aboutsummaryrefslogtreecommitdiffstats
path: root/vendor/github.com/influxdata/influxdb/models/points.go
blob: ad80a816bf1b7ff87df0c2d462f57b4af8bc4631 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
// Package models implements basic objects used throughout the TICK stack.
package models // import "github.com/influxdata/influxdb/models"

import (
    "bytes"
    "encoding/binary"
    "errors"
    "fmt"
    "io"
    "math"
    "sort"
    "strconv"
    "strings"
    "time"

    "github.com/influxdata/influxdb/pkg/escape"
)

var (
    measurementEscapeCodes = map[byte][]byte{
        ',': []byte(`\,`),
        ' ': []byte(`\ `),
    }

    tagEscapeCodes = map[byte][]byte{
        ',': []byte(`\,`),
        ' ': []byte(`\ `),
        '=': []byte(`\=`),
    }

    // ErrPointMustHaveAField is returned when operating on a point that does not have any fields.
    ErrPointMustHaveAField = errors.New("point without fields is unsupported")

    // ErrInvalidNumber is returned when a number is expected but not provided.
    ErrInvalidNumber = errors.New("invalid number")

    // ErrInvalidPoint is returned when a point cannot be parsed correctly.
    ErrInvalidPoint = errors.New("point is invalid")
)

const (
    // MaxKeyLength is the largest allowed size of the combined measurement and tag keys.
    MaxKeyLength = 65535
)

// enableUint64Support will enable uint64 support if set to true.
var enableUint64Support = false

// EnableUintSupport manually enables uint support for the point parser.
// This function will be removed in the future and only exists for unit tests during the
// transition.
func EnableUintSupport() {
    enableUint64Support = true
}

// Point defines the values that will be written to the database.
type Point interface {
    // Name return the measurement name for the point.
    Name() []byte

    // SetName updates the measurement name for the point.
    SetName(string)

    // Tags returns the tag set for the point.
    Tags() Tags

    // AddTag adds or replaces a tag value for a point.
    AddTag(key, value string)

    // SetTags replaces the tags for the point.
    SetTags(tags Tags)

    // HasTag returns true if the tag exists for the point.
    HasTag(tag []byte) bool

    // Fields returns the fields for the point.
    Fields() (Fields, error)

    // Time return the timestamp for the point.
    Time() time.Time

    // SetTime updates the timestamp for the point.
    SetTime(t time.Time)

    // UnixNano returns the timestamp of the point as nanoseconds since Unix epoch.
    UnixNano() int64

    // HashID returns a non-cryptographic checksum of the point's key.
    HashID() uint64

    // Key returns the key (measurement joined with tags) of the point.
    Key() []byte

    // String returns a string representation of the point. If there is a
    // timestamp associated with the point then it will be specified with the default
    // precision of nanoseconds.
    String() string

    // MarshalBinary returns a binary representation of the point.
    MarshalBinary() ([]byte, error)

    // PrecisionString returns a string representation of the point. If there
    // is a timestamp associated with the point then it will be specified in the
    // given unit.
    PrecisionString(precision string) string

    // RoundedString returns a string representation of the point. If there
    // is a timestamp associated with the point, then it will be rounded to the
    // given duration.
    RoundedString(d time.Duration) string

    // Split will attempt to return multiple points with the same timestamp whose
    // string representations are no longer than size. Points with a single field or
    // a point without a timestamp may exceed the requested size.
    Split(size int) []Point

    // Round will round the timestamp of the point to the given duration.
    Round(d time.Duration)

    // StringSize returns the length of the string that would be returned by String().
    StringSize() int

    // AppendString appends the result of String() to the provided buffer and returns
    // the result, potentially reducing string allocations.
    AppendString(buf []byte) []byte

    // FieldIterator retuns a FieldIterator that can be used to traverse the
    // fields of a point without constructing the in-memory map.
    FieldIterator() FieldIterator
}

// FieldType represents the type of a field.
type FieldType int

const (
    // Integer indicates the field's type is integer.
    Integer FieldType = iota

    // Float indicates the field's type is float.
    Float

    // Boolean indicates the field's type is boolean.
    Boolean

    // String indicates the field's type is string.
    String

    // Empty is used to indicate that there is no field.
    Empty

    // Unsigned indicates the field's type is an unsigned integer.
    Unsigned
)

// FieldIterator provides a low-allocation interface to iterate through a point's fields.
type FieldIterator interface {
    // Next indicates whether there any fields remaining.
    Next() bool

    // FieldKey returns the key of the current field.
    FieldKey() []byte

    // Type returns the FieldType of the current field.
    Type() FieldType

    // StringValue returns the string value of the current field.
    StringValue() string

    // IntegerValue returns the integer value of the current field.
    IntegerValue() (int64, error)

    // UnsignedValue returns the unsigned value of the current field.
    UnsignedValue() (uint64, error)

    // BooleanValue returns the boolean value of the current field.
    BooleanValue() (bool, error)

    // FloatValue returns the float value of the current field.
    FloatValue() (float64, error)

    // Reset resets the iterator to its initial state.
    Reset()
}

// Points represents a sortable list of points by timestamp.
type Points []Point

// Len implements sort.Interface.
func (a Points) Len() int { return len(a) }

// Less implements sort.Interface.
func (a Points) Less(i, j int) bool { return a[i].Time().Before(a[j].Time()) }

// Swap implements sort.Interface.
func (a Points) Swap(i, j int) { a[i], a[j] = a[j], a[i] }

// point is the default implementation of Point.
type point struct {
    time time.Time

    // text encoding of measurement and tags
    // key must always be stored sorted by tags, if the original line was not sorted,
    // we need to resort it
    key []byte

    // text encoding of field data
    fields []byte

    // text encoding of timestamp
    ts []byte

    // cached version of parsed fields from data
    cachedFields map[string]interface{}

    // cached version of parsed name from key
    cachedName string

    // cached version of parsed tags
    cachedTags Tags

    it fieldIterator
}

// type assertions
var (
    _ Point         = (*point)(nil)
    _ FieldIterator = (*point)(nil)
)

const (
    // the number of characters for the largest possible int64 (9223372036854775807)
    maxInt64Digits = 19

    // the number of characters for the smallest possible int64 (-9223372036854775808)
    minInt64Digits = 20

    // the number of characters for the largest possible uint64 (18446744073709551615)
    maxUint64Digits = 20

    // the number of characters required for the largest float64 before a range check
    // would occur during parsing
    maxFloat64Digits = 25

    // the number of characters required for smallest float64 before a range check occur
    // would occur during parsing
    minFloat64Digits = 27
)

// ParsePoints returns a slice of Points from a text representation of a point
// with each point separated by newlines.  If any points fail to parse, a non-nil error
// will be returned in addition to the points that parsed successfully.
func ParsePoints(buf []byte) ([]Point, error) {
    return ParsePointsWithPrecision(buf, time.Now().UTC(), "n")
}

// ParsePointsString is identical to ParsePoints but accepts a string.
func ParsePointsString(buf string) ([]Point, error) {
    return ParsePoints([]byte(buf))
}

