylen, 0, 3)); - - for (recid = 0; recid < 4; recid++) { - int i; - int recid2; - /* (4,4) encoded in DER. */ - unsigned char sigbder[8] = {0x30, 0x06, 0x02, 0x01, 0x04, 0x02, 0x01, 0x04}; - unsigned char sigcder_zr[7] = {0x30, 0x05, 0x02, 0x00, 0x02, 0x01, 0x01}; - unsigned char sigcder_zs[7] = {0x30, 0x05, 0x02, 0x01, 0x01, 0x02, 0x00}; - unsigned char sigbderalt1[39] = { - 0x30, 0x25, 0x02, 0x20, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x04, 0x02, 0x01, 0x04, - }; - unsigned char sigbderalt2[39] = { - 0x30, 0x25, 0x02, 0x01, 0x04, 0x02, 0x20, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04, - }; - unsigned char sigbderalt3[40] = { - 0x30, 0x26, 0x02, 0x21, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x04, 0x02, 0x01, 0x04, - }; - unsigned char sigbderalt4[40] = { - 0x30, 0x26, 0x02, 0x01, 0x04, 0x02, 0x21, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04, - }; - /* (order + r,4) encoded in DER. */ - unsigned char sigbderlong[40] = { - 0x30, 0x26, 0x02, 0x21, 0x00, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xBA, 0xAE, 0xDC, - 0xE6, 0xAF, 0x48, 0xA0, 0x3B, 0xBF, 0xD2, 0x5E, - 0x8C, 0xD0, 0x36, 0x41, 0x45, 0x02, 0x01, 0x04 - }; - CHECK(secp256k1_ecdsa_recover_compact(msg32, sigb64, pubkeyb, &pubkeyblen, 1, recid)); - CHECK(secp256k1_ecdsa_verify(msg32, sigbder, sizeof(sigbder), pubkeyb, pubkeyblen) == 1); - for (recid2 = 0; recid2 < 4; recid2++) { - unsigned char pubkey2b[33]; - int pubkey2blen = 33; - CHECK(secp256k1_ecdsa_recover_compact(msg32, sigb64, pubkey2b, &pubkey2blen, 1, recid2)); - /* Verifying with (order + r,4) should always fail. */ - CHECK(secp256k1_ecdsa_verify(msg32, sigbderlong, sizeof(sigbderlong), pubkey2b, pubkey2blen) != 1); - } - /* DER parsing tests. */ - /* Zero length r/s. */ - CHECK(secp256k1_ecdsa_verify(msg32, sigcder_zr, sizeof(sigcder_zr), pubkeyb, pubkeyblen) == -2); - CHECK(secp256k1_ecdsa_verify(msg32, sigcder_zs, sizeof(sigcder_zs), pubkeyb, pubkeyblen) == -2); - /* Leading zeros. */ - CHECK(secp256k1_ecdsa_verify(msg32, sigbderalt1, sizeof(sigbderalt1), pubkeyb, pubkeyblen) == 1); - CHECK(secp256k1_ecdsa_verify(msg32, sigbderalt2, sizeof(sigbderalt2), pubkeyb, pubkeyblen) == 1); - CHECK(secp256k1_ecdsa_verify(msg32, sigbderalt3, sizeof(sigbderalt3), pubkeyb, pubkeyblen) == 1); - CHECK(secp256k1_ecdsa_verify(msg32, sigbderalt4, sizeof(sigbderalt4), pubkeyb, pubkeyblen) == 1); - sigbderalt3[4] = 1; - CHECK(secp256k1_ecdsa_verify(msg32, sigbderalt3, sizeof(sigbderalt3), pubkeyb, pubkeyblen) == -2); - sigbderalt4[7] = 1; - CHECK(secp256k1_ecdsa_verify(msg32, sigbderalt4, sizeof(sigbderalt4), pubkeyb, pubkeyblen) == -2); - /* Damage signature. */ - sigbder[7]++; - CHECK(secp256k1_ecdsa_verify(msg32, sigbder, sizeof(sigbder), pubkeyb, pubkeyblen) == 0); - sigbder[7]--; - CHECK(secp256k1_ecdsa_verify(msg32, sigbder, 6, pubkeyb, pubkeyblen) == -2); - CHECK(secp256k1_ecdsa_verify(msg32, sigbder, sizeof(sigbder)-1, pubkeyb, pubkeyblen) == -2); - for(i = 0; i < 8; i++) { - int c; - unsigned char orig = sigbder[i]; - /*Try every single-byte change.*/ - for (c = 0; c < 256; c++) { - if (c == orig ) { - continue; - } - sigbder[i] = c; - CHECK(secp256k1_ecdsa_verify(msg32, sigbder, sizeof(sigbder), pubkeyb, pubkeyblen) == - (i==4 || i==7) ? 0 : -2 ); - } - sigbder[i] = orig; - } - } + secp256k1_ecdsa_signature sig; /* Test the case where ECDSA recomputes a point that is infinity. */ { - secp256k1_gej_t keyj; - secp256k1_ge_t key; - secp256k1_scalar_t msg; - secp256k1_ecdsa_sig_t sig; - secp256k1_scalar_set_int(&sig.s, 1); - secp256k1_scalar_negate(&sig.s, &sig.s); - secp256k1_scalar_inverse(&sig.s, &sig.s); - secp256k1_scalar_set_int(&sig.r, 1); - secp256k1_ecmult_gen(&keyj, &sig.r); + secp256k1_gej keyj; + secp256k1_ge key; + secp256k1_scalar msg; + secp256k1_scalar sr, ss; + secp256k1_scalar_set_int(&ss, 1); + secp256k1_scalar_negate(&ss, &ss); + secp256k1_scalar_inverse(&ss, &ss); + secp256k1_scalar_set_int(&sr, 1); + secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &keyj, &sr); secp256k1_ge_set_gej(&key, &keyj); - msg = sig.s; - CHECK(secp256k1_ecdsa_sig_verify(&sig, &key, &msg) == 0); - } - - /* Test r/s equal to zero */ - { - /* (1,1) encoded in DER. */ - unsigned char sigcder[8] = {0x30, 0x06, 0x02, 0x01, 0x01, 0x02, 0x01, 0x01}; - unsigned char sigc64[64] = { - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, - }; - unsigned char pubkeyc[65]; - int pubkeyclen = 65; - CHECK(secp256k1_ecdsa_recover_compact(msg32, sigc64, pubkeyc, &pubkeyclen, 0, 0) == 1); - CHECK(secp256k1_ecdsa_verify(msg32, sigcder, sizeof(sigcder), pubkeyc, pubkeyclen) == 1); - sigcder[4] = 0; - sigc64[31] = 0; - CHECK(secp256k1_ecdsa_recover_compact(msg32, sigc64, pubkeyb, &pubkeyblen, 1, 0) == 0); - CHECK(secp256k1_ecdsa_verify(msg32, sigcder, sizeof(sigcder), pubkeyc, pubkeyclen) == 0); - sigcder[4] = 1; - sigcder[7] = 0; - sigc64[31] = 1; - sigc64[63] = 0; - CHECK(secp256k1_ecdsa_recover_compact(msg32, sigc64, pubkeyb, &pubkeyblen, 1, 0) == 0); - CHECK(secp256k1_ecdsa_verify(msg32, sigcder, sizeof(sigcder), pubkeyc, pubkeyclen) == 0); + msg = ss; + CHECK(secp256k1_ecdsa_sig_verify(&ctx->ecmult_ctx, &sr, &ss, &key, &msg) == 0); } /*Signature where s would be zero.*/ { + unsigned char signature[72]; + size_t siglen; const unsigned char nonce[32] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, @@ -1646,21 +2075,15 @@ void test_ecdsa_edge_cases(void) { 0xb8, 0x12, 0xe0, 0x0b, 0x81, 0x7a, 0x77, 0x62, 0x65, 0xdf, 0xdd, 0x31, 0xb9, 0x3e, 0x29, 0xa9, }; - unsigned char sig[72]; - int siglen = 72; - CHECK(secp256k1_ecdsa_sign(msg, sig, &siglen, key, precomputed_nonce_function, nonce) == 0); - CHECK(siglen == 0); - CHECK(secp256k1_ecdsa_sign(msg, sig, &siglen, key, precomputed_nonce_function, nonce2) == 0); - CHECK(siglen == 0); + CHECK(secp256k1_ecdsa_sign(ctx, &sig, msg, key, precomputed_nonce_function, nonce) == 0); + CHECK(secp256k1_ecdsa_sign(ctx, &sig, msg, key, precomputed_nonce_function, nonce2) == 0); msg[31] = 0xaa; + CHECK(secp256k1_ecdsa_sign(ctx, &sig, msg, key, precomputed_nonce_function, nonce) == 1); + CHECK(secp256k1_ecdsa_sign(ctx, &sig, msg, key, precomputed_nonce_function, nonce2) == 1); siglen = 72; - CHECK(secp256k1_ecdsa_sign(msg, sig, &siglen, key, precomputed_nonce_function, nonce) == 1); - CHECK(siglen > 0); - CHECK(secp256k1_ecdsa_sign(msg, sig, &siglen, key, precomputed_nonce_function, nonce2) == 1); - CHECK(siglen > 0); + CHECK(secp256k1_ecdsa_signature_serialize_der(ctx, signature, &siglen, &sig) == 1); siglen = 10; - CHECK(secp256k1_ecdsa_sign(msg, sig, &siglen, key, precomputed_nonce_function, nonce) != 1); - CHECK(siglen == 0); + CHECK(secp256k1_ecdsa_signature_serialize_der(ctx, signature, &siglen, &sig) == 0); } /* Nonce function corner cases. */ @@ -1669,65 +2092,43 @@ void test_ecdsa_edge_cases(void) { int i; unsigned char key[32]; unsigned char msg[32]; - unsigned char sig[72]; - unsigned char sig2[72]; - secp256k1_ecdsa_sig_t s[512]; - int siglen = 72; - int siglen2 = 72; - int recid2; + secp256k1_ecdsa_signature sig2; + secp256k1_scalar sr[512], ss; const unsigned char *extra; extra = t == 0 ? NULL : zero; memset(msg, 0, 32); msg[31] = 1; /* High key results in signature failure. */ memset(key, 0xFF, 32); - CHECK(secp256k1_ecdsa_sign(msg, sig, &siglen, key, NULL, extra) == 0); - CHECK(siglen == 0); + CHECK(secp256k1_ecdsa_sign(ctx, &sig, msg, key, NULL, extra) == 0); + CHECK(is_empty_signature(&sig)); /* Zero key results in signature failure. */ memset(key, 0, 32); - CHECK(secp256k1_ecdsa_sign(msg, sig, &siglen, key, NULL, extra) == 0); - CHECK(siglen == 0); + CHECK(secp256k1_ecdsa_sign(ctx, &sig, msg, key, NULL, extra) == 0); + CHECK(is_empty_signature(&sig)); /* Nonce function failure results in signature failure. */ key[31] = 1; - CHECK(secp256k1_ecdsa_sign(msg, sig, &siglen, key, nonce_function_test_fail, extra) == 0); - CHECK(siglen == 0); - CHECK(secp256k1_ecdsa_sign_compact(msg, sig, key, nonce_function_test_fail, extra, &recid) == 0); - CHECK(is_empty_compact_signature(sig)); + CHECK(secp256k1_ecdsa_sign(ctx, &sig, msg, key, nonce_function_test_fail, extra) == 0); + CHECK(is_empty_signature(&sig)); /* The retry loop successfully makes its way to the first good value. */ - siglen = 72; - CHECK(secp256k1_ecdsa_sign(msg, sig, &siglen, key, nonce_function_test_retry, extra) == 1); - CHECK(siglen > 0); - CHECK(secp256k1_ecdsa_sign(msg, sig2, &siglen2, key, nonce_function_rfc6979, extra) == 1); - CHECK(siglen > 0); - CHECK((siglen == siglen2) && (memcmp(sig, sig2, siglen) == 0)); - CHECK(secp256k1_ecdsa_sign_compact(msg, sig, key, nonce_function_test_retry, extra, &recid) == 1); - CHECK(!is_empty_compact_signature(sig)); - CHECK(secp256k1_ecdsa_sign_compact(msg, sig2, key, nonce_function_rfc6979, extra, &recid2) == 1); - CHECK(!is_empty_compact_signature(sig2)); - CHECK((recid == recid2) && (memcmp(sig, sig2, 64) == 0)); + CHECK(secp256k1_ecdsa_sign(ctx, &sig, msg, key, nonce_function_test_retry, extra) == 1); + CHECK(!is_empty_signature(&sig)); + CHECK(secp256k1_ecdsa_sign(ctx, &sig2, msg, key, nonce_function_rfc6979, extra) == 1); + CHECK(!is_empty_signature(&sig2)); + CHECK(memcmp(&sig, &sig2, sizeof(sig)) == 0); /* The default nonce function is determinstic. */ - siglen = 72; - siglen2 = 72; - CHECK(secp256k1_ecdsa_sign(msg, sig, &siglen, key, NULL, extra) == 1); - CHECK(siglen > 0); - CHECK(secp256k1_ecdsa_sign(msg, sig2, &siglen2, key, NULL, extra) == 1); - CHECK(siglen2 > 0); - CHECK((siglen == siglen2) && (memcmp(sig, sig2, siglen) == 0)); - CHECK(secp256k1_ecdsa_sign_compact(msg, sig, key, NULL, extra, &recid) == 1); - CHECK(!is_empty_compact_signature(sig)); - CHECK(secp256k1_ecdsa_sign_compact(msg, sig2, key, NULL, extra, &recid2) == 1); - CHECK(!is_empty_compact_signature(sig)); - CHECK((recid == recid2) && (memcmp(sig, sig2, 64) == 0)); + CHECK(secp256k1_ecdsa_sign(ctx, &sig2, msg, key, NULL, extra) == 1); + CHECK(!is_empty_signature(&sig2)); + CHECK(memcmp(&sig, &sig2, sizeof(sig)) == 0); /* The default nonce function changes output with different messages. */ for(i = 0; i < 256; i++) { int j; - siglen2 = 72; msg[0] = i; - CHECK(secp256k1_ecdsa_sign(msg, sig2, &siglen2, key, NULL, extra) == 1); - CHECK(!is_empty_compact_signature(sig)); - CHECK(secp256k1_ecdsa_sig_parse(&s[i], sig2, siglen2)); + CHECK(secp256k1_ecdsa_sign(ctx, &sig2, msg, key, NULL, extra) == 1); + CHECK(!is_empty_signature(&sig2)); + secp256k1_ecdsa_signature_load(ctx, &sr[i], &ss, &sig2); for (j = 0; j < i; j++) { - CHECK(!secp256k1_scalar_eq(&s[i].r, &s[j].r)); + CHECK(!secp256k1_scalar_eq(&sr[i], &sr[j])); } } msg[0] = 0; @@ -1735,12 +2136,12 @@ void test_ecdsa_edge_cases(void) { /* The default nonce function changes output with different keys. */ for(i = 256; i < 512; i++) { int j; - siglen2 = 72; key[0] = i - 256; - CHECK(secp256k1_ecdsa_sign(msg, sig2, &siglen2, key, NULL, extra) == 1); - CHECK(secp256k1_ecdsa_sig_parse(&s[i], sig2, siglen2)); + CHECK(secp256k1_ecdsa_sign(ctx, &sig2, msg, key, NULL, extra) == 1); + CHECK(!is_empty_signature(&sig2)); + secp256k1_ecdsa_signature_load(ctx, &sr[i], &ss, &sig2); for (j = 0; j < i; j++) { - CHECK(!secp256k1_scalar_eq(&s[i].r, &s[j].r)); + CHECK(!secp256k1_scalar_eq(&sr[i], &sr[j])); } } key[0] = 0; @@ -1755,9 +2156,10 @@ void test_ecdsa_edge_cases(void) { 0xba, 0xae, 0xdc, 0xe6, 0xaf, 0x48, 0xa0, 0x3b, 0xbf, 0xd2, 0x5e, 0x8c, 0xd0, 0x36, 0x41, 0x41, }; - int outlen = 300; - CHECK(!secp256k1_ec_privkey_export(seckey, privkey, &outlen, 0)); - CHECK(!secp256k1_ec_privkey_export(seckey, privkey, &outlen, 1)); + size_t outlen = 300; + CHECK(!secp256k1_ec_privkey_export(ctx, privkey, &outlen, seckey, 0)); + outlen = 300; + CHECK(!secp256k1_ec_privkey_export(ctx, privkey, &outlen, seckey, SECP256K1_EC_COMPRESSED)); } } @@ -1766,46 +2168,46 @@ void run_ecdsa_edge_cases(void) { } #ifdef ENABLE_OPENSSL_TESTS -EC_KEY *get_openssl_key(const secp256k1_scalar_t *key) { +EC_KEY *get_openssl_key(const secp256k1_scalar *key) { unsigned char privkey[300]; - int privkeylen; + size_t privkeylen; const unsigned char* pbegin = privkey; int compr = secp256k1_rand32() & 1; EC_KEY *ec_key = EC_KEY_new_by_curve_name(NID_secp256k1); - CHECK(secp256k1_eckey_privkey_serialize(privkey, &privkeylen, key, compr)); + CHECK(secp256k1_eckey_privkey_serialize(&ctx->ecmult_gen_ctx, privkey, &privkeylen, key, compr ? SECP256K1_EC_COMPRESSED : 0)); CHECK(d2i_ECPrivateKey(&ec_key, &pbegin, privkeylen)); CHECK(EC_KEY_check_key(ec_key)); return ec_key; } void test_ecdsa_openssl(void) { - secp256k1_gej_t qj; - secp256k1_ge_t q; - secp256k1_ecdsa_sig_t sig; - secp256k1_scalar_t one; - secp256k1_scalar_t msg2; - secp256k1_scalar_t key, msg; + secp256k1_gej qj; + secp256k1_ge q; + secp256k1_scalar sigr, sigs; + secp256k1_scalar one; + secp256k1_scalar msg2; + secp256k1_scalar key, msg; EC_KEY *ec_key; unsigned int sigsize = 80; - int secp_sigsize = 80; + size_t secp_sigsize = 80; unsigned char message[32]; unsigned char signature[80]; secp256k1_rand256_test(message); secp256k1_scalar_set_b32(&msg, message, NULL); random_scalar_order_test(&key); - secp256k1_ecmult_gen(&qj, &key); + secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &qj, &key); secp256k1_ge_set_gej(&q, &qj); ec_key = get_openssl_key(&key); - CHECK(ec_key); + CHECK(ec_key != NULL); CHECK(ECDSA_sign(0, message, sizeof(message), signature, &sigsize, ec_key)); - CHECK(secp256k1_ecdsa_sig_parse(&sig, signature, sigsize)); - CHECK(secp256k1_ecdsa_sig_verify(&sig, &q, &msg)); + CHECK(secp256k1_ecdsa_sig_parse(&sigr, &sigs, signature, sigsize)); + CHECK(secp256k1_ecdsa_sig_verify(&ctx->ecmult_ctx, &sigr, &sigs, &q, &msg)); secp256k1_scalar_set_int(&one, 1); secp256k1_scalar_add(&msg2, &msg, &one); - CHECK(!secp256k1_ecdsa_sig_verify(&sig, &q, &msg2)); + CHECK(!secp256k1_ecdsa_sig_verify(&ctx->ecmult_ctx, &sigr, &sigs, &q, &msg2)); - random_sign(&sig, &key, &msg, NULL); - CHECK(secp256k1_ecdsa_sig_serialize(signature, &secp_sigsize, &sig)); + random_sign(&sigr, &sigs, &key, &msg, NULL); + CHECK(secp256k1_ecdsa_sig_serialize(signature, &secp_sigsize, &sigr, &sigs)); CHECK(ECDSA_verify(0, message, sizeof(message), signature, secp_sigsize, ec_key) == 1); EC_KEY_free(ec_key); @@ -1819,6 +2221,18 @@ void run_ecdsa_openssl(void) { } #endif +#ifdef ENABLE_MODULE_ECDH +# include "modules/ecdh/tests_impl.h" +#endif + +#ifdef ENABLE_MODULE_SCHNORR +# include "modules/schnorr/tests_impl.h" +#endif + +#ifdef ENABLE_MODULE_RECOVERY +# include "modules/recovery/tests_impl.h" +#endif + int main(int argc, char **argv) { unsigned char seed16[16] = {0}; unsigned char run32[32] = {0}; @@ -1843,7 +2257,7 @@ int main(int argc, char **argv) { } } else { FILE *frand = fopen("/dev/urandom", "r"); - if (!frand || !fread(&seed16, sizeof(seed16), 1, frand)) { + if ((frand == NULL) || !fread(&seed16, sizeof(seed16), 1, frand)) { uint64_t t = time(NULL) * (uint64_t)1337; seed16[0] ^= t; seed16[1] ^= t >> 8; @@ -1862,10 +2276,13 @@ int main(int argc, char **argv) { printf("random seed = %02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n", seed16[0], seed16[1], seed16[2], seed16[3], seed16[4], seed16[5], seed16[6], seed16[7], seed16[8], seed16[9], seed16[10], seed16[11], seed16[12], seed16[13], seed16[14], seed16[15]); /* initialize */ - secp256k1_start(SECP256K1_START_SIGN | SECP256K1_START_VERIFY); + run_context_tests(); + ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY); - /* initializing a second time shouldn't cause any harm or memory leaks. */ - secp256k1_start(SECP256K1_START_SIGN | SECP256K1_START_VERIFY); + if (secp256k1_rand32() & 1) { + secp256k1_rand256(run32); + CHECK(secp256k1_context_randomize(ctx, (secp256k1_rand32() & 1) ? run32 : NULL)); + } run_sha256_tests(); run_hmac_sha256_tests(); @@ -1895,6 +2312,20 @@ int main(int argc, char **argv) { run_wnaf(); run_point_times_order(); run_ecmult_chain(); + run_ecmult_constants(); + run_ecmult_gen_blind(); + run_ecmult_const_tests(); + run_ec_combine(); + + /* endomorphism tests */ +#ifdef USE_ENDOMORPHISM + run_endomorphism_tests(); +#endif + +#ifdef ENABLE_MODULE_ECDH + /* ecdh tests */ + run_ecdh_tests(); +#endif /* ecdsa tests */ run_random_pubkeys(); @@ -1905,13 +2336,22 @@ int main(int argc, char **argv) { run_ecdsa_openssl(); #endif +#ifdef ENABLE_MODULE_SCHNORR + /* Schnorr tests */ + run_schnorr_tests(); +#endif + +#ifdef ENABLE_MODULE_RECOVERY + /* ECDSA pubkey recovery tests */ + run_recovery_tests(); +#endif + secp256k1_rand256(run32); printf("random run = %02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n", run32[0], run32[1], run32[2], run32[3], run32[4], run32[5], run32[6], run32[7], run32[8], run32[9], run32[10], run32[11], run32[12], run32[13], run32[14], run32[15]); /* shutdown */ - secp256k1_stop(); + secp256k1_context_destroy(ctx); - /* shutting down twice shouldn't cause any double frees. */ - secp256k1_stop(); + printf("no problems found\n"); return 0; } diff --git a/crypto/secp256k1/secp256k1/src/util.h b/crypto/secp256k1/libsecp256k1/src/util.h index ae98639f7..4eef4ded4 100644 --- a/crypto/secp256k1/secp256k1/src/util.h +++ b/crypto/secp256k1/libsecp256k1/src/util.h @@ -15,6 +15,15 @@ #include <stdint.h> #include <stdio.h> +typedef struct { + void (*fn)(const char *text, void* data); + const void* data; +} secp256k1_callback; + +static SECP256K1_INLINE void secp256k1_callback_call(const secp256k1_callback * const cb, const char * const text) { + cb->fn(text, (void*)cb->data); +} + #ifdef DETERMINISTIC #define TEST_FAILURE(msg) do { \ fprintf(stderr, "%s\n", msg); \ @@ -47,23 +56,20 @@ } while(0) #endif -/* Like assert(), but safe to use on expressions with side effects. */ -#ifndef NDEBUG -#define DEBUG_CHECK CHECK -#else -#define DEBUG_CHECK(cond) do { (void)(cond); } while(0) -#endif - -/* Like DEBUG_CHECK(), but when VERIFY is defined instead of NDEBUG not defined. */ +/* Like assert(), but when VERIFY is defined, and side-effect safe. */ #ifdef VERIFY #define VERIFY_CHECK CHECK +#define VERIFY_SETUP(stmt) do { stmt; } while(0) #else #define VERIFY_CHECK(cond) do { (void)(cond); } while(0) +#define VERIFY_SETUP(stmt) #endif -static SECP256K1_INLINE void *checked_malloc(size_t size) { +static SECP256K1_INLINE void *checked_malloc(const secp256k1_callback* cb, size_t size) { void *ret = malloc(size); - CHECK(ret != NULL); + if (ret == NULL) { + secp256k1_callback_call(cb, "Out of memory"); + } return ret; } diff --git a/crypto/secp256k1/secp256k1/.travis.yml b/crypto/secp256k1/secp256k1/.travis.yml deleted file mode 100644 index 40f8dae23..000000000 --- a/crypto/secp256k1/secp256k1/.travis.yml +++ /dev/null @@ -1,32 +0,0 @@ -language: c -compiler: - - clang - - gcc -install: - - sudo apt-get install -qq libssl-dev - - if [ "$BIGNUM" = "gmp" -o "$BIGNUM" = "auto" ]; then sudo apt-get install --no-install-recommends --no-upgrade -qq libgmp-dev; fi - - if [ -n "$EXTRAPACKAGES" ]; then sudo apt-get update && sudo apt-get install --no-install-recommends --no-upgrade $EXTRAPACKAGES; fi -env: - global: - - FIELD=auto BIGNUM=auto SCALAR=auto ENDOMORPHISM=no ASM=no BUILD=check EXTRAFLAGS= HOST= EXTRAPACKAGES= - matrix: - - SCALAR=32bit - - SCALAR=64bit - - FIELD=64bit - - FIELD=64bit ENDOMORPHISM=yes - - FIELD=64bit ASM=x86_64 - - FIELD=64bit ENDOMORPHISM=yes ASM=x86_64 - - FIELD=32bit - - FIELD=32bit ENDOMORPHISM=yes - - BIGNUM=no - - BIGNUM=no ENDOMORPHISM=yes - - BUILD=distcheck - - EXTRAFLAGS=CFLAGS=-DDETERMINISTIC - - HOST=i686-linux-gnu EXTRAPACKAGES="gcc-multilib" - - HOST=i686-linux-gnu EXTRAPACKAGES="gcc-multilib" ENDOMORPHISM=yes -before_script: ./autogen.sh -script: - - if [ -n "$HOST" ]; then export USE_HOST="--host=$HOST"; fi - - if [ "x$HOST" = "xi686-linux-gnu" ]; then export CC="$CC -m32"; fi - - ./configure --enable-endomorphism=$ENDOMORPHISM --with-field=$FIELD --with-bignum=$BIGNUM --with-scalar=$SCALAR $EXTRAFLAGS $USE_HOST && make -j2 $BUILD -os: linux diff --git a/crypto/secp256k1/secp256k1/build-aux/m4/bitcoin_secp.m4 b/crypto/secp256k1/secp256k1/build-aux/m4/bitcoin_secp.m4 deleted file mode 100644 index 4a398d6c9..000000000 --- a/crypto/secp256k1/secp256k1/build-aux/m4/bitcoin_secp.m4 +++ /dev/null @@ -1,61 +0,0 @@ -dnl libsecp25k1 helper checks -AC_DEFUN([SECP_INT128_CHECK],[ -has_int128=$ac_cv_type___int128 -]) - -dnl -AC_DEFUN([SECP_64BIT_ASM_CHECK],[ -AC_MSG_CHECKING(for x86_64 assembly availability) -AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[ - #include <stdint.h>]],[[ - uint64_t a = 11, tmp; - __asm__ __volatile__("movq $0x100000000,%1; mulq %%rsi" : "+a"(a) : "S"(tmp) : "cc", "%rdx"); - ]])],[has_64bit_asm=yes],[has_64bit_asm=no]) -AC_MSG_RESULT([$has_64bit_asm]) -]) - -dnl -AC_DEFUN([SECP_OPENSSL_CHECK],[ -if test x"$use_pkgconfig" = x"yes"; then - : #NOP - m4_ifdef([PKG_CHECK_MODULES],[ - PKG_CHECK_MODULES([CRYPTO], [libcrypto], [has_libcrypto=yes],[has_libcrypto=no]) - if test x"$has_libcrypto" = x"yes"; then - TEMP_LIBS="$LIBS" - LIBS="$LIBS $CRYPTO_LIBS" - AC_CHECK_LIB(crypto, main,[AC_DEFINE(HAVE_LIBCRYPTO,1,[Define this symbol if libcrypto is installed])],[has_libcrypto=no]) - LIBS="$TEMP_LIBS" - fi - ]) -else - AC_CHECK_HEADER(openssl/crypto.h,[AC_CHECK_LIB(crypto, main,[has_libcrypto=yes; CRYPTO_LIBS=-lcrypto; AC_DEFINE(HAVE_LIBCRYPTO,1,[Define this symbol if libcrypto is installed])] -)]) - LIBS= -fi -if test x"$has_libcrypto" = x"yes" && test x"$has_openssl_ec" = x; then - AC_MSG_CHECKING(for EC functions in libcrypto) - AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[ - #include <openssl/ec.h> - #include <openssl/ecdsa.h> - #include <openssl/obj_mac.h>]],[[ - EC_KEY *eckey = EC_KEY_new_by_curve_name(NID_secp256k1); - ECDSA_sign(0, NULL, 0, NULL, NULL, eckey); - ECDSA_verify(0, NULL, 0, NULL, 0, eckey); - EC_KEY_free(eckey); - ]])],[has_openssl_ec=yes],[has_openssl_ec=no]) - AC_MSG_RESULT([$has_openssl_ec]) -fi -]) - -dnl -AC_DEFUN([SECP_GMP_CHECK],[ -if test x"$has_gmp" != x"yes"; then - CPPFLAGS_TEMP="$CPPFLAGS" - CPPFLAGS="$GMP_CPPFLAGS $CPPFLAGS" - LIBS_TEMP="$LIBS" - LIBS="$GMP_LIBS $LIBS" - AC_CHECK_HEADER(gmp.h,[AC_CHECK_LIB(gmp, __gmpz_init,[has_gmp=yes; GMP_LIBS="$GMP_LIBS -lgmp"; AC_DEFINE(HAVE_LIBGMP,1,[Define this symbol if libgmp is installed])])]) - CPPFLAGS="$CPPFLAGS_TEMP" - LIBS="$LIBS_TEMP" -fi -]) diff --git a/crypto/secp256k1/secp256k1/include/secp256k1.h b/crypto/secp256k1/secp256k1/include/secp256k1.h deleted file mode 100644 index a6e39d13d..000000000 --- a/crypto/secp256k1/secp256k1/include/secp256k1.h +++ /dev/null @@ -1,295 +0,0 @@ -#ifndef _SECP256K1_ -# define _SECP256K1_ - -# ifdef __cplusplus -extern "C" { -# endif - -# if !defined(SECP256K1_GNUC_PREREQ) -# if defined(__GNUC__)&&defined(__GNUC_MINOR__) -# define SECP256K1_GNUC_PREREQ(_maj,_min) \ - ((__GNUC__<<16)+__GNUC_MINOR__>=((_maj)<<16)+(_min)) -# else -# define SECP256K1_GNUC_PREREQ(_maj,_min) 0 -# endif -# endif - -# if (!defined(__STDC_VERSION__) || (__STDC_VERSION__ < 199901L) ) -# if SECP256K1_GNUC_PREREQ(2,7) -# define SECP256K1_INLINE __inline__ -# elif (defined(_MSC_VER)) -# define SECP256K1_INLINE __inline -# else -# define SECP256K1_INLINE -# endif -# else -# define SECP256K1_INLINE inline -# endif - -/**Warning attributes - * NONNULL is not used if SECP256K1_BUILD is set to avoid the compiler optimizing out - * some paranoid null checks. */ -# if defined(__GNUC__) && SECP256K1_GNUC_PREREQ(3, 4) -# define SECP256K1_WARN_UNUSED_RESULT __attribute__ ((__warn_unused_result__)) -# else -# define SECP256K1_WARN_UNUSED_RESULT -# endif -# if !defined(SECP256K1_BUILD) && defined(__GNUC__) && SECP256K1_GNUC_PREREQ(3, 4) -# define SECP256K1_ARG_NONNULL(_x) __attribute__ ((__nonnull__(_x))) -# else -# define SECP256K1_ARG_NONNULL(_x) -# endif - - -/** Flags to pass to secp256k1_start. */ -# define SECP256K1_START_VERIFY (1 << 0) -# define SECP256K1_START_SIGN (1 << 1) - -/** Initialize the library. This may take some time (10-100 ms). - * You need to call this before calling any other function. - * It cannot run in parallel with any other functions, but once - * secp256k1_start() returns, all other functions are thread-safe. - */ -void secp256k1_start(unsigned int flags); - -/** Free all memory associated with this library. After this, no - * functions can be called anymore, except secp256k1_start() - */ -void secp256k1_stop(void); - -/** Verify an ECDSA signature. - * Returns: 1: correct signature - * 0: incorrect signature - * -1: invalid public key - * -2: invalid signature - * In: msg32: the 32-byte message hash being verified (cannot be NULL) - * sig: the signature being verified (cannot be NULL) - * siglen: the length of the signature - * pubkey: the public key to verify with (cannot be NULL) - * pubkeylen: the length of pubkey - * Requires starting using SECP256K1_START_VERIFY. - */ -SECP256K1_WARN_UNUSED_RESULT int secp256k1_ecdsa_verify( - const unsigned char *msg32, - const unsigned char *sig, - int siglen, - const unsigned char *pubkey, - int pubkeylen -) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(4); - -/** A pointer to a function to deterministically generate a nonce. - * Returns: 1 if a nonce was successfully generated. 0 will cause signing to fail. - * In: msg32: the 32-byte message hash being verified (will not be NULL) - * key32: pointer to a 32-byte secret key (will not be NULL) - * attempt: how many iterations we have tried to find a nonce. - * This will almost always be 0, but different attempt values - * are required to result in a different nonce. - * data: Arbitrary data pointer that is passed through. - * Out: nonce32: pointer to a 32-byte array to be filled by the function. - * Except for test cases, this function should compute some cryptographic hash of - * the message, the key and the attempt. - */ -typedef int (*secp256k1_nonce_function_t)( - unsigned char *nonce32, - const unsigned char *msg32, - const unsigned char *key32, - unsigned int attempt, - const void *data -); - -/** An implementation of RFC6979 (using HMAC-SHA256) as nonce generation function. - * If a data pointer is passed, it is assumed to be a pointer to 32 bytes of - * extra entropy. - */ -extern const secp256k1_nonce_function_t secp256k1_nonce_function_rfc6979; - -/** A default safe nonce generation function (currently equal to secp256k1_nonce_function_rfc6979). */ -extern const secp256k1_nonce_function_t secp256k1_nonce_function_default; - - -/** Create an ECDSA signature. - * Returns: 1: signature created - * 0: the nonce generation function failed, the private key was invalid, or there is not - * enough space in the signature (as indicated by siglen). - * In: msg32: the 32-byte message hash being signed (cannot be NULL) - * seckey: pointer to a 32-byte secret key (cannot be NULL) - * noncefp:pointer to a nonce generation function. If NULL, secp256k1_nonce_function_default is used - * ndata: pointer to arbitrary data used by the nonce generation function (can be NULL) - * Out: sig: pointer to an array where the signature will be placed (cannot be NULL) - * In/Out: siglen: pointer to an int with the length of sig, which will be updated - * to contain the actual signature length (<=72). If 0 is returned, this will be - * set to zero. - * Requires starting using SECP256K1_START_SIGN. - * - * The sig always has an s value in the lower half of the range (From 0x1 - * to 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0, - * inclusive), unlike many other implementations. - * With ECDSA a third-party can can forge a second distinct signature - * of the same message given a single initial signature without knowing - * the key by setting s to its additive inverse mod-order, 'flipping' the - * sign of the random point R which is not included in the signature. - * Since the forgery is of the same message this isn't universally - * problematic, but in systems where message malleability or uniqueness - * of signatures is important this can cause issues. This forgery can be - * blocked by all verifiers forcing signers to use a canonical form. The - * lower-S form reduces the size of signatures slightly on average when - * variable length encodings (such as DER) are used and is cheap to - * verify, making it a good choice. Security of always using lower-S is - * assured because anyone can trivially modify a signature after the - * fact to enforce this property. Adjusting it inside the signing - * function avoids the need to re-serialize or have curve specific - * constants outside of the library. By always using a canonical form - * even in applications where it isn't needed it becomes possible to - * impose a requirement later if a need is discovered. - * No other forms of ECDSA malleability are known and none seem likely, - * but there is no formal proof that ECDSA, even with this additional - * restriction, is free of other malleability. Commonly used serialization - * schemes will also accept various non-unique encodings, so care should - * be taken when this property is required for an application. - */ -int secp256k1_ecdsa_sign( - const unsigned char *msg32, - unsigned char *sig, - int *siglen, - const unsigned char *seckey, - secp256k1_nonce_function_t noncefp, - const void *ndata -) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4); - -/** Create a compact ECDSA signature (64 byte + recovery id). - * Returns: 1: signature created - * 0: the nonce generation function failed, or the secret key was invalid. - * In: msg32: the 32-byte message hash being signed (cannot be NULL) - * seckey: pointer to a 32-byte secret key (cannot be NULL) - * noncefp:pointer to a nonce generation function. If NULL, secp256k1_nonce_function_default is used - * ndata: pointer to arbitrary data used by the nonce generation function (can be NULL) - * Out: sig: pointer to a 64-byte array where the signature will be placed (cannot be NULL) - * In case 0 is returned, the returned signature length will be zero. - * recid: pointer to an int, which will be updated to contain the recovery id (can be NULL) - * Requires starting using SECP256K1_START_SIGN. - */ -int secp256k1_ecdsa_sign_compact( - const unsigned char *msg32, - unsigned char *sig64, - const unsigned char *seckey, - secp256k1_nonce_function_t noncefp, - const void *ndata, - int *recid -) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3); - -/** Recover an ECDSA public key from a compact signature. - * Returns: 1: public key successfully recovered (which guarantees a correct signature). - * 0: otherwise. - * In: msg32: the 32-byte message hash assumed to be signed (cannot be NULL) - * sig64: signature as 64 byte array (cannot be NULL) - * compressed: whether to recover a compressed or uncompressed pubkey - * recid: the recovery id (0-3, as returned by ecdsa_sign_compact) - * Out: pubkey: pointer to a 33 or 65 byte array to put the pubkey (cannot be NULL) - * pubkeylen: pointer to an int that will contain the pubkey length (cannot be NULL) - * Requires starting using SECP256K1_START_VERIFY. - */ -SECP256K1_WARN_UNUSED_RESULT int secp256k1_ecdsa_recover_compact( - const unsigned char *msg32, - const unsigned char *sig64, - unsigned char *pubkey, - int *pubkeylen, - int compressed, - int recid -) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4); - -/** Verify an ECDSA secret key. - * Returns: 1: secret key is valid - * 0: secret key is invalid - * In: seckey: pointer to a 32-byte secret key (cannot be NULL) - */ -SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_seckey_verify(const unsigned char *seckey) SECP256K1_ARG_NONNULL(1); - -/** Just validate a public key. - * Returns: 1: valid public key - * 0: invalid public key - * In: pubkey: pointer to a 33-byte or 65-byte public key (cannot be NULL). - * pubkeylen: length of pubkey - */ -SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_verify(const unsigned char *pubkey, int pubkeylen) SECP256K1_ARG_NONNULL(1); - -/** Compute the public key for a secret key. - * In: compressed: whether the computed public key should be compressed - * seckey: pointer to a 32-byte private key (cannot be NULL) - * Out: pubkey: pointer to a 33-byte (if compressed) or 65-byte (if uncompressed) - * area to store the public key (cannot be NULL) - * pubkeylen: pointer to int that will be updated to contains the pubkey's - * length (cannot be NULL) - * Returns: 1: secret was valid, public key stores - * 0: secret was invalid, try again. - * Requires starting using SECP256K1_START_SIGN. - */ -SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_create( - unsigned char *pubkey, - int *pubkeylen, - const unsigned char *seckey, - int compressed -) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3); - -/** Decompress a public key. - * In/Out: pubkey: pointer to a 65-byte array to put the decompressed public key. - It must contain a 33-byte or 65-byte public key already (cannot be NULL) - * pubkeylen: pointer to the size of the public key pointed to by pubkey (cannot be NULL) - It will be updated to reflect the new size. - * Returns: 0 if the passed public key was invalid, 1 otherwise. If 1 is returned, the - pubkey is replaced with its decompressed version. - */ -SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_decompress( - unsigned char *pubkey, - int *pubkeylen -) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2); - -/** Export a private key in DER format. */ -SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_privkey_export( - const