// Copyright 2015 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package dex
import (
"math/rand"
"sync/atomic"
"time"
"github.com/dexon-foundation/dexon/common"
"github.com/dexon-foundation/dexon/core/types"
"github.com/dexon-foundation/dexon/dex/downloader"
"github.com/dexon-foundation/dexon/log"
"github.com/dexon-foundation/dexon/p2p/enode"
"github.com/dexon-foundation/dexon/p2p/enr"
)
const (
forceSyncCycle = 10 * time.Second // Time interval to force syncs, even if few peers are available
minDesiredPeerCount = 5 // Amount of peers desired to start syncing
// The distance between us and peer that we can accept.
// This distance is related to numChains and lambdaBA dexcon config.
acceptableDist = 16
// This is the target size for the packs of transactions sent by txsyncLoop.
// A pack can get larger than this if a single transactions exceeds this size.
txsyncPackSize = 100 * 1024
// This is the target number for the packs of records sent by recordsyncLoop.
recordsyncPackNum = 1024
)
type txsync struct {
p *peer
txs []*types.Transaction
}
// syncTransactions starts sending all currently pending transactions to the given peer.
func (pm *ProtocolManager) syncTransactions(p *peer) {
var txs types.Transactions
pending, _ := pm.txpool.Pending()
for _, batch := range pending {
txs = append(txs, batch...)
}
if len(txs) == 0 {
return
}
select {
case pm.txsyncCh <- &txsync{p, txs}:
case <-pm.quitSync:
}
}
// txsyncLoop takes care of the initial transaction sync for each new
// connection. When a new peer appears, we relay all currently pending
// transactions. In order to minimise egress bandwidth usage, we send
// the transactions in small packs to one peer at a time.
func (pm *ProtocolManager) txsyncLoop() {
var (
pending = make(map[enode.ID]*txsync)
sending = false // whether a send is active
pack = new(txsync) // the pack that is being sent
done = make(chan error, 1) // result of the send
)
// send starts a sending a pack of transactions from the sync.
send := func(s *txsync) {
// Fill pack with transactions up to the target size.
size := common.StorageSize(0)
pack.p = s.p
pack.txs = pack.txs[:0]
for i := 0; i < len(s.txs) && size < txsyncPackSize; i++ {
pack.txs = append(pack.txs, s.txs[i])
size += s.txs[i].Size()
}
// Remove the transactions that will be sent.
s.txs = s.txs[:copy(s.txs, s.txs[len(pack.txs):])]
if len(s.txs) == 0 {
delete(pending, s.p.ID())
}
// Send the pack in the background.
s.p.Log().Trace("Sending batch of transactions", "count", len(pack.txs), "bytes", size)
sending = true
go func() { done <- pack.p.SendTransactions(pack.txs) }()
}
// pick chooses the next pending sync.
pick := func() *txsync {
if len(pending) == 0 {
return nil
}
n := rand.Intn(len(pending)) + 1
for _, s := range pending {
if n--; n == 0 {
return s
}
}
return nil
}
for {
select {
case s := <-pm.txsyncCh:
pending[s.p.ID()] = s
if !sending {
send(s)
}
case err := <-done:
sending = false
// Stop tracking peers that cause send failures.
if err != nil {
pack.p.Log().Debug("Transaction send failed", "err", err)
delete(pending, pack.p.ID())
}
// Schedule the next send.
if s := pick(); s != nil {
send(s)
}
case <-pm.quitSync:
return
}
}
}
type recordsync struct {
p *peer
records []*enr.Record
}
// syncNodeRecords starts sending all node records to the given peer.
func (pm *ProtocolManager) syncNodeRecords(p *peer) {
records := pm.nodeTable.Records()
p.Log().Debug("Sync node records", "num", len(records))
if len(records) == 0 {
return
}
select {
case pm.recordsyncCh <- &recordsync{p, records}:
case <-pm.quitSync:
}
}
// recordsyncLoop takes care of the initial node record sync for each new
// connection. When a new peer appears, we relay all currently node records.