// ParseKey returns the measurement name and tags from a point.
//
// NOTE: to minimize heap allocations, the returned Tags will refer to subslices of buf.
// This can have the unintended effect preventing buf from being garbage collected.
func ParseKey(buf []byte) (string, Tags) {
    meas, tags := ParseKeyBytes(buf)
    return string(meas), tags
}

func ParseKeyBytes(buf []byte) ([]byte, Tags) {
    // Ignore the error because scanMeasurement returns "missing fields" which we ignore
    // when just parsing a key
    state, i, _ := scanMeasurement(buf, 0)

    var tags Tags
    if state == tagKeyState {
        tags = parseTags(buf)
        // scanMeasurement returns the location of the comma if there are tags, strip that off
        return buf[:i-1], tags
    }
    return buf[:i], tags
}

func ParseTags(buf []byte) Tags {
    return parseTags(buf)
}

func ParseName(buf []byte) ([]byte, error) {
    // Ignore the error because scanMeasurement returns "missing fields" which we ignore
    // when just parsing a key
    state, i, _ := scanMeasurement(buf, 0)
    if state == tagKeyState {
        return buf[:i-1], nil
    }
    return buf[:i], nil
}

// ParsePointsWithPrecision is similar to ParsePoints, but allows the
// caller to provide a precision for time.
//
// NOTE: to minimize heap allocations, the returned Points will refer to subslices of buf.
// This can have the unintended effect preventing buf from being garbage collected.
func ParsePointsWithPrecision(buf []byte, defaultTime time.Time, precision string) ([]Point, error) {
    points := make([]Point, 0, bytes.Count(buf, []byte{'\n'})+1)
    var (
        pos    int
        block  []byte
        failed []string
    )
    for pos < len(buf) {
        pos, block = scanLine(buf, pos)
        pos++

        if len(block) == 0 {
            continue
        }

        // lines which start with '#' are comments
        start := skipWhitespace(block, 0)

        // If line is all whitespace, just skip it
        if start >= len(block) {
            continue
        }

        if block[start] == '#' {
            continue
        }

        // strip the newline if one is present
        if block[len(block)-1] == '\n' {
            block = block[:len(block)-1]
        }

        pt, err := parsePoint(block[start:], defaultTime, precision)
        if err != nil {
            failed = append(failed, fmt.Sprintf("unable to parse '%s': %v", string(block[start:]), err))
        } else {
            points = append(points, pt)
        }

    }
    if len(failed) > 0 {
        return points, fmt.Errorf("%s", strings.Join(failed, "\n"))
    }
    return points, nil

}

func parsePoint(buf []byte, defaultTime time.Time, precision string) (Point, error) {
    // scan the first block which is measurement[,tag1=value1,tag2=value=2...]
    pos, key, err := scanKey(buf, 0)
    if err != nil {
        return nil, err
    }

    // measurement name is required
    if len(key) == 0 {
        return nil, fmt.Errorf("missing measurement")
    }

    if len(key) > MaxKeyLength {
        return nil, fmt.Errorf("max key length exceeded: %v > %v", len(key), MaxKeyLength)
    }

    // scan the second block is which is field1=value1[,field2=value2,...]
    pos, fields, err := scanFields(buf, pos)
    if err != nil {
        return nil, err
    }

    // at least one field is required
    if len(fields) == 0 {
        return nil, fmt.Errorf("missing fields")
    }

    var maxKeyErr error
    walkFields(fields, func(k, v []byte) bool {
        if sz := seriesKeySize(key, k); sz > MaxKeyLength {
            maxKeyErr = fmt.Errorf("max key length exceeded: %v > %v", sz, MaxKeyLength)
            return false
        }
        return true
    })

    if maxKeyErr != nil {
        return nil, maxKeyErr
    }

    // scan the last block which is an optional integer timestamp
    pos, ts, err := scanTime(buf, pos)
    if err != nil {
        return nil, err
    }

    pt := &point{
        key:    key,
        fields: fields,
        ts:     ts,
    }

    if len(ts) == 0 {
        pt.time = defaultTime
        pt.SetPrecision(precision)
    } else {
        ts, err := parseIntBytes(ts, 10, 64)
        if err != nil {
            return nil, err
        }
        pt.time, err = SafeCalcTime(ts, precision)
        if err != nil {
            return nil, err
        }

        // Determine if there are illegal non-whitespace characters after the
        // timestamp block.
        for pos < len(buf) {
            if buf[pos] != ' ' {
                return nil, ErrInvalidPoint
            }
            pos++
        }
    }
    return pt, nil
}

// GetPrecisionMultiplier will return a multiplier for the precision specified.
func GetPrecisionMultiplier(precision string) int64 {
    d := time.Nanosecond
    switch precision {
    case "u":
        d = time.Microsecond
    case "ms":
        d = time.Millisecond
    case "s":
        d = time.Second
    case "m":
        d = time.Minute
    case "h":
        d = time.Hour
    }
    return int64(d)
}

// scanKey scans buf starting at i for the measurement and tag portion of the point.
// It returns the ending position and the byte slice of key within buf.  If there
// are tags, they will be sorted if they are not already.
func scanKey(buf []byte, i int) (int, []byte, error) {
    start := skipWhitespace(buf, i)

    i = start

    // Determines whether the tags are sort, assume they are
    sorted := true

    // indices holds the indexes within buf of the start of each tag.  For example,
    // a buf of 'cpu,host=a,region=b,zone=c' would have indices slice of [4,11,20]
    // which indicates that the first tag starts at buf[4], seconds at buf[11], and
    // last at buf[20]
    indices := make([]int, 100)

    // tracks how many commas we've seen so we know how many values are indices.
    // Since indices is an arbitrarily large slice,
    // we need to know how many values in the buffer are in use.
    commas := 0

    // First scan the Point's measurement.
    state, i, err := scanMeasurement(buf, i)
    if err != nil {
        return i, buf[start:i], err
    }

    // Optionally scan tags if needed.
    if state == tagKeyState {
        i, commas, indices, err = scanTags(buf, i, indices)
        if err != nil {
            return i, buf[start:i], err
        }
    }

    // Now we know where the key region is within buf, and the location of tags, we
    // need to determine if duplicate tags exist and if the tags are sorted. This iterates
    // over the list comparing each tag in the sequence with each other.
    for j := 0; j < commas-1; j++ {
        // get the left and right tags
        _, left := scanTo(buf[indices[j]:indices[j+1]-1], 0, '=')
        _, right := scanTo(buf[indices[j+1]:indices[j+2]-1], 0, '=')

        // If left is greater than right, the tags are not sorted. We do not have to
        // continue because the short path no longer works.
        // If the tags are equal, then there are duplicate tags, and we should abort.
        // If the tags are not sorted, this pass may not find duplicate tags and we
        // need to do a more exhaustive search later.
        if cmp := bytes.Compare(left, right); cmp > 0 {
            sorted = false
            break
        } else if cmp == 0 {
            return i, buf[start:i], fmt.Errorf("duplicate tags")
        }
    }