unsigned char *seckey, - unsigned char *privkey, - int *privkeylen, - int compressed -) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3); - -/** Import a private key in DER format. */ -SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_privkey_import( - unsigned char *seckey, - const unsigned char *privkey, - int privkeylen -) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2); - -/** Tweak a private key by adding tweak to it. */ -SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_privkey_tweak_add( - unsigned char *seckey, - const unsigned char *tweak -) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2); - -/** Tweak a public key by adding tweak times the generator to it. - * Requires starting with SECP256K1_START_VERIFY. - */ -SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_tweak_add( - unsigned char *pubkey, - int pubkeylen, - const unsigned char *tweak -) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(3); - -/** Tweak a private key by multiplying it with tweak. */ -SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_privkey_tweak_mul( - unsigned char *seckey, - const unsigned char *tweak -) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2); - -/** Tweak a public key by multiplying it with tweak. - * Requires starting with SECP256K1_START_VERIFY. - */ -SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_tweak_mul( - unsigned char *pubkey, - int pubkeylen, - const unsigned char *tweak -) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(3); - -# ifdef __cplusplus -} -# endif - -#endif diff --git a/crypto/secp256k1/secp256k1/src/ecdsa.h b/crypto/secp256k1/secp256k1/src/ecdsa.h deleted file mode 100644 index c195e7afc..000000000 --- a/crypto/secp256k1/secp256k1/src/ecdsa.h +++ /dev/null @@ -1,23 +0,0 @@ -/********************************************************************** - * Copyright (c) 2013, 2014 Pieter Wuille * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ - -#ifndef _SECP256K1_ECDSA_ -#define _SECP256K1_ECDSA_ - -#include "scalar.h" -#include "group.h" - -typedef struct { - secp256k1_scalar_t r, s; -} secp256k1_ecdsa_sig_t; - -static int secp256k1_ecdsa_sig_parse(secp256k1_ecdsa_sig_t *r, const unsigned char *sig, int size); -static int secp256k1_ecdsa_sig_serialize(unsigned char *sig, int *size, const secp256k1_ecdsa_sig_t *a); -static int secp256k1_ecdsa_sig_verify(const secp256k1_ecdsa_sig_t *sig, const secp256k1_ge_t *pubkey, const secp256k1_scalar_t *message); -static int secp256k1_ecdsa_sig_sign(secp256k1_ecdsa_sig_t *sig, const secp256k1_scalar_t *seckey, const secp256k1_scalar_t *message, const secp256k1_scalar_t *nonce, int *recid); -static int secp256k1_ecdsa_sig_recover(const secp256k1_ecdsa_sig_t *sig, secp256k1_ge_t *pubkey, const secp256k1_scalar_t *message, int recid); - -#endif diff --git a/crypto/secp256k1/secp256k1/src/eckey.h b/crypto/secp256k1/secp256k1/src/eckey.h deleted file mode 100644 index 6de5dc0a5..000000000 --- a/crypto/secp256k1/secp256k1/src/eckey.h +++ /dev/null @@ -1,24 +0,0 @@ -/********************************************************************** - * Copyright (c) 2013, 2014 Pieter Wuille * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ - -#ifndef _SECP256K1_ECKEY_ -#define _SECP256K1_ECKEY_ - -#include "group.h" -#include "scalar.h" - -static int secp256k1_eckey_pubkey_parse(secp256k1_ge_t *elem, const unsigned char *pub, int size); -static int secp256k1_eckey_pubkey_serialize(secp256k1_ge_t *elem, unsigned char *pub, int *size, int compressed); - -static int secp256k1_eckey_privkey_parse(secp256k1_scalar_t *key, const unsigned char *privkey, int privkeylen); -static int secp256k1_eckey_privkey_serialize(unsigned char *privkey, int *privkeylen, const secp256k1_scalar_t *key, int compressed); - -static int secp256k1_eckey_privkey_tweak_add(secp256k1_scalar_t *key, const secp256k1_scalar_t *tweak); -static int secp256k1_eckey_pubkey_tweak_add(secp256k1_ge_t *key, const secp256k1_scalar_t *tweak); -static int secp256k1_eckey_privkey_tweak_mul(secp256k1_scalar_t *key, const secp256k1_scalar_t *tweak); -static int secp256k1_eckey_pubkey_tweak_mul(secp256k1_ge_t *key, const secp256k1_scalar_t *tweak); - -#endif diff --git a/crypto/secp256k1/secp256k1/src/ecmult.h b/crypto/secp256k1/secp256k1/src/ecmult.h deleted file mode 100644 index 15a7100a4..000000000 --- a/crypto/secp256k1/secp256k1/src/ecmult.h +++ /dev/null @@ -1,19 +0,0 @@ -/********************************************************************** - * Copyright (c) 2013, 2014 Pieter Wuille * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ - -#ifndef _SECP256K1_ECMULT_ -#define _SECP256K1_ECMULT_ - -#include "num.h" -#include "group.h" - -static void secp256k1_ecmult_start(void); -static void secp256k1_ecmult_stop(void); - -/** Double multiply: R = na*A + ng*G */ -static void secp256k1_ecmult(secp256k1_gej_t *r, const secp256k1_gej_t *a, const secp256k1_scalar_t *na, const secp256k1_scalar_t *ng); - -#endif diff --git a/crypto/secp256k1/secp256k1/src/ecmult_gen_impl.h b/crypto/secp256k1/secp256k1/src/ecmult_gen_impl.h deleted file mode 100644 index 3146a93b5..000000000 --- a/crypto/secp256k1/secp256k1/src/ecmult_gen_impl.h +++ /dev/null @@ -1,128 +0,0 @@ -/********************************************************************** - * Copyright (c) 2013, 2014 Pieter Wuille * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ - -#ifndef _SECP256K1_ECMULT_GEN_IMPL_H_ -#define _SECP256K1_ECMULT_GEN_IMPL_H_ - -#include "scalar.h" -#include "group.h" -#include "ecmult_gen.h" - -typedef struct { - /* For accelerating the computation of a*G: - * To harden against timing attacks, use the following mechanism: - * * Break up the multiplicand into groups of 4 bits, called n_0, n_1, n_2, ..., n_63. - * * Compute sum(n_i * 16^i * G + U_i, i=0..63), where: - * * U_i = U * 2^i (for i=0..62) - * * U_i = U * (1-2^63) (for i=63) - * where U is a point with no known corresponding scalar. Note that sum(U_i, i=0..63) = 0. - * For each i, and each of the 16 possible values of n_i, (n_i * 16^i * G + U_i) is - * precomputed (call it prec(i, n_i)). The formula now becomes sum(prec(i, n_i), i=0..63). - * None of the resulting prec group elements have a known scalar, and neither do any of - * the intermediate sums while computing a*G. - */ - secp256k1_ge_storage_t prec[64][16]; /* prec[j][i] = 16^j * i * G + U_i */ -} secp256k1_ecmult_gen_consts_t; - -static const secp256k1_ecmult_gen_consts_t *secp256k1_ecmult_gen_consts = NULL; - -static void secp256k1_ecmult_gen_start(void) { - secp256k1_ge_t prec[1024]; - secp256k1_gej_t gj; - secp256k1_gej_t nums_gej; - secp256k1_ecmult_gen_consts_t *ret; - int i, j; - if (secp256k1_ecmult_gen_consts != NULL) { - return; - } - - /* Allocate the precomputation table. */ - ret = (secp256k1_ecmult_gen_consts_t*)checked_malloc(sizeof(secp256k1_ecmult_gen_consts_t)); - - /* get the generator */ - secp256k1_gej_set_ge(&gj, &secp256k1_ge_const_g); - - /* Construct a group element with no known corresponding scalar (nothing up my sleeve). */ - { - static const unsigned char nums_b32[33] = "The scalar for this x is unknown"; - secp256k1_fe_t nums_x; - secp256k1_ge_t nums_ge; - VERIFY_CHECK(secp256k1_fe_set_b32(&nums_x, nums_b32)); - VERIFY_CHECK(secp256k1_ge_set_xo_var(&nums_ge, &nums_x, 0)); - secp256k1_gej_set_ge(&nums_gej, &nums_ge); - /* Add G to make the bits in x uniformly distributed. */ - secp256k1_gej_add_ge_var(&nums_gej, &nums_gej, &secp256k1_ge_const_g); - } - - /* compute prec. */ - { - secp256k1_gej_t precj[1024]; /* Jacobian versions of prec. */ - secp256k1_gej_t gbase; - secp256k1_gej_t numsbase; - gbase = gj; /* 16^j * G */ - numsbase = nums_gej; /* 2^j * nums. */ - for (j = 0; j < 64; j++) { - /* Set precj[j*16 .. j*16+15] to (numsbase, numsbase + gbase, ..., numsbase + 15*gbase). */ - precj[j*16] = numsbase; - for (i = 1; i < 16; i++) { - secp256k1_gej_add_var(&precj[j*16 + i], &precj[j*16 + i - 1], &gbase); - } - /* Multiply gbase by 16. */ - for (i = 0; i < 4; i++) { - secp256k1_gej_double_var(&gbase, &gbase); - } - /* Multiply numbase by 2. */ - secp256k1_gej_double_var(&numsbase, &numsbase); - if (j == 62) { - /* In the last iteration, numsbase is (1 - 2^j) * nums instead. */ - secp256k1_gej_neg(&numsbase, &numsbase); - secp256k1_gej_add_var(&numsbase, &numsbase, &nums_gej); - } - } - secp256k1_ge_set_all_gej_var(1024, prec, precj); - } - for (j = 0; j < 64; j++) { - for (i = 0; i < 16; i++) { - secp256k1_ge_to_storage(&ret->prec[j][i], &prec[j*16 + i]); - } - } - - /* Set the global pointer to the precomputation table. */ - secp256k1_ecmult_gen_consts = ret; -} - -static void secp256k1_ecmult_gen_stop(void) { - secp256k1_ecmult_gen_consts_t *c; - if (secp256k1_ecmult_gen_consts == NULL) { - return; - } - - c = (secp256k1_ecmult_gen_consts_t*)secp256k1_ecmult_gen_consts; - secp256k1_ecmult_gen_consts = NULL; - free(c); -} - -static void secp256k1_ecmult_gen(secp256k1_gej_t *r, const secp256k1_scalar_t *gn) { - const secp256k1_ecmult_gen_consts_t *c = secp256k1_ecmult_gen_consts; - secp256k1_ge_t add; - secp256k1_ge_storage_t adds; - int bits; - int i, j; - secp256k1_gej_set_infinity(r); - add.infinity = 0; - for (j = 0; j < 64; j++) { - bits = secp256k1_scalar_get_bits(gn, j * 4, 4); - for (i = 0; i < 16; i++) { - secp256k1_ge_storage_cmov(&adds, &c->prec[j][i], i == bits); - } - secp256k1_ge_from_storage(&add, &adds); - secp256k1_gej_add_ge(r, r, &add); - } - bits = 0; - secp256k1_ge_clear(&add); -} - -#endif diff --git a/crypto/secp256k1/secp256k1/src/ecmult_impl.h b/crypto/secp256k1/secp256k1/src/ecmult_impl.h deleted file mode 100644 index f6f0c4294..000000000 --- a/crypto/secp256k1/secp256k1/src/ecmult_impl.h +++ /dev/null @@ -1,302 +0,0 @@ -/********************************************************************** - * Copyright (c) 2013, 2014 Pieter Wuille * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ - -#ifndef _SECP256K1_ECMULT_IMPL_H_ -#define _SECP256K1_ECMULT_IMPL_H_ - -#include "group.h" -#include "scalar.h" -#include "ecmult.h" - -/* optimal for 128-bit and 256-bit exponents. */ -#define WINDOW_A 5 - -/** larger numbers may result in slightly better performance, at the cost of - exponentially larger precomputed tables. */ -#ifdef USE_ENDOMORPHISM -/** Two tables for window size 15: 1.375 MiB. */ -#define WINDOW_G 15 -#else -/** One table for window size 16: 1.375 MiB. */ -#define WINDOW_G 16 -#endif - -/** Fill a table 'pre' with precomputed odd multiples of a. W determines the size of the table. - * pre will contains the values [1*a,3*a,5*a,...,(2^(w-1)-1)*a], so it needs place for - * 2^(w-2) entries. - * - * There are two versions of this function: - * - secp256k1_ecmult_precomp_wnaf_gej, which operates on group elements in jacobian notation, - * fast to precompute, but slower to use in later additions. - * - secp256k1_ecmult_precomp_wnaf_ge, which operates on group elements in affine notations, - * (much) slower to precompute, but a bit faster to use in later additions. - * To compute a*P + b*G, we use the jacobian version for P, and the affine version for