aboutsummaryrefslogblamecommitdiffstats
path: root/eth/fetcher/fetcher_test.go
blob: 4c6a1bf6ad4853a22ef34c5009f7cdb4d8e32536 (plain) (tree)
1
2
3
4
5
6
7





                         
              






























































                                                                                                                                 



                                                                                 




                                               

                                                                         
         
                                                                                     






                                                                           



                               




                                                                            


                             
                                        
                                                       

                                                   
                                                                   
                                                                                 


                                            

                                                 


                  

                                                                        



                                                              

 






































                                                                                                  
                                                                       




























                                                                                                                    
                                                                       


























                                                                                                                
                                                                       


                                                                                                   






























                                                                                                     
                                                          





                                                                                      























                                                                                                          
                                                                       


                                                                                                   























                                                                                                          
                                                                       


                                                                                                   




























                                                                                          
                                                          





                                                                                          











                                                                                        

                                                                        













                                                                                   











































                                                                                             
                                                                                   

                                                 

                                                                                                     

         
package fetcher

import (
    "encoding/binary"
    "errors"
    "math/big"
    "sync"
    "sync/atomic"
    "testing"
    "time"

    "github.com/ethereum/go-ethereum/common"
    "github.com/ethereum/go-ethereum/core/types"
)

var (
    knownHash   = common.Hash{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
    unknownHash = common.Hash{2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2}
    bannedHash  = common.Hash{3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3}

    genesis = createBlock(1, common.Hash{}, knownHash)
)

// idCounter is used by the createHashes method the generate deterministic but unique hashes
var idCounter = int64(2) // #1 is the genesis block

// createHashes generates a batch of hashes rooted at a specific point in the chain.
func createHashes(amount int, root common.Hash) (hashes []common.Hash) {
    hashes = make([]common.Hash, amount+1)
    hashes[len(hashes)-1] = root

    for i := 0; i < len(hashes)-1; i++ {
        binary.BigEndian.PutUint64(hashes[i][:8], uint64(idCounter))
        idCounter++
    }
    return
}

// createBlock assembles a new block at the given chain height.
func createBlock(i int, parent, hash common.Hash) *types.Block {
    header := &types.Header{Number: big.NewInt(int64(i))}
    block := types.NewBlockWithHeader(header)
    block.HeaderHash = hash
    block.ParentHeaderHash = parent
    return block
}

// copyBlock makes a deep copy of a block suitable for local modifications.
func copyBlock(block *types.Block) *types.Block {
    return createBlock(int(block.Number().Int64()), block.ParentHeaderHash, block.HeaderHash)
}

// createBlocksFromHashes assembles a collection of blocks, each having a correct
// place in the given hash chain.
func createBlocksFromHashes(hashes []common.Hash) map[common.Hash]*types.Block {
    blocks := make(map[common.Hash]*types.Block)
    for i := 0; i < len(hashes); i++ {
        parent := knownHash
        if i < len(hashes)-1 {
            parent = hashes[i+1]
        }
        blocks[hashes[i]] = createBlock(len(hashes)-i, parent, hashes[i])
    }
    return blocks
}

// fetcherTester is a test simulator for mocking out local block chain.
type fetcherTester struct {
    fetcher *Fetcher

    hashes []common.Hash                // Hash chain belonging to the tester
    blocks map[common.Hash]*types.Block // Blocks belonging to the tester

    lock sync.RWMutex
}

// newTester creates a new fetcher test mocker.
func newTester() *fetcherTester {
    tester := &fetcherTester{
        hashes: []common.Hash{knownHash},
        blocks: map[common.Hash]*types.Block{knownHash: genesis},
    }
    tester.fetcher = New(tester.hasBlock, tester.importBlock, tester.chainHeight)
    tester.fetcher.Start()

    return tester
}

// hasBlock checks if a block is pres   ent in the testers canonical chain.
func (f *fetcherTester) hasBlock(hash common.Hash) bool {
    f.lock.RLock()
    defer f.lock.RUnlock()

    _, ok := f.blocks[hash]
    return ok
}

// importBlock injects a new blocks into the simulated chain.
func (f *fetcherTester) importBlock(peer string, block *types.Block) error {
    f.lock.Lock()
    defer f.lock.Unlock()

    // Make sure the parent in known
    if _, ok := f.blocks[block.ParentHash()]; !ok {
        return errors.New("unknown parent")
    }
    // Discard any new blocks if the same height already exists
    if block.NumberU64() <= f.blocks[f.hashes[len(f.hashes)-1]].NumberU64() {
        return nil
    }
    // Otherwise build our current chain
    f.hashes = append(f.hashes, block.Hash())
    f.blocks[block.Hash()] = block
    return nil
}