    // If the tags are not sorted, then sort them.  This sort is inline and
    // uses the tag indices we created earlier.  The actual buffer is not sorted, the
    // indices are using the buffer for value comparison.  After the indices are sorted,
    // the buffer is reconstructed from the sorted indices.
    if !sorted && commas > 0 {
        // Get the measurement name for later
        measurement := buf[start : indices[0]-1]

        // Sort the indices
        indices := indices[:commas]
        insertionSort(0, commas, buf, indices)

        // Create a new key using the measurement and sorted indices
        b := make([]byte, len(buf[start:i]))
        pos := copy(b, measurement)
        for _, i := range indices {
            b[pos] = ','
            pos++
            _, v := scanToSpaceOr(buf, i, ',')
            pos += copy(b[pos:], v)
        }

        // Check again for duplicate tags now that the tags are sorted.
        for j := 0; j < commas-1; j++ {
            // get the left and right tags
            _, left := scanTo(buf[indices[j]:], 0, '=')
            _, right := scanTo(buf[indices[j+1]:], 0, '=')

            // If the tags are equal, then there are duplicate tags, and we should abort.
            // If the tags are not sorted, this pass may not find duplicate tags and we
            // need to do a more exhaustive search later.
            if bytes.Equal(left, right) {
                return i, b, fmt.Errorf("duplicate tags")
            }
        }

        return i, b, nil
    }

    return i, buf[start:i], nil
}

// The following constants allow us to specify which state to move to
// next, when scanning sections of a Point.
const (
    tagKeyState = iota
    tagValueState
    fieldsState
)

// scanMeasurement examines the measurement part of a Point, returning
// the next state to move to, and the current location in the buffer.
func scanMeasurement(buf []byte, i int) (int, int, error) {
    // Check first byte of measurement, anything except a comma is fine.
    // It can't be a space, since whitespace is stripped prior to this
    // function call.
    if i >= len(buf) || buf[i] == ',' {
        return -1, i, fmt.Errorf("missing measurement")
    }

    for {
        i++
        if i >= len(buf) {
            // cpu
            return -1, i, fmt.Errorf("missing fields")
        }

        if buf[i-1] == '\\' {
            // Skip character (it's escaped).
            continue
        }

        // Unescaped comma; move onto scanning the tags.
        if buf[i] == ',' {
            return tagKeyState, i + 1, nil
        }

        // Unescaped space; move onto scanning the fields.
        if buf[i] == ' ' {
            // cpu value=1.0
            return fieldsState, i, nil
        }
    }
}

// scanTags examines all the tags in a Point, keeping track of and
// returning the updated indices slice, number of commas and location
// in buf where to start examining the Point fields.
func scanTags(buf []byte, i int, indices []int) (int, int, []int, error) {
    var (
        err    error
        commas int
        state  = tagKeyState
    )

    for {
        switch state {
        case tagKeyState:
            // Grow our indices slice if we have too many tags.
            if commas >= len(indices) {
                newIndics := make([]int, cap(indices)*2)
                copy(newIndics, indices)
                indices = newIndics
            }
            indices[commas] = i
            commas++

            i, err = scanTagsKey(buf, i)
            state = tagValueState // tag value always follows a tag key
        case tagValueState:
            state, i, err = scanTagsValue(buf, i)
        case fieldsState:
            indices[commas] = i + 1
            return i, commas, indices, nil
        }

        if err != nil {
            return i, commas, indices, err
        }
    }
}

// scanTagsKey scans each character in a tag key.
func scanTagsKey(buf []byte, i int) (int, error) {
    // First character of the key.
    if i >= len(buf) || buf[i] == ' ' || buf[i] == ',' || buf[i] == '=' {
        // cpu,{'', ' ', ',', '='}
        return i, fmt.Errorf("missing tag key")
    }

    // Examine each character in the tag key until we hit an unescaped
    // equals (the tag value), or we hit an error (i.e., unescaped
    // space or comma).
    for {
        i++

        // Either we reached the end of the buffer or we hit an
        // unescaped comma or space.
        if i >= len(buf) ||
            ((buf[i] == ' ' || buf[i] == ',') && buf[i-1] != '\\') {
            // cpu,tag{'', ' ', ','}
            return i, fmt.Errorf("missing tag value")
        }

        if buf[i] == '=' && buf[i-1] != '\\' {
            // cpu,tag=
            return i + 1, nil
        }
    }
}

// scanTagsValue scans each character in a tag value.
func scanTagsValue(buf []byte, i int) (int, int, error) {
    // Tag value cannot be empty.
    if i >= len(buf) || buf[i] == ',' || buf[i] == ' ' {
        // cpu,tag={',', ' '}
        return -1, i, fmt.Errorf("missing tag value")
    }

    // Examine each character in the tag value until we hit an unescaped
    // comma (move onto next tag key), an unescaped space (move onto
    // fields), or we error out.
    for {
        i++
        if i >= len(buf) {
            // cpu,tag=value
            return -1, i, fmt.Errorf("missing fields")
        }

        // An unescaped equals sign is an invalid tag value.
        if buf[i] == '=' && buf[i-1] != '\\' {
            // cpu,tag={'=', 'fo=o'}
            return -1, i, fmt.Errorf("invalid tag format")
        }

        if buf[i] == ',' && buf[i-1] != '\\' {
            // cpu,tag=foo,
            return tagKeyState, i + 1, nil
        }

        // cpu,tag=foo value=1.0
        // cpu, tag=foo\= value=1.0
        if buf[i] == ' ' && buf[i-1] != '\\' {
            return fieldsState, i, nil
        }
    }
}

func insertionSort(l, r int, buf []byte, indices []int) {
    for i := l + 1; i < r; i++ {
        for j := i; j > l && less(buf, indices, j, j-1); j-- {
            indices[j], indices[j-1] = indices[j-1], indices[j]
        }
    }
}

func less(buf []byte, indices []int, i, j int) bool {
    // This grabs the tag names for i & j, it ignores the values
    _, a := scanTo(buf, indices[i], '=')
    _, b := scanTo(buf, indices[j], '=')
    return bytes.Compare(a, b) < 0
}

// scanFields scans buf, starting at i for the fields section of a point.  It returns
// the ending position and the byte slice of the fields within buf.
func scanFields(buf []byte, i int) (int, []byte, error) {
    start := skipWhitespace(buf, i)
    i = start
    quoted := false

    // tracks how many '=' we've seen
    equals := 0

    // tracks how many commas we've seen
    commas := 0

    for {
        // reached the end of buf?
        if i >= len(buf) {
            break
        }

        // escaped characters?
        if buf[i] == '\\' && i+1 < len(buf) {
            i += 2
            continue
        }

        // If the value is quoted, scan until we get to the end quote
        // Only quote values in the field value since quotes are not significant
        // in the field key
        if buf[i] == '"' && equals > commas {
            quoted = !quoted
            i++
            continue
        }

        // If we see an =, ensure that there is at least on char before and after it
        if buf[i] == '=' && !quoted {
            equals++