G, as - * G is constant, so it only needs to be done once in advance. - */ -static void secp256k1_ecmult_table_precomp_gej_var(secp256k1_gej_t *pre, const secp256k1_gej_t *a, int w) { - secp256k1_gej_t d; - int i; - pre[0] = *a; - secp256k1_gej_double_var(&d, &pre[0]); - for (i = 1; i < (1 << (w-2)); i++) { - secp256k1_gej_add_var(&pre[i], &d, &pre[i-1]); - } -} - -static void secp256k1_ecmult_table_precomp_ge_storage_var(secp256k1_ge_storage_t *pre, const secp256k1_gej_t *a, int w) { - secp256k1_gej_t d; - int i; - const int table_size = 1 << (w-2); - secp256k1_gej_t *prej = (secp256k1_gej_t *)checked_malloc(sizeof(secp256k1_gej_t) * table_size); - secp256k1_ge_t *prea = (secp256k1_ge_t *)checked_malloc(sizeof(secp256k1_ge_t) * table_size); - prej[0] = *a; - secp256k1_gej_double_var(&d, a); - for (i = 1; i < table_size; i++) { - secp256k1_gej_add_var(&prej[i], &d, &prej[i-1]); - } - secp256k1_ge_set_all_gej_var(table_size, prea, prej); - for (i = 0; i < table_size; i++) { - secp256k1_ge_to_storage(&pre[i], &prea[i]); - } - free(prej); - free(prea); -} - -/** The number of entries a table with precomputed multiples needs to have. */ -#define ECMULT_TABLE_SIZE(w) (1 << ((w)-2)) - -/** The following two macro retrieves a particular odd multiple from a table - * of precomputed multiples. */ -#define ECMULT_TABLE_GET_GEJ(r,pre,n,w) do { \ - VERIFY_CHECK(((n) & 1) == 1); \ - VERIFY_CHECK((n) >= -((1 << ((w)-1)) - 1)); \ - VERIFY_CHECK((n) <= ((1 << ((w)-1)) - 1)); \ - if ((n) > 0) { \ - *(r) = (pre)[((n)-1)/2]; \ - } else { \ - secp256k1_gej_neg((r), &(pre)[(-(n)-1)/2]); \ - } \ -} while(0) -#define ECMULT_TABLE_GET_GE_STORAGE(r,pre,n,w) do { \ - VERIFY_CHECK(((n) & 1) == 1); \ - VERIFY_CHECK((n) >= -((1 << ((w)-1)) - 1)); \ - VERIFY_CHECK((n) <= ((1 << ((w)-1)) - 1)); \ - if ((n) > 0) { \ - secp256k1_ge_from_storage((r), &(pre)[((n)-1)/2]); \ - } else { \ - secp256k1_ge_from_storage((r), &(pre)[(-(n)-1)/2]); \ - secp256k1_ge_neg((r), (r)); \ - } \ -} while(0) - -typedef struct { - /* For accelerating the computation of a*P + b*G: */ - secp256k1_ge_storage_t pre_g[ECMULT_TABLE_SIZE(WINDOW_G)]; /* odd multiples of the generator */ -#ifdef USE_ENDOMORPHISM - secp256k1_ge_storage_t pre_g_128[ECMULT_TABLE_SIZE(WINDOW_G)]; /* odd multiples of 2^128*generator */ -#endif -} secp256k1_ecmult_consts_t; - -static const secp256k1_ecmult_consts_t *secp256k1_ecmult_consts = NULL; - -static void secp256k1_ecmult_start(void) { - secp256k1_gej_t gj; - secp256k1_ecmult_consts_t *ret; - if (secp256k1_ecmult_consts != NULL) { - return; - } - - /* Allocate the precomputation table. */ - ret = (secp256k1_ecmult_consts_t*)checked_malloc(sizeof(secp256k1_ecmult_consts_t)); - - /* get the generator */ - secp256k1_gej_set_ge(&gj, &secp256k1_ge_const_g); - - - /* precompute the tables with odd multiples */ - secp256k1_ecmult_table_precomp_ge_storage_var(ret->pre_g, &gj, WINDOW_G); - -#ifdef USE_ENDOMORPHISM - { - secp256k1_gej_t g_128j; - int i; - /* calculate 2^128*generator */ - g_128j = gj; - for (i = 0; i < 128; i++) { - secp256k1_gej_double_var(&g_128j, &g_128j); - } - secp256k1_ecmult_table_precomp_ge_storage_var(ret->pre_g_128, &g_128j, WINDOW_G); - } -#endif - - /* Set the global pointer to the precomputation table. */ - secp256k1_ecmult_consts = ret; -} - -static void secp256k1_ecmult_stop(void) { - secp256k1_ecmult_consts_t *c; - if (secp256k1_ecmult_consts == NULL) { - return; - } - - c = (secp256k1_ecmult_consts_t*)secp256k1_ecmult_consts; - secp256k1_ecmult_consts = NULL; - free(c); -} - -/** Convert a number to WNAF notation. The number becomes represented by sum(2^i * wnaf[i], i=0..bits), - * with the following guarantees: - * - each wnaf[i] is either 0, or an odd integer between -(1<<(w-1) - 1) and (1<<(w-1) - 1) - * - two non-zero entries in wnaf are separated by at least w-1 zeroes. - * - the number of set values in wnaf is returned. This number is at most 256, and at most one more - * - than the number of bits in the (absolute value) of the input. - */ -static int secp256k1_ecmult_wnaf(int *wnaf, const secp256k1_scalar_t *a, int w) { - secp256k1_scalar_t s = *a; - int set_bits = 0; - int bit = 0; - int sign = 1; - - if (secp256k1_scalar_get_bits(&s, 255, 1)) { - secp256k1_scalar_negate(&s, &s); - sign = -1; - } - - while (bit < 256) { - int now; - int word; - if (secp256k1_scalar_get_bits(&s, bit, 1) == 0) { - bit++; - continue; - } - while (set_bits < bit) { - wnaf[set_bits++] = 0; - } - now = w; - if (bit + now > 256) { - now = 256 - bit; - } - word = secp256k1_scalar_get_bits_var(&s, bit, now); - if (word & (1 << (w-1))) { - secp256k1_scalar_add_bit(&s, bit + w); - wnaf[set_bits++] = sign * (word - (1 << w)); - } else { - wnaf[set_bits++] = sign * word; - } - bit += now; - } - return set_bits; -} - -static void secp256k1_ecmult(secp256k1_gej_t *r, const secp256k1_gej_t *a, const secp256k1_scalar_t *na, const secp256k1_scalar_t *ng) { - secp256k1_gej_t tmpj; - secp256k1_gej_t pre_a[ECMULT_TABLE_SIZE(WINDOW_A)]; - secp256k1_ge_t tmpa; - const secp256k1_ecmult_consts_t *c = secp256k1_ecmult_consts; -#ifdef USE_ENDOMORPHISM - secp256k1_gej_t pre_a_lam[ECMULT_TABLE_SIZE(WINDOW_A)]; - secp256k1_scalar_t na_1, na_lam; - /* Splitted G factors. */ - secp256k1_scalar_t ng_1, ng_128; - int wnaf_na_1[130]; - int wnaf_na_lam[130]; - int bits_na_1; - int bits_na_lam; - int wnaf_ng_1[129]; - int bits_ng_1; - int wnaf_ng_128[129]; - int bits_ng_128; -#else - int wnaf_na[256]; - int bits_na; - int wnaf_ng[257]; - int bits_ng; -#endif - int i; - int bits; - -#ifdef USE_ENDOMORPHISM - /* split na into na_1 and na_lam (where na = na_1 + na_lam*lambda, and na_1 and na_lam are ~128 bit) */ - secp256k1_scalar_split_lambda_var(&na_1, &na_lam, na); - - /* build wnaf representation for na_1 and na_lam. */ - bits_na_1 = secp256k1_ecmult_wnaf(wnaf_na_1, &na_1, WINDOW_A); - bits_na_lam = secp256k1_ecmult_wnaf(wnaf_na_lam, &na_lam, WINDOW_A); - VERIFY_CHECK(bits_na_1 <= 130); - VERIFY_CHECK(bits_na_lam <= 130); - bits = bits_na_1; - if (bits_na_lam > bits) { - bits = bits_na_lam; - } -#else - /* build wnaf representation for na. */ - bits_na = secp256k1_ecmult_wnaf(wnaf_na, na, WINDOW_A); - bits = bits_na; -#endif - - /* calculate odd multiples of a */ - secp256k1_ecmult_table_precomp_gej_var(pre_a, a, WINDOW_A); - -#ifdef USE_ENDOMORPHISM - for (i = 0; i < ECMULT_TABLE_SIZE(WINDOW_A); i++) { - secp256k1_gej_mul_lambda(&pre_a_lam[i], &pre_a[i]); - } - - /* split ng into ng_1 and ng_128 (where gn = gn_1 + gn_128*2^128, and gn_1 and gn_128 are ~128 bit) */ - secp256k1_scalar_split_128(&ng_1, &ng_128, ng); - - /* Build wnaf representation for ng_1 and ng_128 */ - bits_ng_1 = secp256k1_ecmult_wnaf(wnaf_ng_1, &ng_1, WINDOW_G); - bits_ng_128 = secp256k1_ecmult_wnaf(wnaf_ng_128, &ng_128, WINDOW_G); - if (bits_ng_1 > bits) { - bits = bits_ng_1; - } - if (bits_ng_128 > bits) { - bits = bits_ng_128; - } -#else - bits_ng = secp256k1_ecmult_wnaf(wnaf_ng, ng, WINDOW_G); - if (bits_ng > bits) { - bits = bits_ng; - } -#endif - - secp256k1_gej_set_infinity(r); - - for (i = bits-1; i >= 0; i--) { - int n; - secp256k1_gej_double_var(r, r); -#ifdef USE_ENDOMORPHISM - if (i < bits_na_1 && (n = wnaf_na_1[i])) { - ECMULT_TABLE_GET_GEJ(&tmpj, pre_a, n, WINDOW_A); - secp256k1_gej_add_var(r, r, &tmpj); - } - if (i < bits_na_lam && (n = wnaf_na_lam[i])) { - ECMULT_TABLE_GET_GEJ(&tmpj, pre_a_lam, n, WINDOW_A); - secp256k1_gej_add_var(r, r, &tmpj); - } - if (i < bits_ng_1 && (n = wnaf_ng_1[i])) { - ECMULT_TABLE_GET_GE_STORAGE(&tmpa, c->pre_g, n, WINDOW_G); - secp256k1_gej_add_ge_var(r, r, &tmpa); - } - if (i < bits_ng_128 && (n = wnaf_ng_128[i])) { - ECMULT_TABLE_GET_GE_STORAGE(&tmpa, c->pre_g_128, n, WINDOW_G); - secp256k1_gej_add_ge_var(r, r, &tmpa); - } -#else - if (i < bits_na && (n = wnaf_na[i])) { - ECMULT_TABLE_GET_GEJ(&tmpj, pre_a, n, WINDOW_A); - secp256k1_gej_add_var(r, r, &tmpj); - } - if (i < bits_ng && (n = wnaf_ng[i])) { - ECMULT_TABLE_GET_GE_STORAGE(&tmpa, c->pre_g, n, WINDOW_G); - secp256k1_gej_add_ge_var(r, r, &tmpa); - } -#endif - } -} - -#endif diff --git a/crypto/secp256k1/secp256k1/src/group.h b/crypto/secp256k1/secp256k1/src/group.h deleted file mode 100644 index d1e583490..000000000 --- a/crypto/secp256k1/secp256k1/src/group.h +++ /dev/null @@ -1,118 +0,0 @@ -/********************************************************************** - * Copyright (c) 2013, 2014 Pieter Wuille * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ - -#ifndef _SECP256K1_GROUP_ -#define _SECP256K1_GROUP_ - -#include "num.h" -#include "field.h" - -/** A group element of the secp256k1 curve, in affine coordinates. */ -typedef struct { - secp256k1_fe_t x; - secp256k1_fe_t y; - int infinity; /* whether this represents the point at infinity */ -} secp256k1_ge_t; - -#define SECP256K1_GE_CONST(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) {SECP256K1_FE_CONST((a),(b),(c),(d),(e),(f),(g),(h)), SECP256K1_FE_CONST((i),(j),(k),(l),(m),(n),(o),(p)), 0} -#define SECP256K1_GE_CONST_INFINITY {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), 1} - -/** A group element of the secp256k1 curve, in jacobian coordinates. */ -typedef struct { - secp256k1_fe_t x; /* actual X: x/z^2 */ - secp256k1_fe_t y; /* actual Y: y/z^3 */ - secp256k1_fe_t z; - int infinity; /* whether this represents the point at infinity */ -} secp256k1_gej_t; - -#define SECP256K1_GEJ_CONST(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) {SECP256K1_FE_CONST((a),(b),(c),(d),(e),(f),(g),(h)), SECP256K1_FE_CONST((i),(j),(k),(l),(m),(n),(o),(p)), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 1), 0} -#define SECP256K1_GEJ_CONST_INFINITY {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), 1} - -typedef struct { - secp256k1_fe_storage_t x; - secp256k1_fe_storage_t y; -} secp256k1_ge_storage_t; - -#define SECP256K1_GE_STORAGE_CONST(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) {SECP256K1_FE_STORAGE_CONST((a),(b),(c),(d),(e),(f),(g),(h)), SECP256K1_FE_STORAGE_CONST((i),(j),(k),(l),(m),(n),(o),(p))} - -/** Set a group element equal to the point at infinity */ -static void secp256k1_ge_set_infinity(secp256k1_ge_t *r); - -/** Set a group element equal to the point with given X and Y coordinates */ -static void secp256k1_ge_set_xy(secp256k1_ge_t *r, const secp256k1_fe_t *x, const secp256k1_fe_t *y); - -/** Set a group element (affine) equal to the point with the given X coordinate, and given oddness - * for Y. Return value indicates whether the result is valid. */ -static int secp256k1_ge_set_xo_var(secp256k1_ge_t *r, const secp256k1_fe_t *x, int odd); - -/** Check whether a group element is the point at infinity. */ -static int secp256k1_ge_is_infinity(const secp256k1_ge_t *a); - -/** Check whether a group element is valid (i.e., on the curve). */ -static int secp256k1_ge_is_valid_var(const secp256k1_ge_t *a); - -static void secp256k1_ge_neg(secp256k1_ge_t *r, const secp256k1_ge_t *a); - -/** Set a group element equal to another which is given in jacobian coordinates */ -static void secp256k1_ge_set_gej(secp256k1_ge_t *r, secp256k1_gej_t *a); - -/** Set a batch of group elements