// chainHeight retrieves the current height (block number) of the chain.
func (f *fetcherTester) chainHeight() uint64 {
    f.lock.RLock()
    defer f.lock.RUnlock()

    return f.blocks[f.hashes[len(f.hashes)-1]].NumberU64()
}

// peerFetcher retrieves a fetcher associated with a simulated peer.
func (f *fetcherTester) makeFetcher(blocks map[common.Hash]*types.Block) blockRequesterFn {
    // Copy all the blocks to ensure they are not tampered with
    closure := make(map[common.Hash]*types.Block)
    for hash, block := range blocks {
        closure[hash] = copyBlock(block)
    }
    // Create a function that returns blocks from the closure
    return func(hashes []common.Hash) error {
        // Gather the blocks to return
        blocks := make([]*types.Block, 0, len(hashes))
        for _, hash := range hashes {
            if block, ok := closure[hash]; ok {
                blocks = append(blocks, block)
            }
        }
        // Return on a new thread
        go f.fetcher.Filter(blocks)

        return nil
    }
}

// Tests that a fetcher accepts block announcements and initiates retrievals for
// them, successfully importing into the local chain.
func TestSequentialAnnouncements(t *testing.T) {
    // Create a chain of blocks to import
    targetBlocks := 24
    hashes := createHashes(targetBlocks, knownHash)
    blocks := createBlocksFromHashes(hashes)

    tester := newTester()
    fetcher := tester.makeFetcher(blocks)

    // Iteratively announce blocks until all are imported
    for i := len(hashes) - 1; i >= 0; i-- {
        tester.fetcher.Notify("valid", hashes[i], time.Now().Add(-arriveTimeout), fetcher)
        time.Sleep(50 * time.Millisecond)
    }
    if imported := len(tester.blocks); imported != targetBlocks+1 {
        t.Fatalf("synchronised block mismatch: have %v, want %v", imported, targetBlocks+1)
    }
}

// Tests that if blocks are announced by multiple peers (or even the same buggy
// peer), they will only get downloaded at most once.
func TestConcurrentAnnouncements(t *testing.T) {
    // Create a chain of blocks to import
    targetBlocks := 24
    hashes := createHashes(targetBlocks, knownHash)
    blocks := createBlocksFromHashes(hashes)

    // Assemble a tester with a built in counter for the requests
    tester := newTester()
    fetcher := tester.makeFetcher(blocks)

    counter := uint32(0)
    wrapper := func(hashes []common.Hash) error {
        atomic.AddUint32(&counter, uint32(len(hashes)))
        return fetcher(hashes)
    }
    // Iteratively announce blocks until all are imported
    for i := len(hashes) - 1; i >= 0; i-- {
        tester.fetcher.Notify("first", hashes[i], time.Now().Add(-arriveTimeout), wrapper)
        tester.fetcher.Notify("second", hashes[i], time.Now().Add(-arriveTimeout+time.Millisecond), wrapper)
        tester.fetcher.Notify("second", hashes[i], time.Now().Add(-arriveTimeout-time.Millisecond), wrapper)

        time.Sleep(50 * time.Millisecond)
    }
    if imported := len(tester.blocks); imported != targetBlocks+1 {
        t.Fatalf("synchronised block mismatch: have %v, want %v", imported, targetBlocks+1)
    }
    // Make sure no blocks were retrieved twice
    if int(counter) != targetBlocks {
        t.Fatalf("retrieval count mismatch: have %v, want %v", counter, targetBlocks)
    }
}

// Tests that announcements arriving while a previous is being fetched still
// results in a valid import.
func TestOverlappingAnnouncements(t *testing.T) {
    // Create a chain of blocks to import
    targetBlocks := 24
    hashes := createHashes(targetBlocks, knownHash)
    blocks := createBlocksFromHashes(hashes)

    tester := newTester()
    fetcher := tester.makeFetcher(blocks)

    // Iteratively announce blocks, but overlap them continuously
    delay, overlap := 50*time.Millisecond, time.Duration(5)
    for i := len(hashes) - 1; i >= 0; i-- {
        tester.fetcher.Notify("valid", hashes[i], time.Now().Add(-arriveTimeout+overlap*delay), fetcher)
        time.Sleep(delay)
    }
    time.Sleep(overlap * delay)

    if imported := len(tester.blocks); imported != targetBlocks+1 {
        t.Fatalf("synchronised block mismatch: have %v, want %v", imported, targetBlocks+1)
    }
}