            // check for "... =123" but allow "a\ =123"
            if buf[i-1] == ' ' && buf[i-2] != '\\' {
                return i, buf[start:i], fmt.Errorf("missing field key")
            }

            // check for "...a=123,=456" but allow "a=123,a\,=456"
            if buf[i-1] == ',' && buf[i-2] != '\\' {
                return i, buf[start:i], fmt.Errorf("missing field key")
            }

            // check for "... value="
            if i+1 >= len(buf) {
                return i, buf[start:i], fmt.Errorf("missing field value")
            }

            // check for "... value=,value2=..."
            if buf[i+1] == ',' || buf[i+1] == ' ' {
                return i, buf[start:i], fmt.Errorf("missing field value")
            }

            if isNumeric(buf[i+1]) || buf[i+1] == '-' || buf[i+1] == 'N' || buf[i+1] == 'n' {
                var err error
                i, err = scanNumber(buf, i+1)
                if err != nil {
                    return i, buf[start:i], err
                }
                continue
            }
            // If next byte is not a double-quote, the value must be a boolean
            if buf[i+1] != '"' {
                var err error
                i, _, err = scanBoolean(buf, i+1)
                if err != nil {
                    return i, buf[start:i], err
                }
                continue
            }
        }

        if buf[i] == ',' && !quoted {
            commas++
        }

        // reached end of block?
        if buf[i] == ' ' && !quoted {
            break
        }
        i++
    }

    if quoted {
        return i, buf[start:i], fmt.Errorf("unbalanced quotes")
    }

    // check that all field sections had key and values (e.g. prevent "a=1,b"
    if equals == 0 || commas != equals-1 {
        return i, buf[start:i], fmt.Errorf("invalid field format")
    }

    return i, buf[start:i], nil
}

// scanTime scans buf, starting at i for the time section of a point. It
// returns the ending position and the byte slice of the timestamp within buf
// and and error if the timestamp is not in the correct numeric format.
func scanTime(buf []byte, i int) (int, []byte, error) {
    start := skipWhitespace(buf, i)
    i = start

    for {
        // reached the end of buf?
        if i >= len(buf) {
            break
        }

        // Reached end of block or trailing whitespace?
        if buf[i] == '\n' || buf[i] == ' ' {
            break
        }

        // Handle negative timestamps
        if i == start && buf[i] == '-' {
            i++
            continue
        }

        // Timestamps should be integers, make sure they are so we don't need
        // to actually  parse the timestamp until needed.
        if buf[i] < '0' || buf[i] > '9' {
            return i, buf[start:i], fmt.Errorf("bad timestamp")
        }
        i++
    }
    return i, buf[start:i], nil
}

func isNumeric(b byte) bool {
    return (b >= '0' && b <= '9') || b == '.'
}

// scanNumber returns the end position within buf, start at i after
// scanning over buf for an integer, or float.  It returns an
// error if a invalid number is scanned.
func scanNumber(buf []byte, i int) (int, error) {
    start := i
    var isInt, isUnsigned bool

    // Is negative number?
    if i < len(buf) && buf[i] == '-' {
        i++
        // There must be more characters now, as just '-' is illegal.
        if i == len(buf) {
            return i, ErrInvalidNumber
        }
    }

    // how many decimal points we've see
    decimal := false

    // indicates the number is float in scientific notation
    scientific := false

    for {
        if i >= len(buf) {
            break
        }

        if buf[i] == ',' || buf[i] == ' ' {
            break
        }

        if buf[i] == 'i' && i > start && !(isInt || isUnsigned) {
            isInt = true
            i++
            continue
        } else if buf[i] == 'u' && i > start && !(isInt || isUnsigned) {
            isUnsigned = true
            i++
            continue
        }

        if buf[i] == '.' {
            // Can't have more than 1 decimal (e.g. 1.1.1 should fail)
            if decimal {
                return i, ErrInvalidNumber
            }
            decimal = true
        }

        // `e` is valid for floats but not as the first char
        if i > start && (buf[i] == 'e' || buf[i] == 'E') {
            scientific = true
            i++
            continue
        }

        // + and - are only valid at this point if they follow an e (scientific notation)
        if (buf[i] == '+' || buf[i] == '-') && (buf[i-1] == 'e' || buf[i-1] == 'E') {
            i++
            continue
        }

        // NaN is an unsupported value
        if i+2 < len(buf) && (buf[i] == 'N' || buf[i] == 'n') {
            return i, ErrInvalidNumber
        }

        if !isNumeric(buf[i]) {
            return i, ErrInvalidNumber
        }
        i++
    }

    if (isInt || isUnsigned) && (decimal || scientific) {
        return i, ErrInvalidNumber
    }

    numericDigits := i - start
    if isInt {
        numericDigits--
    }
    if decimal {
        numericDigits--
    }
    if buf[start] == '-' {
        numericDigits--
    }

    if numericDigits == 0 {
        return i, ErrInvalidNumber
    }

    // It's more common that numbers will be within min/max range for their type but we need to prevent
    // out or range numbers from being parsed successfully.  This uses some simple heuristics to decide
    // if we should parse the number to the actual type.  It does not do it all the time because it incurs
    // extra allocations and we end up converting the type again when writing points to disk.
    if isInt {
        // Make sure the last char is an 'i' for integers (e.g. 9i10 is not valid)
        if buf[i-1] != 'i' {
            return i, ErrInvalidNumber
        }
        // Parse the int to check bounds the number of digits could be larger than the max range
        // We subtract 1 from the index to remove the `i` from our tests
        if len(buf[start:i-1]) >= maxInt64Digits || len(buf[start:i-1]) >= minInt64Digits {
            if _, err := parseIntBytes(buf[start:i-1], 10, 64); err != nil {
                return i, fmt.Errorf("unable to parse integer %s: %s", buf[start:i-1], err)
            }
        }
    } else if isUnsigned {
        // Return an error if uint64 support has not been enabled.
        if !enableUint64Support {
            return i, ErrInvalidNumber
        }
        // Make sure the last char is a 'u' for unsigned
        if buf[i-1] != 'u' {
            return i, ErrInvalidNumber
        }
        // Make sure the first char is not a '-' for unsigned
        if buf[start] == '-' {
            return i, ErrInvalidNumber
        }
        // Parse the uint to check bounds the number of digits could be larger than the max range
        // We subtract 1 from the index to remove the `u` from our tests
        if len(buf[start:i-1]) >= maxUint64Digits {
            if _, err := parseUintBytes(buf[start:i-1], 10, 64); err != nil {
                return i, fmt.Errorf("unable to parse unsigned %s: %s", buf[start:i-1], err)
            }
        }
    } else {
        // Parse the float to check bounds if it's scientific or the number of digits could be larger than the max range
        if scientific || len(buf[start:i]) >= maxFloat64Digits || len(buf[start:i]) >= minFloat64Digits {
            if _, err := parseFloatBytes(buf[start:i], 10); err != nil {
                return i, fmt.Errorf("invalid float")
            }
        }
    }

    return i, nil
}

// scanBoolean returns the end position within buf, start at i after
// scanning over buf for boolean. Valid values for a boolean are
// t, T, true, TRUE, f, F, false, FALSE.  It returns an error if a invalid boolean
// is scanned.
func scanBoolean(buf []byte, i int) (int, []byte, error) {
    start := i

    if i < len(buf) && (buf[i] != 't' && buf[i] != 'f' && buf[i] != 'T' && buf[i] != 'F') {
        return i, buf[start:i], fmt.Errorf("invalid boolean")
    }

    i++
    for {
        if i >= len(buf) {
            break
        }

        if buf[i] == ',' || buf[i] == ' ' {
            break
        }
        i++
    }