equal to the inputs given in jacobian coordinates */ -static void secp256k1_ge_set_all_gej_var(size_t len, secp256k1_ge_t *r, const secp256k1_gej_t *a); - - -/** Set a group element (jacobian) equal to the point at infinity. */ -static void secp256k1_gej_set_infinity(secp256k1_gej_t *r); - -/** Set a group element (jacobian) equal to the point with given X and Y coordinates. */ -static void secp256k1_gej_set_xy(secp256k1_gej_t *r, const secp256k1_fe_t *x, const secp256k1_fe_t *y); - -/** Set a group element (jacobian) equal to another which is given in affine coordinates. */ -static void secp256k1_gej_set_ge(secp256k1_gej_t *r, const secp256k1_ge_t *a); - -/** Compare the X coordinate of a group element (jacobian). */ -static int secp256k1_gej_eq_x_var(const secp256k1_fe_t *x, const secp256k1_gej_t *a); - -/** Set r equal to the inverse of a (i.e., mirrored around the X axis) */ -static void secp256k1_gej_neg(secp256k1_gej_t *r, const secp256k1_gej_t *a); - -/** Check whether a group element is the point at infinity. */ -static int secp256k1_gej_is_infinity(const secp256k1_gej_t *a); - -/** Set r equal to the double of a. */ -static void secp256k1_gej_double_var(secp256k1_gej_t *r, const secp256k1_gej_t *a); - -/** Set r equal to the sum of a and b. */ -static void secp256k1_gej_add_var(secp256k1_gej_t *r, const secp256k1_gej_t *a, const secp256k1_gej_t *b); - -/** Set r equal to the sum of a and b (with b given in affine coordinates, and not infinity). */ -static void secp256k1_gej_add_ge(secp256k1_gej_t *r, const secp256k1_gej_t *a, const secp256k1_ge_t *b); - -/** Set r equal to the sum of a and b (with b given in affine coordinates). This is more efficient - than secp256k1_gej_add_var. It is identical to secp256k1_gej_add_ge but without constant-time - guarantee, and b is allowed to be infinity. */ -static void secp256k1_gej_add_ge_var(secp256k1_gej_t *r, const secp256k1_gej_t *a, const secp256k1_ge_t *b); - -#ifdef USE_ENDOMORPHISM -/** Set r to be equal to lambda times a, where lambda is chosen in a way such that this is very fast. */ -static void secp256k1_gej_mul_lambda(secp256k1_gej_t *r, const secp256k1_gej_t *a); -#endif - -/** Clear a secp256k1_gej_t to prevent leaking sensitive information. */ -static void secp256k1_gej_clear(secp256k1_gej_t *r); - -/** Clear a secp256k1_ge_t to prevent leaking sensitive information. */ -static void secp256k1_ge_clear(secp256k1_ge_t *r); - -/** Convert a group element to the storage type. */ -static void secp256k1_ge_to_storage(secp256k1_ge_storage_t *r, const secp256k1_ge_t*); - -/** Convert a group element back from the storage type. */ -static void secp256k1_ge_from_storage(secp256k1_ge_t *r, const secp256k1_ge_storage_t*); - -/** If flag is true, set *r equal to *a; otherwise leave it. Constant-time. */ -static void secp256k1_ge_storage_cmov(secp256k1_ge_storage_t *r, const secp256k1_ge_storage_t *a, int flag); - -#endif diff --git a/crypto/secp256k1/secp256k1/src/group_impl.h b/crypto/secp256k1/secp256k1/src/group_impl.h deleted file mode 100644 index 0d1c7b02f..000000000 --- a/crypto/secp256k1/secp256k1/src/group_impl.h +++ /dev/null @@ -1,434 +0,0 @@ -/********************************************************************** - * Copyright (c) 2013, 2014 Pieter Wuille * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ - -#ifndef _SECP256K1_GROUP_IMPL_H_ -#define _SECP256K1_GROUP_IMPL_H_ - -#include <string.h> - -#include "num.h" -#include "field.h" -#include "group.h" - -/** Generator for secp256k1, value 'g' defined in - * "Standards for Efficient Cryptography" (SEC2) 2.7.1. - */ -static const secp256k1_ge_t secp256k1_ge_const_g = SECP256K1_GE_CONST( - 0x79BE667EUL, 0xF9DCBBACUL, 0x55A06295UL, 0xCE870B07UL, - 0x029BFCDBUL, 0x2DCE28D9UL, 0x59F2815BUL, 0x16F81798UL, - 0x483ADA77UL, 0x26A3C465UL, 0x5DA4FBFCUL, 0x0E1108A8UL, - 0xFD17B448UL, 0xA6855419UL, 0x9C47D08FUL, 0xFB10D4B8UL -); - -static void secp256k1_ge_set_infinity(secp256k1_ge_t *r) { - r->infinity = 1; -} - -static void secp256k1_ge_set_xy(secp256k1_ge_t *r, const secp256k1_fe_t *x, const secp256k1_fe_t *y) { - r->infinity = 0; - r->x = *x; - r->y = *y; -} - -static int secp256k1_ge_is_infinity(const secp256k1_ge_t *a) { - return a->infinity; -} - -static void secp256k1_ge_neg(secp256k1_ge_t *r, const secp256k1_ge_t *a) { - *r = *a; - secp256k1_fe_normalize_weak(&r->y); - secp256k1_fe_negate(&r->y, &r->y, 1); -} - -static void secp256k1_ge_set_gej(secp256k1_ge_t *r, secp256k1_gej_t *a) { - secp256k1_fe_t z2, z3; - r->infinity = a->infinity; - secp256k1_fe_inv(&a->z, &a->z); - secp256k1_fe_sqr(&z2, &a->z); - secp256k1_fe_mul(&z3, &a->z, &z2); - secp256k1_fe_mul(&a->x, &a->x, &z2); - secp256k1_fe_mul(&a->y, &a->y, &z3); - secp256k1_fe_set_int(&a->z, 1); - r->x = a->x; - r->y = a->y; -} - -static void secp256k1_ge_set_gej_var(secp256k1_ge_t *r, secp256k1_gej_t *a) { - secp256k1_fe_t z2, z3; - r->infinity = a->infinity; - if (a->infinity) { - return; - } - secp256k1_fe_inv_var(&a->z, &a->z); - secp256k1_fe_sqr(&z2, &a->z); - secp256k1_fe_mul(&z3, &a->z, &z2); - secp256k1_fe_mul(&a->x, &a->x, &z2); - secp256k1_fe_mul(&a->y, &a->y, &z3); - secp256k1_fe_set_int(&a->z, 1); - r->x = a->x; - r->y = a->y; -} - -static void secp256k1_ge_set_all_gej_var(size_t len, secp256k1_ge_t *r, const secp256k1_gej_t *a) { - secp256k1_fe_t *az; - secp256k1_fe_t *azi; - size_t i; - size_t count = 0; - az = (secp256k1_fe_t *)checked_malloc(sizeof(secp256k1_fe_t) * len); - for (i = 0; i < len; i++) { - if (!a[i].infinity) { - az[count++] = a[i].z; - } - } - - azi = (secp256k1_fe_t *)checked_malloc(sizeof(secp256k1_fe_t) * count); - secp256k1_fe_inv_all_var(count, azi, az); - free(az); - - count = 0; - for (i = 0; i < len; i++) { - r[i].infinity = a[i].infinity; - if (!a[i].infinity) { - secp256k1_fe_t zi2, zi3; - secp256k1_fe_t *zi = &azi[count++]; - secp256k1_fe_sqr(&zi2, zi); - secp256k1_fe_mul(&zi3, &zi2, zi); - secp256k1_fe_mul(&r[i].x, &a[i].x, &zi2); - secp256k1_fe_mul(&r[i].y, &a[i].y, &zi3); - } - } - free(azi); -} - -static void secp256k1_gej_set_infinity(secp256k1_gej_t *r) { - r->infinity = 1; - secp256k1_fe_set_int(&r->x, 0); - secp256k1_fe_set_int(&r->y, 0); - secp256k1_fe_set_int(&r->z, 0); -} - -static void secp256k1_gej_set_xy(secp256k1_gej_t *r, const secp256k1_fe_t *x, const secp256k1_fe_t *y) { - r->infinity = 0; - r->x = *x; - r->y = *y; - secp256k1_fe_set_int(&r->z, 1); -} - -static void secp256k1_gej_clear(secp256k1_gej_t *r) { - r->infinity = 0; - secp256k1_fe_clear(&r->x); - secp256k1_fe_clear(&r->y); - secp256k1_fe_clear(&r->z); -} - -static void secp256k1_ge_clear(secp256k1_ge_t *r) { - r->infinity = 0; - secp256k1_fe_clear(&r->x); - secp256k1_fe_clear(&r->y); -} - -static int secp256k1_ge_set_xo_var(secp256k1_ge_t *r, const secp256k1_fe_t *x, int odd) { - secp256k1_fe_t x2, x3, c; - r->x = *x; - secp256k1_fe_sqr(&x2, x); - secp256k1_fe_mul(&x3, x, &x2); - r->infinity = 0; - secp256k1_fe_set_int(&c, 7); - secp256k1_fe_add(&c, &x3); - if (!secp256k1_fe_sqrt_var(&r->y, &c)) { - return 0; - } - secp256k1_fe_normalize_var(&r->y); - if (secp256k1_fe_is_odd(&r->y) != odd) { - secp256k1_fe_negate(&r->y, &r->y, 1); - } - return 1; -} - -static void secp256k1_gej_set_ge(secp256k1_gej_t *r, const secp256k1_ge_t *a) { - r->infinity = a->infinity; - r->x = a->x; - r->y = a->y; - secp256k1_fe_set_int(&r->z, 1); -} - -static int secp256k1_gej_eq_x_var(const secp256k1_fe_t *x, const secp256k1_gej_t *a) { - secp256k1_fe_t r, r2; - VERIFY_CHECK(!a->infinity); - secp256k1_fe_sqr(&r, &a->z); secp256k1_fe_mul(&r, &r, x); - r2 = a->x; secp256k1_fe_normalize_weak(&r2); - return secp256k1_fe_equal_var(&r, &r2); -} - -static void secp256k1_gej_neg(secp256k1_gej_t *r, const secp256k1_gej_t *a) { - r->infinity = a->infinity; - r->x = a->x; - r->y = a->y; - r->z = a->z; - secp256k1_fe_normalize_weak(&r->y); - secp256k1_fe_negate(&r->y, &r->y, 1); -} - -static int secp256k1_gej_is_infinity(const secp256k1_gej_t *a) { - return a->infinity; -} - -static int secp256k1_gej_is_valid_var(const secp256k1_gej_t *a) { - secp256k1_fe_t y2, x3, z2, z6; - if (a->infinity) { - return 0; - } - /** y^2 = x^3 + 7 - * (Y/Z^3)^2 = (X/Z^2)^3 + 7 - * Y^2 / Z^6 = X^3 / Z^6 + 7 - * Y^2 = X^3 + 7*Z^6 - */ - secp256k1_fe_sqr(&y2, &a->y); - secp256k1_fe_sqr(&x3, &a->x); secp256k1_fe_mul(&x3, &x3, &a->x); - secp256k1_fe_sqr(&z2, &a->z); - secp256k1_fe_sqr(&z6, &z2); secp256k1_fe_mul(&z6, &z6, &z2); - secp256k1_fe_mul_int(&z6, 7); - secp256k1_fe_add(&x3, &z6); - secp256k1_fe_normalize_weak(&x3); - return secp256k1_fe_equal_var(&y2, &x3); -} - -static int secp256k1_ge_is_valid_var(const secp256k1_ge_t *a) { - secp256k1_fe_t y2, x3, c; - if (a->infinity) { - return 0; - } - /* y^2 = x^3 + 7 */ - secp256k1_fe_sqr(&y2, &a->y); - secp256k1_fe_sqr(&x3, &a->x); secp256k1_fe_mul(&x3, &x3, &a->x); - secp256k1_fe_set_int(&c, 7); - secp256k1_fe_add(&x3, &c); - secp256k1_fe_normalize_weak(&x3); - return secp256k1_fe_equal_var(&y2, &x3); -} - -static void secp256k1_gej_double_var(secp256k1_gej_t *r, const secp256k1_gej_t *a) { - /* Operations: 3 mul, 4 sqr, 0 normalize, 12 mul_int/add/negate */ - secp256k1_fe_t t1,t2,t3,t4; - /** For secp256k1, 2Q is infinity if and only if Q is infinity. This is because if 2Q = infinity, - * Q must equal -Q, or that Q.y == -(Q.y), or Q.y is 0. For a point on y^2 = x^3 + 7 to have - * y=0, x^3 must be -7 mod p. However, -7 has no cube root mod p. - */ - r->infinity = a->infinity; - if (r->infinity) { - return; - } - - secp256k1_fe_mul(&r->z, &a->z, &a->y); - secp256k1_fe_mul_int(&r->z, 2); /* Z' = 2*Y*Z (2) */ - secp256k1_fe_sqr(&t1, &a->x); - secp256k1_fe_mul_int(&t1, 3); /* T1 = 3*X^2 (3) */ - secp256k1_fe_sqr(&t2, &t1); /* T2 = 9*X^4 (1) */ - secp256k1_fe_sqr(&t3, &a->y); - secp256k1_fe_mul_int(&t3, 2); /* T3 = 2*Y^2 (2) */ - secp256k1_fe_sqr(&t4, &t3); - secp256k1_fe_mul_int(&t4, 2); /* T4 = 8*Y^4 (2) */ - secp256k1_fe_mul(&t3, &t3, &a->x); /* T3 = 2*X*Y^2 (1) */ - r->x = t3; - secp256k1_fe_mul_int(&r->x, 4); /* X' = 8*X*Y^2 (4) */ - secp256k1_fe_negate(&r->x, &r->x, 4); /* X' = -8*X*Y^2 (5) */ - secp256k1_fe_add(&r->x, &t2); /* X' = 9*X^4 - 8*X*Y^2 (6) */ - secp256k1_fe_negate(&t2, &t2, 1); /* T2 = -9*X^4 (2) */ - secp256k1_fe_mul_int(&t3, 6); /* T3 = 12*X*Y^2 (6) */ - secp256k1_fe_add(&t3, &t2); /* T3 = 12*X*Y^2 - 9*X^4 (8) */ - secp256k1_fe_mul(&r->y, &t1, &t3); /* Y' = 36*X^3*Y^2 - 27*X^6 (1) */ - secp256k1_fe_negate(&t2, &t4, 2); /* T2 = -8*Y^4 (3) */ - secp256k1_fe_add(&r->y, &t2); /* Y' = 36*X^3*Y^2 - 27*X^6 - 8*Y^4 (4) */ -} - -static void secp256k1_gej_add_var(secp256k1_gej_t *r, const secp256k1_gej_t *a, const secp256k1_gej_t *b) { - /* Operations: 12 mul, 4 sqr, 2 normalize, 12 mul_int/add/negate */ - secp256k1_fe_t z22, z12, u1, u2, s1, s2, h, i, i2, h2, h3, t; - if (a->infinity) { - *r = *b; - return; - } - if (b->infinity) { - *r = *a; - return; - } - r->infinity = 0; - secp256k1_fe_sqr(&z22, &b->z); - secp256k1_fe_sqr(&z12, &a->z); - secp256k1_fe_mul(&u1, &a->x, &z22); - secp256k1_fe_mul(&u2, &b->x, &z12); - secp256k1_fe_mul(&s1, &a->y, &z22); secp256k1_fe_mul(&s1, &s1, &b->z); - secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &a->z); - secp256k1_fe_negate(&h, &u1, 