// Tests that announces already being retrieved will not be duplicated.
func TestPendingDeduplication(t *testing.T) {
    // Create a hash and corresponding block
    hashes := createHashes(1, knownHash)
    blocks := createBlocksFromHashes(hashes)

    // Assemble a tester with a built in counter and delayed fetcher
    tester := newTester()
    fetcher := tester.makeFetcher(blocks)

    delay := 50 * time.Millisecond
    counter := uint32(0)
    wrapper := func(hashes []common.Hash) error {
        atomic.AddUint32(&counter, uint32(len(hashes)))

        // Simulate a long running fetch
        go func() {
            time.Sleep(delay)
            fetcher(hashes)
        }()
        return nil
    }
    // Announce the same block many times until it's fetched (wait for any pending ops)
    for !tester.hasBlock(hashes[0]) {
        tester.fetcher.Notify("repeater", hashes[0], time.Now().Add(-arriveTimeout), wrapper)
        time.Sleep(time.Millisecond)
    }
    time.Sleep(delay)

    // Check that all blocks were imported and none fetched twice
    if imported := len(tester.blocks); imported != 2 {
        t.Fatalf("synchronised block mismatch: have %v, want %v", imported, 2)
    }
    if int(counter) != 1 {
        t.Fatalf("retrieval count mismatch: have %v, want %v", counter, 1)
    }
}

// Tests that announcements retrieved in a random order are cached and eventually
// imported when all the gaps are filled in.
func TestRandomArrivalImport(t *testing.T) {
    // Create a chain of blocks to import, and choose one to delay
    targetBlocks := 24
    hashes := createHashes(targetBlocks, knownHash)
    blocks := createBlocksFromHashes(hashes)
    skip := targetBlocks / 2

    tester := newTester()
    fetcher := tester.makeFetcher(blocks)

    // Iteratively announce blocks, skipping one entry
    for i := len(hashes) - 1; i >= 0; i-- {
        if i != skip {
            tester.fetcher.Notify("valid", hashes[i], time.Now().Add(-arriveTimeout), fetcher)
            time.Sleep(50 * time.Millisecond)
        }
    }
    // Finally announce the skipped entry and check full import
    tester.fetcher.Notify("valid", hashes[skip], time.Now().Add(-arriveTimeout), fetcher)
    time.Sleep(50 * time.Millisecond)

    if imported := len(tester.blocks); imported != targetBlocks+1 {
        t.Fatalf("synchronised block mismatch: have %v, want %v", imported, targetBlocks+1)
    }
}

// Tests that direct block enqueues (due to block propagation vs. hash announce)
// are correctly schedule, filling and import queue gaps.
func TestQueueGapFill(t *testing.T) {
    // Create a chain of blocks to import, and choose one to not announce at all
    targetBlocks := 24
    hashes := createHashes(targetBlocks, knownHash)
    blocks := createBlocksFromHashes(hashes)
    skip := targetBlocks / 2

    tester := newTester()
    fetcher := tester.makeFetcher(blocks)

    // Iteratively announce blocks, skipping one entry
    for i := len(hashes) - 1; i >= 0; i-- {
        if i != skip {
            tester.fetcher.Notify("valid", hashes[i], time.Now().Add(-arriveTimeout), fetcher)
            time.Sleep(50 * time.Millisecond)
        }
    }
    // Fill the missing block directly as if propagated
    tester.fetcher.Enqueue("valid", blocks[hashes[skip]])
    time.Sleep(50 * time.Millisecond)

    if imported := len(tester.blocks); imported != targetBlocks+1 {
        t.Fatalf("synchronised block mismatch: have %v, want %v", imported, targetBlocks+1)
    }
}

// Tests that blocks arriving from various sources (multiple propagations, hash
// announces, etc) do not get scheduled for import multiple times.
func TestImportDeduplication(t *testing.T) {
    // Create two blocks to import (one for duplication, the other for stalling)
    hashes := createHashes(2, knownHash)
    blocks := createBlocksFromHashes(hashes)