    // Single char bool (t, T, f, F) is ok
    if i-start == 1 {
        return i, buf[start:i], nil
    }

    // length must be 4 for true or TRUE
    if (buf[start] == 't' || buf[start] == 'T') && i-start != 4 {
        return i, buf[start:i], fmt.Errorf("invalid boolean")
    }

    // length must be 5 for false or FALSE
    if (buf[start] == 'f' || buf[start] == 'F') && i-start != 5 {
        return i, buf[start:i], fmt.Errorf("invalid boolean")
    }

    // Otherwise
    valid := false
    switch buf[start] {
    case 't':
        valid = bytes.Equal(buf[start:i], []byte("true"))
    case 'f':
        valid = bytes.Equal(buf[start:i], []byte("false"))
    case 'T':
        valid = bytes.Equal(buf[start:i], []byte("TRUE")) || bytes.Equal(buf[start:i], []byte("True"))
    case 'F':
        valid = bytes.Equal(buf[start:i], []byte("FALSE")) || bytes.Equal(buf[start:i], []byte("False"))
    }

    if !valid {
        return i, buf[start:i], fmt.Errorf("invalid boolean")
    }

    return i, buf[start:i], nil

}

// skipWhitespace returns the end position within buf, starting at i after
// scanning over spaces in tags.
func skipWhitespace(buf []byte, i int) int {
    for i < len(buf) {
        if buf[i] != ' ' && buf[i] != '\t' && buf[i] != 0 {
            break
        }
        i++
    }
    return i
}

// scanLine returns the end position in buf and the next line found within
// buf.
func scanLine(buf []byte, i int) (int, []byte) {
    start := i
    quoted := false
    fields := false

    // tracks how many '=' and commas we've seen
    // this duplicates some of the functionality in scanFields
    equals := 0
    commas := 0
    for {
        // reached the end of buf?
        if i >= len(buf) {
            break
        }

        // skip past escaped characters
        if buf[i] == '\\' && i+2 < len(buf) {
            i += 2
            continue
        }

        if buf[i] == ' ' {
            fields = true
        }

        // If we see a double quote, makes sure it is not escaped
        if fields {
            if !quoted && buf[i] == '=' {
                i++
                equals++
                continue
            } else if !quoted && buf[i] == ',' {
                i++
                commas++
                continue
            } else if buf[i] == '"' && equals > commas {
                i++
                quoted = !quoted
                continue
            }
        }

        if buf[i] == '\n' && !quoted {
            break
        }

        i++
    }

    return i, buf[start:i]
}

// scanTo returns the end position in buf and the next consecutive block
// of bytes, starting from i and ending with stop byte, where stop byte
// has not been escaped.
//
// If there are leading spaces, they are skipped.
func scanTo(buf []byte, i int, stop byte) (int, []byte) {
    start := i
    for {
        // reached the end of buf?
        if i >= len(buf) {
            break
        }

        // Reached unescaped stop value?
        if buf[i] == stop && (i == 0 || buf[i-1] != '\\') {
            break
        }
        i++
    }

    return i, buf[start:i]
}

// scanTo returns the end position in buf and the next consecutive block
// of bytes, starting from i and ending with stop byte.  If there are leading
// spaces, they are skipped.
func scanToSpaceOr(buf []byte, i int, stop byte) (int, []byte) {
    start := i
    if buf[i] == stop || buf[i] == ' ' {
        return i, buf[start:i]
    }

    for {
        i++
        if buf[i-1] == '\\' {
            continue
        }

        // reached the end of buf?
        if i >= len(buf) {
            return i, buf[start:i]
        }

        // reached end of block?
        if buf[i] == stop || buf[i] == ' ' {
            return i, buf[start:i]
        }
    }
}

func scanTagValue(buf []byte, i int) (int, []byte) {
    start := i
    for {
        if i >= len(buf) {
            break
        }

        if buf[i] == ',' && buf[i-1] != '\\' {
            break
        }
        i++
    }
    if i > len(buf) {
        return i, nil
    }
    return i, buf[start:i]
}

func scanFieldValue(buf []byte, i int) (int, []byte) {
    start := i
    quoted := false
    for i < len(buf) {
        // Only escape char for a field value is a double-quote and backslash
        if buf[i] == '\\' && i+1 < len(buf) && (buf[i+1] == '"' || buf[i+1] == '\\') {
            i += 2
            continue
        }

        // Quoted value? (e.g. string)
        if buf[i] == '"' {
            i++
            quoted = !quoted
            continue
        }

        if buf[i] == ',' && !quoted {
            break
        }
        i++
    }
    return i, buf[start:i]
}

func EscapeMeasurement(in []byte) []byte {
    for b, esc := range measurementEscapeCodes {
        in = bytes.Replace(in, []byte{b}, esc, -1)
    }
    return in
}

func unescapeMeasurement(in []byte) []byte {
    for b, esc := range measurementEscapeCodes {
        in = bytes.Replace(in, esc, []byte{b}, -1)
    }
    return in
}

func escapeTag(in []byte) []byte {
    for b, esc := range tagEscapeCodes {
        if bytes.IndexByte(in, b) != -1 {
            in = bytes.Replace(in, []byte{b}, esc, -1)
        }
    }
    return in
}

func unescapeTag(in []byte) []byte {
    if bytes.IndexByte(in, '\\') == -1 {
        return in
    }

    for b, esc := range tagEscapeCodes {
        if bytes.IndexByte(in, b) != -1 {
            in = bytes.Replace(in, esc, []byte{b}, -1)
        }
    }
    return in
}

// escapeStringFieldReplacer replaces double quotes and backslashes
// with the same character preceded by a backslash.
// As of Go 1.7 this benchmarked better in allocations and CPU time
// compared to iterating through a string byte-by-byte and appending to a new byte slice,
// calling strings.Replace twice, and better than (*Regex).ReplaceAllString.
var escapeStringFieldReplacer = strings.NewReplacer(`"`, `\"`, `\`, `\\`)

// EscapeStringField returns a copy of in with any double quotes or
// backslashes with escaped values.
func EscapeStringField(in string) string {
    return escapeStringFieldReplacer.Replace(in)
}

// unescapeStringField returns a copy of in with any escaped double-quotes
// or backslashes unescaped.
func unescapeStringField(in string) string {
    if strings.IndexByte(in, '\\') == -1 {
        return in
    }

    var out []byte
    i := 0
    for {
        if i >= len(in) {
            break
        }
        // unescape backslashes
        if in[i] == '\\' && i+1 < len(in) && in[i+1] == '\\' {
            out = append(out, '\\')
            i += 2
            continue
        }
        // unescape double-quotes
        if in[i] == '\\' && i+1 < len(in) && in[i+1] == '"' {
            out = append(out, '"')
            i += 2
            continue
        }
        out = append(out, in[i])
        i++