1); secp256k1_fe_add(&h, &u2); - secp256k1_fe_negate(&i, &s1, 1); secp256k1_fe_add(&i, &s2); - if (secp256k1_fe_normalizes_to_zero_var(&h)) { - if (secp256k1_fe_normalizes_to_zero_var(&i)) { - secp256k1_gej_double_var(r, a); - } else { - r->infinity = 1; - } - return; - } - secp256k1_fe_sqr(&i2, &i); - secp256k1_fe_sqr(&h2, &h); - secp256k1_fe_mul(&h3, &h, &h2); - secp256k1_fe_mul(&r->z, &a->z, &b->z); secp256k1_fe_mul(&r->z, &r->z, &h); - secp256k1_fe_mul(&t, &u1, &h2); - r->x = t; secp256k1_fe_mul_int(&r->x, 2); secp256k1_fe_add(&r->x, &h3); secp256k1_fe_negate(&r->x, &r->x, 3); secp256k1_fe_add(&r->x, &i2); - secp256k1_fe_negate(&r->y, &r->x, 5); secp256k1_fe_add(&r->y, &t); secp256k1_fe_mul(&r->y, &r->y, &i); - secp256k1_fe_mul(&h3, &h3, &s1); secp256k1_fe_negate(&h3, &h3, 1); - secp256k1_fe_add(&r->y, &h3); -} - -static void secp256k1_gej_add_ge_var(secp256k1_gej_t *r, const secp256k1_gej_t *a, const secp256k1_ge_t *b) { - /* 8 mul, 3 sqr, 4 normalize, 12 mul_int/add/negate */ - secp256k1_fe_t z12, u1, u2, s1, s2, h, i, i2, h2, h3, t; - if (a->infinity) { - r->infinity = b->infinity; - r->x = b->x; - r->y = b->y; - secp256k1_fe_set_int(&r->z, 1); - return; - } - if (b->infinity) { - *r = *a; - return; - } - r->infinity = 0; - secp256k1_fe_sqr(&z12, &a->z); - u1 = a->x; secp256k1_fe_normalize_weak(&u1); - secp256k1_fe_mul(&u2, &b->x, &z12); - s1 = a->y; secp256k1_fe_normalize_weak(&s1); - secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &a->z); - secp256k1_fe_negate(&h, &u1, 1); secp256k1_fe_add(&h, &u2); - secp256k1_fe_negate(&i, &s1, 1); secp256k1_fe_add(&i, &s2); - if (secp256k1_fe_normalizes_to_zero_var(&h)) { - if (secp256k1_fe_normalizes_to_zero_var(&i)) { - secp256k1_gej_double_var(r, a); - } else { - r->infinity = 1; - } - return; - } - secp256k1_fe_sqr(&i2, &i); - secp256k1_fe_sqr(&h2, &h); - secp256k1_fe_mul(&h3, &h, &h2); - r->z = a->z; secp256k1_fe_mul(&r->z, &r->z, &h); - secp256k1_fe_mul(&t, &u1, &h2); - r->x = t; secp256k1_fe_mul_int(&r->x, 2); secp256k1_fe_add(&r->x, &h3); secp256k1_fe_negate(&r->x, &r->x, 3); secp256k1_fe_add(&r->x, &i2); - secp256k1_fe_negate(&r->y, &r->x, 5); secp256k1_fe_add(&r->y, &t); secp256k1_fe_mul(&r->y, &r->y, &i); - secp256k1_fe_mul(&h3, &h3, &s1); secp256k1_fe_negate(&h3, &h3, 1); - secp256k1_fe_add(&r->y, &h3); -} - -static void secp256k1_gej_add_ge(secp256k1_gej_t *r, const secp256k1_gej_t *a, const secp256k1_ge_t *b) { - /* Operations: 7 mul, 5 sqr, 5 normalize, 19 mul_int/add/negate */ - secp256k1_fe_t zz, u1, u2, s1, s2, z, t, m, n, q, rr; - int infinity; - VERIFY_CHECK(!b->infinity); - VERIFY_CHECK(a->infinity == 0 || a->infinity == 1); - - /** In: - * Eric Brier and Marc Joye, Weierstrass Elliptic Curves and Side-Channel Attacks. - * In D. Naccache and P. Paillier, Eds., Public Key Cryptography, vol. 2274 of Lecture Notes in Computer Science, pages 335-345. Springer-Verlag, 2002. - * we find as solution for a unified addition/doubling formula: - * lambda = ((x1 + x2)^2 - x1 * x2 + a) / (y1 + y2), with a = 0 for secp256k1's curve equation. - * x3 = lambda^2 - (x1 + x2) - * 2*y3 = lambda * (x1 + x2 - 2 * x3) - (y1 + y2). - * - * Substituting x_i = Xi / Zi^2 and yi = Yi / Zi^3, for i=1,2,3, gives: - * U1 = X1*Z2^2, U2 = X2*Z1^2 - * S1 = Y1*Z2^3, S2 = Y2*Z1^3 - * Z = Z1*Z2 - * T = U1+U2 - * M = S1+S2 - * Q = T*M^2 - * R = T^2-U1*U2 - * X3 = 4*(R^2-Q) - * Y3 = 4*(R*(3*Q-2*R^2)-M^4) - * Z3 = 2*M*Z - * (Note that the paper uses xi = Xi / Zi and yi = Yi / Zi instead.) - */ - - secp256k1_fe_sqr(&zz, &a->z); /* z = Z1^2 */ - u1 = a->x; secp256k1_fe_normalize_weak(&u1); /* u1 = U1 = X1*Z2^2 (1) */ - secp256k1_fe_mul(&u2, &b->x, &zz); /* u2 = U2 = X2*Z1^2 (1) */ - s1 = a->y; secp256k1_fe_normalize_weak(&s1); /* s1 = S1 = Y1*Z2^3 (1) */ - secp256k1_fe_mul(&s2, &b->y, &zz); /* s2 = Y2*Z2^2 (1) */ - secp256k1_fe_mul(&s2, &s2, &a->z); /* s2 = S2 = Y2*Z1^3 (1) */ - z = a->z; /* z = Z = Z1*Z2 (8) */ - t = u1; secp256k1_fe_add(&t, &u2); /* t = T = U1+U2 (2) */ - m = s1; secp256k1_fe_add(&m, &s2); /* m = M = S1+S2 (2) */ - secp256k1_fe_sqr(&n, &m); /* n = M^2 (1) */ - secp256k1_fe_mul(&q, &n, &t); /* q = Q = T*M^2 (1) */ - secp256k1_fe_sqr(&n, &n); /* n = M^4 (1) */ - secp256k1_fe_sqr(&rr, &t); /* rr = T^2 (1) */ - secp256k1_fe_mul(&t, &u1, &u2); secp256k1_fe_negate(&t, &t, 1); /* t = -U1*U2 (2) */ - secp256k1_fe_add(&rr, &t); /* rr = R = T^2-U1*U2 (3) */ - secp256k1_fe_sqr(&t, &rr); /* t = R^2 (1) */ - secp256k1_fe_mul(&r->z, &m, &z); /* r->z = M*Z (1) */ - infinity = secp256k1_fe_normalizes_to_zero(&r->z) * (1 - a->infinity); - secp256k1_fe_mul_int(&r->z, 2 * (1 - a->infinity)); /* r->z = Z3 = 2*M*Z (2) */ - r->x = t; /* r->x = R^2 (1) */ - secp256k1_fe_negate(&q, &q, 1); /* q = -Q (2) */ - secp256k1_fe_add(&r->x, &q); /* r->x = R^2-Q (3) */ - secp256k1_fe_normalize(&r->x); - secp256k1_fe_mul_int(&q, 3); /* q = -3*Q (6) */ - secp256k1_fe_mul_int(&t, 2); /* t = 2*R^2 (2) */ - secp256k1_fe_add(&t, &q); /* t = 2*R^2-3*Q (8) */ - secp256k1_fe_mul(&t, &t, &rr); /* t = R*(2*R^2-3*Q) (1) */ - secp256k1_fe_add(&t, &n); /* t = R*(2*R^2-3*Q)+M^4 (2) */ - secp256k1_fe_negate(&r->y, &t, 2); /* r->y = R*(3*Q-2*R^2)-M^4 (3) */ - secp256k1_fe_normalize_weak(&r->y); - secp256k1_fe_mul_int(&r->x, 4 * (1 - a->infinity)); /* r->x = X3 = 4*(R^2-Q) */ - secp256k1_fe_mul_int(&r->y, 4 * (1 - a->infinity)); /* r->y = Y3 = 4*R*(3*Q-2*R^2)-4*M^4 (4) */ - - /** In case a->infinity == 1, the above code results in r->x, r->y, and r->z all equal to 0. - * Add b->x to x, b->y to y, and 1 to z in that case. - */ - t = b->x; secp256k1_fe_mul_int(&t, a->infinity); - secp256k1_fe_add(&r->x, &t); - t = b->y; secp256k1_fe_mul_int(&t, a->infinity); - secp256k1_fe_add(&r->y, &t); - secp256k1_fe_set_int(&t, a->infinity); - secp256k1_fe_add(&r->z, &t); - r->infinity = infinity; -} - -static void secp256k1_ge_to_storage(secp256k1_ge_storage_t *r, const secp256k1_ge_t *a) { - secp256k1_fe_t x, y; - VERIFY_CHECK(!a->infinity); - x = a->x; - secp256k1_fe_normalize(&x); - y = a->y; - secp256k1_fe_normalize(&y); - secp256k1_fe_to_storage(&r->x, &x); - secp256k1_fe_to_storage(&r->y, &y); -} - -static void secp256k1_ge_from_storage(secp256k1_ge_t *r, const secp256k1_ge_storage_t *a) { - secp256k1_fe_from_storage(&r->x, &a->x); - secp256k1_fe_from_storage(&r->y, &a->y); - r->infinity = 0; -} - -static SECP256K1_INLINE void secp256k1_ge_storage_cmov(secp256k1_ge_storage_t *r, const secp256k1_ge_storage_t *a, int flag) { - secp256k1_fe_storage_cmov(&r->x, &a->x, flag); - secp256k1_fe_storage_cmov(&r->y, &a->y, flag); -} - -#ifdef USE_ENDOMORPHISM -static void secp256k1_gej_mul_lambda(secp256k1_gej_t *r, const secp256k1_gej_t *a) { - static const secp256k1_fe_t beta = SECP256K1_FE_CONST( - 0x7ae96a2bul, 0x657c0710ul, 0x6e64479eul, 0xac3434e9ul, - 0x9cf04975ul, 0x12f58995ul, 0xc1396c28ul, 0x719501eeul - ); - *r = *a; - secp256k1_fe_mul(&r->x, &r->x, &beta); -} -#endif - -#endif diff --git a/crypto/secp256k1/secp256k1/src/scalar.h b/crypto/secp256k1/secp256k1/src/scalar.h deleted file mode 100644 index f5d09f8d4..000000000 --- a/crypto/secp256k1/secp256k1/src/scalar.h +++ /dev/null @@ -1,93 +0,0 @@ -/********************************************************************** - * Copyright (c) 2014 Pieter Wuille * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ - -#ifndef _SECP256K1_SCALAR_ -#define _SECP256K1_SCALAR_ - -#include "num.h" - -#if defined HAVE_CONFIG_H -#include "libsecp256k1-config.h" -#endif - -#if defined(USE_SCALAR_4X64) -#include "scalar_4x64.h" -#elif defined(USE_SCALAR_8X32) -#include "scalar_8x32.h" -#else -#error "Please select scalar implementation" -#endif - -/** Clear a scalar to prevent the leak of sensitive data. */ -static void secp256k1_scalar_clear(secp256k1_scalar_t *r); - -/** Access bits from a scalar. All requested bits must belong to the same 32-bit limb. */ -static unsigned int secp256k1_scalar_get_bits(const secp256k1_scalar_t *a, unsigned int offset, unsigned int count); - -/** Access bits from a scalar. Not constant time. */ -static unsigned int secp256k1_scalar_get_bits_var(const secp256k1_scalar_t *a, unsigned int offset, unsigned int count); - -/** Set a scalar from a big endian byte array. */ -static void secp256k1_scalar_set_b32(secp256k1_scalar_t *r, const unsigned char *bin, int *overflow); - -/** Set a scalar to an unsigned integer. */ -static void secp256k1_scalar_set_int(secp256k1_scalar_t *r, unsigned int v); - -/** Convert a scalar to a byte array. */ -static void secp256k1_scalar_get_b32(unsigned char *bin, const secp256k1_scalar_t* a); - -/** Add two scalars together (modulo the group order). Returns whether it overflowed. */ -static int secp256k1_scalar_add(secp256k1_scalar_t *r, const secp256k1_scalar_t *a, const secp256k1_scalar_t *b); - -/** Add a power of two to a scalar. The result is not allowed to overflow. */ -static void secp256k1_scalar_add_bit(secp256k1_scalar_t *r, unsigned int bit); - -/** Multiply two scalars (modulo the group order). */ -static void secp256k1_scalar_mul(secp256k1_scalar_t *r, const secp256k1_scalar_t *a, const secp256k1_scalar_t *b); - -/** Compute the square of a scalar (modulo the group order). */ -static void secp256k1_scalar_sqr(secp256k1_scalar_t *r, const secp256k1_scalar_t *a); - -/** Compute the inverse of a scalar (modulo the group order). */ -static void secp256k1_scalar_inverse(secp256k1_scalar_t *r, const secp256k1_scalar_t *a); - -/** Compute the inverse of a scalar (modulo the group order), without constant-time guarantee. */ -static void secp256k1_scalar_inverse_var(secp256k1_scalar_t *r, const secp256k1_scalar_t *a); - -/** Compute the complement of a scalar (modulo the group order). */ -static void secp256k1_scalar_negate(secp256k1_scalar_t *r, const secp256k1_scalar_t *a); - -/** Check whether a scalar equals zero. */ -static int secp256k1_scalar_is_zero(const secp256k1_scalar_t *a); - -/** Check whether a scalar equals one. */ -static int secp256k1_scalar_is_one(const secp256k1_scalar_t *a); - -/** Check whether a scalar is higher than the group order divided by 2. */ -static int secp256k1_scalar_is_high(const secp256k1_scalar_t *a); - -#ifndef USE_NUM_NONE -/** Convert a scalar to a number. */ -static void secp256k1_scalar_get_num(secp256k1_num_t *r, const secp256k1_scalar_t *a); - -/** Get the order of the group as a number. */ -static void secp256k1_scalar_order_get_num(secp256k1_num_t *r); -#endif - -/** Compare two scalars. */ -static int secp256k1_scalar_eq(const secp256k1_scalar_t *a, const secp256k1_scalar_t *b); - -#ifdef USE_ENDOMORPHISM -/** Find r1 and r2 such that r1+r2*2^128 = a. */ -static void secp256k1_scalar_split_128(secp256k1_scalar_t *r1, secp256k1_scalar_t *r2, const secp256k1_scalar_t *a); -/** Find r1 and r2 such that r1+r2*lambda = a, and r1 and r2 are maximum 128 bits long (see secp256k1_gej_mul_lambda). */ -static void secp256k1_scalar_split_lambda_var(secp256k1_scalar_t *r1, secp256k1_scalar_t *r2, const secp256k1_scalar_t *a); -#endif - -/** Multiply a and b (without taking the