// In order to minimise egress bandwidth usage, we send
// the records in small packs to one peer at a time.
func (pm *ProtocolManager) recordsyncLoop() {
var (
pending = make(map[enode.ID]*recordsync)
sending = false // whether a send is active
pack = new(recordsync) // the pack that is being sent
done = make(chan error, 1) // result of the send
)
// send starts a sending a pack of transactions from the sync.
send := func(s *recordsync) {
// Fill pack with node records up to the target num.
var num int
pack.p = s.p
pack.records = pack.records[:0]
for i := 0; i < len(s.records) && num < recordsyncPackNum; i++ {
pack.records = append(pack.records, s.records[i])
num += 1
}
// Remove the records that will be sent.
s.records = s.records[:copy(s.records, s.records[len(pack.records):])]
if len(s.records) == 0 {
delete(pending, s.p.ID())
}
// Send the pack in the background.
s.p.Log().Trace("Sending batch of records", "count", len(pack.records), "bytes", num)
sending = true
go func() { done <- pack.p.SendNodeRecords(pack.records) }()
}
// pick chooses the next pending sync.
pick := func() *recordsync {
if len(pending) == 0 {
return nil
}
n := rand.Intn(len(pending)) + 1
for _, s := range pending {
if n--; n == 0 {
return s
}
}
return nil
}
for {
select {
case s := <-pm.recordsyncCh:
pending[s.p.ID()] = s
if !sending {
send(s)
}
case err := <-done:
sending = false
// Stop tracking peers that cause send failures.
if err != nil {
pack.p.Log().Debug("Record send failed", "err", err)
delete(pending, pack.p.ID())
}
// Schedule the next send.
if s := pick(); s != nil {
send(s)
}
case <-pm.quitSync:
return
}
}
}
// syncer is responsible for periodically synchronising with the network, both
// downloading hashes and blocks as well as handling the announcement handler.
func (pm *ProtocolManager) syncer() {
// Start and ensure cleanup of sync mechanisms
pm.fetcher.Start()
defer pm.fetcher.Stop()
defer pm.downloader.Terminate()
// Wait for different events to fire synchronisation operations
forceSync := time.NewTicker(forceSyncCycle)
defer forceSync.Stop()
for {
select {
case <-pm.newPeerCh:
// Make sure we have peers to select from, then sync
if pm.peers.Len() < minDesiredPeerCount {
break
}
go pm.synchronise(pm.peers.BestPeer(), false)
case <-forceSync.C:
// Force a sync even if not enough peers are present
go pm.synchronise(pm.peers.BestPeer(), false)
case <-pm.noMorePeers:
return
}
}
}
// synchronise tries to sync up our local block chain with a remote peer.
func (pm *ProtocolManager) synchronise(peer *peer, force bool) {
// Short circuit if no peers are available
if peer == nil {
return
}
// Make sure the peer's number is higher than our own
currentBlock := pm.blockchain.CurrentBlock()
number := currentBlock.NumberU64()
pHead, pNumber := peer.Head()
// If we are behind the peer, but not more than acceptable distance, don't
// trigger a sync. Fetcher is able to cover this.
var dist uint64
if !force {
dist = acceptableDist
}
if pNumber <= number+dist {
return
}
// Otherwise try to sync with the downloader
mode := downloader.FullSync
if atomic.LoadUint32(&pm.fastSync) == 1 {
// Fast sync was explicitly requested, and explicitly granted
mode = downloader.FastSync
} else if currentBlock.NumberU64() == 0 && pm.blockchain.CurrentFastBlock().NumberU64() > 0 {
// The database seems empty as the current block is the genesis. Yet the fast
// block is ahead, so fast sync was enabled for this node at a certain point.
// The only scenario where this can happen is if the user manually (or via a
// bad block) rolled back a fast sync node below the sync point. In this case
// however it's safe to reenable fast sync.
atomic.StoreUint32(&pm.fastSync, 1)
mode = downloader.FastSync
}
if mode == downloader.FastSync {
// Make sure the peer's total difficulty we are synchronizing is higher.
if pm.blockchain.CurrentFastBlock().NumberU64() >= pNumber {
return
}
}
// Run the sync cycle, and disable fast sync if we've went past the pivot block
if err := pm.downloader.Synchronise(peer.id, pHead, pNumber, mode); err != nil {
return
}
if atomic.LoadUint32(&pm.fastSync) == 1 {
log.Info("Fast sync complete, auto disabling")
atomic.StoreUint32(&pm.fastSync, 0)
}
atomic.StoreUint32(&pm.acceptTxs, 1) // Mark initial sync done
if head := pm.blockchain.CurrentBlock(); head.NumberU64() > 0 {
// We've completed a sync cycle, notify all peers of new state. This path is
// essential in star-topology networks where a gateway node needs to notify
// all its out-of-date peers of the availability of a new block. This failure
// scenario will most often crop up in private and hackathon networks with
// degenerate connectivity, but it should be healthy for the mainnet too to
// more reliably update peers or the local number state.
go pm.BroadcastBlock(head, false)
}
}