    }
    return string(out)
}

// NewPoint returns a new point with the given measurement name, tags, fields and timestamp.  If
// an unsupported field value (NaN) or out of range time is passed, this function returns an error.
func NewPoint(name string, tags Tags, fields Fields, t time.Time) (Point, error) {
    key, err := pointKey(name, tags, fields, t)
    if err != nil {
        return nil, err
    }

    return &point{
        key:    key,
        time:   t,
        fields: fields.MarshalBinary(),
    }, nil
}

// pointKey checks some basic requirements for valid points, and returns the
// key, along with an possible error.
func pointKey(measurement string, tags Tags, fields Fields, t time.Time) ([]byte, error) {
    if len(fields) == 0 {
        return nil, ErrPointMustHaveAField
    }

    if !t.IsZero() {
        if err := CheckTime(t); err != nil {
            return nil, err
        }
    }

    for key, value := range fields {
        switch value := value.(type) {
        case float64:
            // Ensure the caller validates and handles invalid field values
            if math.IsNaN(value) {
                return nil, fmt.Errorf("NaN is an unsupported value for field %s", key)
            }
        case float32:
            // Ensure the caller validates and handles invalid field values
            if math.IsNaN(float64(value)) {
                return nil, fmt.Errorf("NaN is an unsupported value for field %s", key)
            }
        }
        if len(key) == 0 {
            return nil, fmt.Errorf("all fields must have non-empty names")
        }
    }

    key := MakeKey([]byte(measurement), tags)
    for field := range fields {
        sz := seriesKeySize(key, []byte(field))
        if sz > MaxKeyLength {
            return nil, fmt.Errorf("max key length exceeded: %v > %v", sz, MaxKeyLength)
        }
    }

    return key, nil
}

func seriesKeySize(key, field []byte) int {
    // 4 is the length of the tsm1.fieldKeySeparator constant.  It's inlined here to avoid a circular
    // dependency.
    return len(key) + 4 + len(field)
}

// NewPointFromBytes returns a new Point from a marshalled Point.
func NewPointFromBytes(b []byte) (Point, error) {
    p := &point{}
    if err := p.UnmarshalBinary(b); err != nil {
        return nil, err
    }

    // This does some basic validation to ensure there are fields and they
    // can be unmarshalled as well.
    iter := p.FieldIterator()
    var hasField bool
    for iter.Next() {
        if len(iter.FieldKey()) == 0 {
            continue
        }
        hasField = true
        switch iter.Type() {
        case Float:
            _, err := iter.FloatValue()
            if err != nil {
                return nil, fmt.Errorf("unable to unmarshal field %s: %s", string(iter.FieldKey()), err)
            }
        case Integer:
            _, err := iter.IntegerValue()
            if err != nil {
                return nil, fmt.Errorf("unable to unmarshal field %s: %s", string(iter.FieldKey()), err)
            }
        case Unsigned:
            _, err := iter.UnsignedValue()
            if err != nil {
                return nil, fmt.Errorf("unable to unmarshal field %s: %s", string(iter.FieldKey()), err)
            }
        case String:
            // Skip since this won't return an error
        case Boolean:
            _, err := iter.BooleanValue()
            if err != nil {
                return nil, fmt.Errorf("unable to unmarshal field %s: %s", string(iter.FieldKey()), err)
            }
        }
    }

    if !hasField {
        return nil, ErrPointMustHaveAField
    }

    return p, nil
}

// MustNewPoint returns a new point with the given measurement name, tags, fields and timestamp.  If
// an unsupported field value (NaN) is passed, this function panics.
func MustNewPoint(name string, tags Tags, fields Fields, time time.Time) Point {
    pt, err := NewPoint(name, tags, fields, time)
    if err != nil {
        panic(err.Error())
    }
    return pt
}

// Key returns the key (measurement joined with tags) of the point.
func (p *point) Key() []byte {
    return p.key
}

func (p *point) name() []byte {
    _, name := scanTo(p.key, 0, ',')
    return name
}

func (p *point) Name() []byte {
    return escape.Unescape(p.name())
}

// SetName updates the measurement name for the point.
func (p *point) SetName(name string) {
    p.cachedName = ""
    p.key = MakeKey([]byte(name), p.Tags())
}

// Time return the timestamp for the point.
func (p *point) Time() time.Time {
    return p.time
}

// SetTime updates the timestamp for the point.
func (p *point) SetTime(t time.Time) {
    p.time = t
}

// Round will round the timestamp of the point to the given duration.
func (p *point) Round(d time.Duration) {
    p.time = p.time.Round(d)
}

// Tags returns the tag set for the point.
func (p *point) Tags() Tags {
    if p.cachedTags != nil {
        return p.cachedTags
    }
    p.cachedTags = parseTags(p.key)
    return p.cachedTags
}

func (p *point) HasTag(tag []byte) bool {
    if len(p.key) == 0 {
        return false
    }

    var exists bool
    walkTags(p.key, func(key, value []byte) bool {
        if bytes.Equal(tag, key) {
            exists = true
            return false
        }
        return true
    })

    return exists
}

func walkTags(buf []byte, fn func(key, value []byte) bool) {
    if len(buf) == 0 {
        return
    }

    pos, name := scanTo(buf, 0, ',')

    // it's an empty key, so there are no tags
    if len(name) == 0 {
        return
    }

    hasEscape := bytes.IndexByte(buf, '\\') != -1
    i := pos + 1
    var key, value []byte
    for {
        if i >= len(buf) {
            break
        }
        i, key = scanTo(buf, i, '=')
        i, value = scanTagValue(buf, i+1)

        if len(value) == 0 {
            continue
        }

        if hasEscape {
            if !fn(unescapeTag(key), unescapeTag(value)) {
                return
            }
        } else {
            if !fn(key, value) {
                return
            }
        }

        i++
    }
}

// walkFields walks each field key and value via fn.  If fn returns false, the iteration
// is stopped.  The values are the raw byte slices and not the converted types.
func walkFields(buf []byte, fn func(key, value []byte) bool) {
    var i int
    var key, val []byte
    for len(buf) > 0 {
        i, key = scanTo(buf, 0, '=')
        buf = buf[i+1:]
        i, val = scanFieldValue(buf, 0)
        buf = buf[i:]
        if !fn(key, val) {
            break
        }

        // slice off comma
        if len(buf) > 0 {
            buf = buf[1:]
        }
    }
}

func parseTags(buf []byte) Tags {
    if len(buf) == 0 {
        return nil
    }

    tags := make(Tags, bytes.Count(buf, []byte(",")))
    p := 0
    walkTags(buf, func(key, value []byte) bool {
        tags[p].Key = key
        tags[p].Value = value
        p++
        return true
    })
    return tags
}