modulus!), divide by 2**shift, and round to the nearest integer. Shift must be at least 256. */ -static void secp256k1_scalar_mul_shift_var(secp256k1_scalar_t *r, const secp256k1_scalar_t *a, const secp256k1_scalar_t *b, unsigned int shift); - -#endif diff --git a/crypto/secp256k1/secp256k1/src/secp256k1.c b/crypto/secp256k1/secp256k1/src/secp256k1.c deleted file mode 100644 index c1320172f..000000000 --- a/crypto/secp256k1/secp256k1/src/secp256k1.c +++ /dev/null @@ -1,372 +0,0 @@ -/********************************************************************** - * Copyright (c) 2013, 2014 Pieter Wuille * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ - -#define SECP256K1_BUILD (1) - -#include "include/secp256k1.h" - -#include "util.h" -#include "num_impl.h" -#include "field_impl.h" -#include "scalar_impl.h" -#include "group_impl.h" -#include "ecmult_impl.h" -#include "ecmult_gen_impl.h" -#include "ecdsa_impl.h" -#include "eckey_impl.h" -#include "hash_impl.h" - -void secp256k1_start(unsigned int flags) { - if (flags & SECP256K1_START_SIGN) { - secp256k1_ecmult_gen_start(); - } - if (flags & SECP256K1_START_VERIFY) { - secp256k1_ecmult_start(); - } -} - -void secp256k1_stop(void) { - secp256k1_ecmult_stop(); - secp256k1_ecmult_gen_stop(); -} - -int secp256k1_ecdsa_verify(const unsigned char *msg32, const unsigned char *sig, int siglen, const unsigned char *pubkey, int pubkeylen) { - secp256k1_ge_t q; - secp256k1_ecdsa_sig_t s; - secp256k1_scalar_t m; - int ret = -3; - DEBUG_CHECK(secp256k1_ecmult_consts != NULL); - DEBUG_CHECK(msg32 != NULL); - DEBUG_CHECK(sig != NULL); - DEBUG_CHECK(pubkey != NULL); - - secp256k1_scalar_set_b32(&m, msg32, NULL); - - if (secp256k1_eckey_pubkey_parse(&q, pubkey, pubkeylen)) { - if (secp256k1_ecdsa_sig_parse(&s, sig, siglen)) { - if (secp256k1_ecdsa_sig_verify(&s, &q, &m)) { - /* success is 1, all other values are fail */ - ret = 1; - } else { - ret = 0; - } - } else { - ret = -2; - } - } else { - ret = -1; - } - - return ret; -} - -static int nonce_function_rfc6979(unsigned char *nonce32, const unsigned char *msg32, const unsigned char *key32, unsigned int counter, const void *data) { - secp256k1_rfc6979_hmac_sha256_t rng; - unsigned int i; - secp256k1_rfc6979_hmac_sha256_initialize(&rng, key32, 32, msg32, 32, (const unsigned char*)data, data != NULL ? 32 : 0); - for (i = 0; i <= counter; i++) { - secp256k1_rfc6979_hmac_sha256_generate(&rng, nonce32, 32); - } - secp256k1_rfc6979_hmac_sha256_finalize(&rng); - return 1; -} - -const secp256k1_nonce_function_t secp256k1_nonce_function_rfc6979 = nonce_function_rfc6979; -const secp256k1_nonce_function_t secp256k1_nonce_function_default = nonce_function_rfc6979; - -int secp256k1_ecdsa_sign(const unsigned char *msg32, unsigned char *signature, int *signaturelen, const unsigned char *seckey, secp256k1_nonce_function_t noncefp, const void* noncedata) { - secp256k1_ecdsa_sig_t sig; - secp256k1_scalar_t sec, non, msg; - int ret = 0; - int overflow = 0; - unsigned int count = 0; - DEBUG_CHECK(secp256k1_ecmult_gen_consts != NULL); - DEBUG_CHECK(msg32 != NULL); - DEBUG_CHECK(signature != NULL); - DEBUG_CHECK(signaturelen != NULL); - DEBUG_CHECK(seckey != NULL); - if (noncefp == NULL) { - noncefp = secp256k1_nonce_function_default; - } - - secp256k1_scalar_set_b32(&sec, seckey, &overflow); - /* Fail if the secret key is invalid. */ - if (!overflow && !secp256k1_scalar_is_zero(&sec)) { - secp256k1_scalar_set_b32(&msg, msg32, NULL); - while (1) { - unsigned char nonce32[32]; - ret = noncefp(nonce32, msg32, seckey, count, noncedata); - if (!ret) { - break; - } - secp256k1_scalar_set_b32(&non, nonce32, &overflow); - memset(nonce32, 0, 32); - if (!secp256k1_scalar_is_zero(&non) && !overflow) { - if (secp256k1_ecdsa_sig_sign(&sig, &sec, &msg, &non, NULL)) { - break; - } - } - count++; - } - if (ret) { - ret = secp256k1_ecdsa_sig_serialize(signature, signaturelen, &sig); - } - secp256k1_scalar_clear(&msg); - secp256k1_scalar_clear(&non); - secp256k1_scalar_clear(&sec); - } - if (!ret) { - *signaturelen = 0; - } - return ret; -} - -int secp256k1_ecdsa_sign_compact(const unsigned char *msg32, unsigned char *sig64, const unsigned char *seckey, secp256k1_nonce_function_t noncefp, const void* noncedata, int *recid) { - secp256k1_ecdsa_sig_t sig; - secp256k1_scalar_t sec, non, msg; - int ret = 0; - int overflow = 0; - unsigned int count = 0; - DEBUG_CHECK(secp256k1_ecmult_gen_consts != NULL); - DEBUG_CHECK(msg32 != NULL); - DEBUG_CHECK(sig64 != NULL); - DEBUG_CHECK(seckey != NULL); - if (noncefp == NULL) { - noncefp = secp256k1_nonce_function_default; - } - - secp256k1_scalar_set_b32(&sec, seckey, &overflow); - /* Fail if the secret key is invalid. */ - if (!overflow && !secp256k1_scalar_is_zero(&sec)) { - secp256k1_scalar_set_b32(&msg, msg32, NULL); - while (1) { - unsigned char nonce32[32]; - ret = noncefp(nonce32, msg32, seckey, count, noncedata); - if (!ret) { - break; - } - secp256k1_scalar_set_b32(&non, nonce32, &overflow); - memset(nonce32, 0, 32); - if (!secp256k1_scalar_is_zero(&non) && !overflow) { - if (secp256k1_ecdsa_sig_sign(&sig, &sec, &msg, &non, recid)) { - break; - } - } - count++; - } - if (ret) { - secp256k1_scalar_get_b32(sig64, &sig.r); - secp256k1_scalar_get_b32(sig64 + 32, &sig.s); - } - secp256k1_scalar_clear(&msg); - secp256k1_scalar_clear(&non); - secp256k1_scalar_clear(&sec); - } - if (!ret) { - memset(sig64, 0, 64); - } - return ret; -} - -int secp256k1_ecdsa_recover_compact(const unsigned char *msg32, const unsigned char *sig64, unsigned char *pubkey, int *pubkeylen, int compressed, int recid) { - secp256k1_ge_t q; - secp256k1_ecdsa_sig_t sig; - secp256k1_scalar_t m; - int ret = 0; - int overflow = 0; - DEBUG_CHECK(secp256k1_ecmult_consts != NULL); - DEBUG_CHECK(msg32 != NULL); - DEBUG_CHECK(sig64 != NULL); - DEBUG_CHECK(pubkey != NULL); - DEBUG_CHECK(pubkeylen != NULL); - DEBUG_CHECK(recid >= 0 && recid <= 3); - - secp256k1_scalar_set_b32(&sig.r, sig64, &overflow); - if (!overflow) { - secp256k1_scalar_set_b32(&sig.s, sig64 + 32, &overflow); - if (!overflow) { - secp256k1_scalar_set_b32(&m, msg32, NULL); - - if (secp256k1_ecdsa_sig_recover(&sig, &q, &m, recid)) { - ret = secp256k1_eckey_pubkey_serialize(&q, pubkey, pubkeylen, compressed); - } - } - } - return ret; -} - -int secp256k1_ec_seckey_verify(const unsigned char *seckey) { - secp256k1_scalar_t sec; - int ret; - int overflow; - DEBUG_CHECK(seckey != NULL); - - secp256k1_scalar_set_b32(&sec, seckey, &overflow); - ret = !secp256k1_scalar_is_zero(&sec) && !overflow; - secp256k1_scalar_clear(&sec); - return ret; -} - -int secp256k1_ec_pubkey_verify(const unsigned char *pubkey, int pubkeylen) { - secp256k1_ge_t q; - DEBUG_CHECK(pubkey != NULL); - - return secp256k1_eckey_pubkey_parse(&q, pubkey, pubkeylen); -} - -int secp256k1_ec_pubkey_create(unsigned char *pubkey, int *pubkeylen, const unsigned char *seckey, int compressed) { - secp256k1_gej_t pj; - secp256k1_ge_t p; - secp256k1_scalar_t sec; - int overflow; - int ret = 0; - DEBUG_CHECK(secp256k1_ecmult_gen_consts != NULL); - DEBUG_CHECK(pubkey != NULL); - DEBUG_CHECK(pubkeylen != NULL); - DEBUG_CHECK(seckey != NULL); - - secp256k1_scalar_set_b32(&sec, seckey, &overflow); - if (!overflow) { - secp256k1_ecmult_gen(&pj, &sec); - secp256k1_scalar_clear(&sec); - secp256k1_ge_set_gej(&p, &pj); - ret = secp256k1_eckey_pubkey_serialize(&p, pubkey, pubkeylen, compressed); - } - if (!ret) { - *pubkeylen = 0; - } - return ret; -} - -int secp256k1_ec_pubkey_decompress(unsigned char *pubkey, int *pubkeylen) { - secp256k1_ge_t p; - int ret = 0; - DEBUG_CHECK(pubkey != NULL); - DEBUG_CHECK(pubkeylen != NULL); - - if (secp256k1_eckey_pubkey_parse(&p, pubkey, *pubkeylen)) { - ret = secp256k1_eckey_pubkey_serialize(&p, pubkey, pubkeylen, 0); - } - return ret; -} - -int secp256k1_ec_privkey_tweak_add(unsigned char *seckey, const unsigned char *tweak) { - secp256k1_scalar_t term; - secp256k1_scalar_t sec; - int ret = 0; - int overflow = 0; - DEBUG_CHECK(seckey != NULL); - DEBUG_CHECK(tweak != NULL); - - secp256k1_scalar_set_b32(&term, tweak, &overflow); - secp256k1_scalar_set_b32(&sec, seckey, NULL); - - ret = secp256k1_eckey_privkey_tweak_add(&sec, &term) && !overflow; - if (ret) { - secp256k1_scalar_get_b32(seckey, &sec); - } - - secp256k1_scalar_clear(&sec); - secp256k1_scalar_clear(&term); - return ret; -} - -int secp256k1_ec_pubkey_tweak_add(unsigned char *pubkey, int pubkeylen, const unsigned char *tweak) { - secp256k1_ge_t p; - secp256k1_scalar_t term; - int ret = 0; - int overflow = 0; - DEBUG_CHECK(secp256k1_ecmult_consts != NULL); - DEBUG_CHECK(pubkey != NULL); - DEBUG_CHECK(tweak != NULL); - - secp256k1_scalar_set_b32(&term, tweak, &overflow); - if (!overflow) { - ret = secp256k1_eckey_pubkey_parse(&p, pubkey, pubkeylen); - if (ret) { - ret = secp256k1_eckey_pubkey_tweak_add(&p, &term); - } - if (ret) { - int oldlen = pubkeylen; - ret = secp256k1_eckey_pubkey_serialize(&p, pubkey, &pubkeylen, oldlen <= 33); - VERIFY_CHECK(pubkeylen == oldlen); - } - } - - return ret; -} - -int secp256k1_ec_privkey_tweak_mul(unsigned char *seckey, const unsigned char *tweak) { - secp256k1_scalar_t factor; - secp256k1_scalar_t sec; - int ret = 0; - int overflow = 0; - DEBUG_CHECK(seckey != NULL); - DEBUG_CHECK(tweak != NULL); - - secp256k1_scalar_set_b32(&factor, tweak, &overflow); - secp256k1_scalar_set_b32(&sec, seckey, NULL); - ret = secp256k1_eckey_privkey_tweak_mul(&sec, &factor) && !overflow; - if (ret) { - secp256k1_scalar_get_b32(seckey, &sec); - } - - secp256k1_scalar_clear(&sec); - secp256k1_scalar_clear(&factor); - return ret; -} - -int secp256k1_ec_pubkey_tweak_mul(unsigned char *pubkey, int pubkeylen, const unsigned char *tweak) { - secp256k1_ge_t p; - secp256k1_scalar_t factor; - int ret = 0; - int overflow = 0; - DEBUG_CHECK(secp256k1_ecmult_consts != NULL); - DEBUG_CHECK(pubkey != NULL); - DEBUG_CHECK(tweak != NULL); - - secp256k1_scalar_set_b32(&factor, tweak, &overflow); - if (!overflow) { - ret = secp256k1_eckey_pubkey_parse(&p, pubkey, pubkeylen); - if (ret) { - ret = secp256k1_eckey_pubkey_tweak_mul(&p, &factor); - } - if (ret) { - int oldlen = pubkeylen; - ret = secp256k1_eckey_pubkey_serialize(&p, pubkey, &pubkeylen, oldlen <= 33); - VERIFY_CHECK(pubkeylen == oldlen); - } - } - - return ret; -} - -int secp256k1_ec_privkey_export(const unsigned char *seckey, unsigned char *privkey, int *privkeylen, int compressed) { - secp256k1_scalar_t key; - int ret = 0; - DEBUG_CHECK(seckey != NULL); - DEBUG_CHECK(privkey != NULL); - DEBUG_CHECK(privkeylen != NULL); - - secp256k1_scalar_set_b32(&key, seckey, NULL); - ret = secp256k1_eckey_privkey_serialize(privkey, privkeylen, &key, compressed); - secp256k1_scalar_clear(&key); - return ret; -} - -int secp256k1_ec_privkey_import(unsigned char *seckey, const unsigned char *privkey, int privkeylen) { - secp256k1_scalar_t key; - int ret = 0; - DEBUG_CHECK(seckey != NULL); - DEBUG_CHECK(privkey != NULL); - - ret = secp256k1_eckey_privkey_parse(&key, privkey, privkeylen); - if (ret) { - secp256k1_scalar_get_b32(seckey, &key); - } - secp256k1_scalar_clear(&key); - return ret; -} |