    // Create the tester and wrap the importer with a counter
    tester := newTester()
    fetcher := tester.makeFetcher(blocks)

    counter := uint32(0)
    tester.fetcher.importBlock = func(peer string, block *types.Block) error {
        atomic.AddUint32(&counter, 1)
        return tester.importBlock(peer, block)
    }
    // Announce the duplicating block, wait for retrieval, and also propagate directly
    tester.fetcher.Notify("valid", hashes[0], time.Now().Add(-arriveTimeout), fetcher)
    time.Sleep(50 * time.Millisecond)

    tester.fetcher.Enqueue("valid", blocks[hashes[0]])
    tester.fetcher.Enqueue("valid", blocks[hashes[0]])
    tester.fetcher.Enqueue("valid", blocks[hashes[0]])

    // Fill the missing block directly as if propagated, and check import uniqueness
    tester.fetcher.Enqueue("valid", blocks[hashes[1]])
    time.Sleep(50 * time.Millisecond)

    if imported := len(tester.blocks); imported != 3 {
        t.Fatalf("synchronised block mismatch: have %v, want %v", imported, 3)
    }
    if counter != 2 {
        t.Fatalf("import invocation count mismatch: have %v, want %v", counter, 2)
    }
}

// Tests that blocks with numbers much lower or higher than out current head get
// discarded no prevent wasting resources on useless blocks from faulty peers.
func TestDistantDiscarding(t *testing.T) {
    // Create a long chain to import
    hashes := createHashes(3*maxQueueDist, knownHash)
    blocks := createBlocksFromHashes(hashes)

    head := hashes[len(hashes)/2]

    // Create a tester and simulate a head block being the middle of the above chain
    tester := newTester()
    tester.hashes = []common.Hash{head}
    tester.blocks = map[common.Hash]*types.Block{head: blocks[head]}

    // Ensure that a block with a lower number than the threshold is discarded
    tester.fetcher.Enqueue("lower", blocks[hashes[0]])
    time.Sleep(10 * time.Millisecond)
    if !tester.fetcher.queue.Empty() {
        t.Fatalf("fetcher queued stale block")
    }
    // Ensure that a block with a higher number than the threshold is discarded
    tester.fetcher.Enqueue("higher", blocks[hashes[len(hashes)-1]])
    time.Sleep(10 * time.Millisecond)
    if !tester.fetcher.queue.Empty() {
        t.Fatalf("fetcher queued future block")
    }
}

// Tests that if multiple uncles (i.e. blocks at the same height) are queued for
// importing, then they will get inserted in phases, previous heights needing to
// complete before the next numbered blocks can begin.
func TestCompetingImports(t *testing.T) {
    // Generate a few soft-forks for concurrent imports
    hashesA := createHashes(16, knownHash)
    hashesB := createHashes(16, knownHash)
    hashesC := createHashes(16, knownHash)

    blocksA := createBlocksFromHashes(hashesA)
    blocksB := createBlocksFromHashes(hashesB)
    blocksC := createBlocksFromHashes(hashesC)

    // Create a tester, and override the import to check number reversals
    tester := newTester()

    first := int32(1)
    height := uint64(1)
    tester.fetcher.importBlock = func(peer string, block *types.Block) error {
        // Check for any phase reordering
        if prev := atomic.LoadUint64(&height); block.NumberU64() < prev {
            t.Errorf("phase reversal: have %v, want %v", block.NumberU64(), prev)
        }
        atomic.StoreUint64(&height, block.NumberU64())

        // Sleep a bit on the first import not to race with the enqueues
        if atomic.CompareAndSwapInt32(&first, 1, 0) {
            time.Sleep(50 * time.Millisecond)
        }
        return tester.importBlock(peer, block)
    }
    // Queue up everything but with a missing link
    for i := 0; i < len(hashesA)-2; i++ {
        tester.fetcher.Enqueue("chain A", blocksA[hashesA[i]])
        tester.fetcher.Enqueue("chain B", blocksB[hashesB[i]])
        tester.fetcher.Enqueue("chain C", blocksC[hashesC[i]])
    }
    // Add the three missing links, and wait for a full import
    tester.fetcher.Enqueue("chain A", blocksA[hashesA[len(hashesA)-2]])
    tester.fetcher.Enqueue("chain B", blocksB[hashesB[len(hashesB)-2]])
    tester.fetcher.Enqueue("chain C", blocksC[hashesC[len(hashesC)-2]])

    start := time.Now()
    for len(tester.hashes) != len(hashesA) && time.Since(start) < time.Second {
        time.Sleep(50 * time.Millisecond)
    }
    if len(tester.hashes) != len(hashesA) {
        t.Fatalf("chain length mismatch: have %v, want %v", len(tester.hashes), len(hashesA))
    }
}