// MakeKey creates a key for a set of tags.
func MakeKey(name []byte, tags Tags) []byte {
    // unescape the name and then re-escape it to avoid double escaping.
    // The key should always be stored in escaped form.
    return append(EscapeMeasurement(unescapeMeasurement(name)), tags.HashKey()...)
}

// SetTags replaces the tags for the point.
func (p *point) SetTags(tags Tags) {
    p.key = MakeKey(p.Name(), tags)
    p.cachedTags = tags
}

// AddTag adds or replaces a tag value for a point.
func (p *point) AddTag(key, value string) {
    tags := p.Tags()
    tags = append(tags, Tag{Key: []byte(key), Value: []byte(value)})
    sort.Sort(tags)
    p.cachedTags = tags
    p.key = MakeKey(p.Name(), tags)
}

// Fields returns the fields for the point.
func (p *point) Fields() (Fields, error) {
    if p.cachedFields != nil {
        return p.cachedFields, nil
    }
    cf, err := p.unmarshalBinary()
    if err != nil {
        return nil, err
    }
    p.cachedFields = cf
    return p.cachedFields, nil
}

// SetPrecision will round a time to the specified precision.
func (p *point) SetPrecision(precision string) {
    switch precision {
    case "n":
    case "u":
        p.SetTime(p.Time().Truncate(time.Microsecond))
    case "ms":
        p.SetTime(p.Time().Truncate(time.Millisecond))
    case "s":
        p.SetTime(p.Time().Truncate(time.Second))
    case "m":
        p.SetTime(p.Time().Truncate(time.Minute))
    case "h":
        p.SetTime(p.Time().Truncate(time.Hour))
    }
}

// String returns the string representation of the point.
func (p *point) String() string {
    if p.Time().IsZero() {
        return string(p.Key()) + " " + string(p.fields)
    }
    return string(p.Key()) + " " + string(p.fields) + " " + strconv.FormatInt(p.UnixNano(), 10)
}

// AppendString appends the string representation of the point to buf.
func (p *point) AppendString(buf []byte) []byte {
    buf = append(buf, p.key...)
    buf = append(buf, ' ')
    buf = append(buf, p.fields...)

    if !p.time.IsZero() {
        buf = append(buf, ' ')
        buf = strconv.AppendInt(buf, p.UnixNano(), 10)
    }

    return buf
}

// StringSize returns the length of the string that would be returned by String().
func (p *point) StringSize() int {
    size := len(p.key) + len(p.fields) + 1

    if !p.time.IsZero() {
        digits := 1 // even "0" has one digit
        t := p.UnixNano()
        if t < 0 {
            // account for negative sign, then negate
            digits++
            t = -t
        }
        for t > 9 { // already accounted for one digit
            digits++
            t /= 10
        }
        size += digits + 1 // digits and a space
    }

    return size
}

// MarshalBinary returns a binary representation of the point.
func (p *point) MarshalBinary() ([]byte, error) {
    if len(p.fields) == 0 {
        return nil, ErrPointMustHaveAField
    }

    tb, err := p.time.MarshalBinary()
    if err != nil {
        return nil, err
    }

    b := make([]byte, 8+len(p.key)+len(p.fields)+len(tb))
    i := 0

    binary.BigEndian.PutUint32(b[i:], uint32(len(p.key)))
    i += 4

    i += copy(b[i:], p.key)

    binary.BigEndian.PutUint32(b[i:i+4], uint32(len(p.fields)))
    i += 4

    i += copy(b[i:], p.fields)

    copy(b[i:], tb)
    return b, nil
}

// UnmarshalBinary decodes a binary representation of the point into a point struct.
func (p *point) UnmarshalBinary(b []byte) error {
    var n int

    // Read key length.
    if len(b) < 4 {
        return io.ErrShortBuffer
    }
    n, b = int(binary.BigEndian.Uint32(b[:4])), b[4:]

    // Read key.
    if len(b) < n {
        return io.ErrShortBuffer
    }
    p.key, b = b[:n], b[n:]

    // Read fields length.
    if len(b) < 4 {
        return io.ErrShortBuffer
    }
    n, b = int(binary.BigEndian.Uint32(b[:4])), b[4:]

    // Read fields.
    if len(b) < n {
        return io.ErrShortBuffer
    }
    p.fields, b = b[:n], b[n:]

    // Read timestamp.
    if err := p.time.UnmarshalBinary(b); err != nil {
        return err
    }
    return nil
}

// PrecisionString returns a string representation of the point. If there
// is a timestamp associated with the point then it will be specified in the
// given unit.
func (p *point) PrecisionString(precision string) string {
    if p.Time().IsZero() {
        return fmt.Sprintf("%s %s", p.Key(), string(p.fields))
    }
    return fmt.Sprintf("%s %s %d", p.Key(), string(p.fields),
        p.UnixNano()/GetPrecisionMultiplier(precision))
}

// RoundedString returns a string representation of the point. If there
// is a timestamp associated with the point, then it will be rounded to the
// given duration.
func (p *point) RoundedString(d time.Duration) string {
    if p.Time().IsZero() {
        return fmt.Sprintf("%s %s", p.Key(), string(p.fields))
    }
    return fmt.Sprintf("%s %s %d", p.Key(), string(p.fields),
        p.time.Round(d).UnixNano())
}

func (p *point) unmarshalBinary() (Fields, error) {
    iter := p.FieldIterator()
    fields := make(Fields, 8)
    for iter.Next() {
        if len(iter.FieldKey()) == 0 {
            continue
        }
        switch iter.Type() {
        case Float:
            v, err := iter.FloatValue()
            if err != nil {
                return nil, fmt.Errorf("unable to unmarshal field %s: %s", string(iter.FieldKey()), err)
            }
            fields[string(iter.FieldKey())] = v
        case Integer:
            v, err := iter.IntegerValue()
            if err != nil {
                return nil, fmt.Errorf("unable to unmarshal field %s: %s", string(iter.FieldKey()), err)
            }
            fields[string(iter.FieldKey())] = v
        case Unsigned:
            v, err := iter.UnsignedValue()
            if err != nil {
                return nil, fmt.Errorf("unable to unmarshal field %s: %s", string(iter.FieldKey()), err)
            }
            fields[string(iter.FieldKey())] = v
        case String:
            fields[string(iter.FieldKey())] = iter.StringValue()
        case Boolean:
            v, err := iter.BooleanValue()
            if err != nil {
                return nil, fmt.Errorf("unable to unmarshal field %s: %s", string(iter.FieldKey()), err)
            }
            fields[string(iter.FieldKey())] = v
        }
    }
    return fields, nil
}

// HashID returns a non-cryptographic checksum of the point's key.
func (p *point) HashID() uint64 {
    h := NewInlineFNV64a()
    h.Write(p.key)
    sum := h.Sum64()
    return sum
}

// UnixNano returns the timestamp of the point as nanoseconds since Unix epoch.
func (p *point) UnixNano() int64 {
    return p.Time().UnixNano()
}

// Split will attempt to return multiple points with the same timestamp whose
// string representations are no longer than size. Points with a single field or
// a point without a timestamp may exceed the requested size.
func (p *point) Split(size int) []Point {
    if p.time.IsZero() || p.StringSize() <= size {
        return []Point{p}
    }

    // key string, timestamp string, spaces
    size -= len(p.key) + len(strconv.FormatInt(p.time.UnixNano(), 10)) + 2

    var points []Point
    var start, cur int

    for cur < len(p.fields) {
        end, _ := scanTo(p.fields, cur, '=')
        end, _ = scanFieldValue(p.fields, end+1)

        if cur > start && end-start > size {
            points = append(points, &point{
                key:    p.key,
                time:   p.time,
                fields: p.fields[start : cur-1],
            })
            start = cur
        }

        cur = end + 1
    }

    points = append(points, &point{
        key:    p.key,
        time:   p.time,
        fields: p.fields[start:],
    })

    return points
}

// Tag represents a single key/value tag pair.
type Tag struct {
    Key   []byte
    Value []byte
}

// NewTag returns a new Tag.
func NewTag(key, value []byte) Tag {
    return Tag{
        Key:   key,
        Value: value,
    }
}

// Size returns the size of the key and value.
func (t Tag) Size() int { return len(t.Key) + len(t.Value) }

// Clone returns a shallow copy of Tag.
//
// Tags associated with a Point created by ParsePointsWithPrecision will hold references to the byte slice that was parsed.
// Use Clone to create a Tag with new byte slices that do not refer to the argument to ParsePointsWithPrecision.
func (t Tag) Clone() Tag {
    other := Tag{
        Key:   make([]byte, len(t.Key)),
        Value: make([]byte, len(t.Value)),
    }

    copy(other.Key, t.Key)
    copy(other.Value, t.Value)

    return other
}

// String returns the string reprsentation of the tag.
func (t *Tag) String() string {
    var buf bytes.Buffer
    buf.WriteByte('{')
    buf.WriteString(string(t.Key))
    buf.WriteByte(' ')
    buf.WriteString(string(t.Value))
    buf.WriteByte('}')
    return buf.String()
}

// Tags represents a sorted list of tags.
type Tags []Tag

// NewTags returns a new Tags from a map.
func NewTags(m map[string]string) Tags {
    if len(m) == 0 {
        return nil
    }
    a := make(Tags, 0, len(m))
    for k, v := range m {
        a = append(a, NewTag([]byte(k), []byte(v)))
    }
    sort.Sort(a)
    return a
}

// Keys returns the list of keys for a tag set.
func (a Tags) Keys() []string {
    if len(a) == 0 {
        return nil
    }
    keys := make([]string, len(a))
    for i, tag := range a {
        keys[i] = string(tag.Key)
    }
    return keys
}

// Values returns the list of values for a tag set.
func (a Tags) Values() []string {
    if len(a) == 0 {
        return nil
    }
    values := make([]string, len(a))
    for i, tag := range a {
        values[i] = string(tag.Value)
    }
    return values
}

// String returns the string representation of the tags.
func (a Tags) String() string {
    var buf bytes.Buffer
    buf.WriteByte('[')
    for i := range a {
        buf.WriteString(a[i].String())
        if i < len(a)-1 {
            buf.WriteByte(' ')
        }
    }
    buf.WriteByte(']')
    return buf.String()
}

// Size returns the number of bytes needed to store all tags. Note, this is
// the number of bytes needed to store all keys and values and does not account
// for data structures or delimiters for example.
func (a Tags) Size() int {
    var total int
    for _, t := range a {
        total += t.Size()
    }
    return total
}

// Clone returns a copy of the slice where the elements are a result of calling `Clone` on the original elements
//
// Tags associated with a Point created by ParsePointsWithPrecision will hold references to the byte slice that was parsed.
// Use Clone to create Tags with new byte slices that do not refer to the argument to ParsePointsWithPrecision.
func (a Tags) Clone() Tags {
    if len(a) == 0 {
        return nil
    }

    others := make(Tags, len(a))
    for i := range a {
        others[i] = a[i].Clone()
    }

    return others
}

func (a Tags) Len() int           { return len(a) }
func (a Tags) Less(i, j int) bool { return bytes.Compare(a[i].Key, a[j].Key) == -1 }
func (a Tags) Swap(i, j int)      { a[i], a[j] = a[j], a[i] }

// Equal returns true if a equals other.
func (a Tags) Equal(other Tags) bool {
    if len(a) != len(other) {
        return false
    }
    for i := range a {
        if !bytes.Equal(a[i].Key, other[i].Key) || !bytes.Equal(a[i].Value, other[i].Value) {
            return false
        }
    }
    return true
}

// CompareTags returns -1 if a < b, 1 if a > b, and 0 if a == b.
func CompareTags(a, b Tags) int {
    // Compare each key & value until a mismatch.
    for i := 0; i < len(a) && i < len(b); i++ {
        if cmp := bytes.Compare(a[i].Key, b[i].Key); cmp != 0 {
            return cmp
        }
        if cmp := bytes.Compare(a[i].Value, b[i].Value); cmp != 0 {
            return cmp
        }
    }

    // If all tags are equal up to this point then return shorter tagset.
    if len(a) < len(b) {
        return -1
    } else if len(a) > len(b) {
        return 1
    }

    // All tags are equal.
    return 0
}

// Get returns the value for a key.
func (a Tags) Get(key []byte) []byte {
    // OPTIMIZE: Use sort.Search if tagset is large.

    for _, t := range a {
        if bytes.Equal(t.Key, key) {
            return t.Value
        }
    }
    return nil
}

// GetString returns the string value for a string key.
func (a Tags) GetString(key string) string {
    return string(a.Get([]byte(key)))
}

// Set sets the value for a key.
func (a *Tags) Set(key, value []byte) {
    for i, t := range *a {
        if bytes.Equal(t.Key, key) {
            (*a)[i].Value = value
            return
        }
    }
    *a = append(*a, Tag{Key: key, Value: value})
    sort.Sort(*a)
}

// SetString sets the string value for a string key.
func (a *Tags) SetString(key, value string) {
    a.Set([]byte(key), []byte(value))
}

// Delete removes a tag by key.
func (a *Tags) Delete(key []byte) {
    for i, t := range *a {
        if bytes.Equal(t.Key, key) {
            copy((*a)[i:], (*a)[i+1:])
            (*a)[len(*a)-1] = Tag{}
            *a = (*a)[:len(*a)-1]
            return
        }
    }
}

// Map returns a map representation of the tags.
func (a Tags) Map() map[string]string {
    m := make(map[string]string, len(a))
    for _, t := range a {
        m[string(t.Key)] = string(t.Value)
    }
    return m
}

// Merge merges the tags combining the two. If both define a tag with the
// same key, the merged value overwrites the old value.
// A new map is returned.
func (a Tags) Merge(other map[string]string) Tags {
    merged := make(map[string]string, len(a)+len(other))
    for _, t := range a {
        merged[string(t.Key)] = string(t.Value)
    }
    for k, v := range other {
        merged[k] = v
    }
    return NewTags(merged)
}

// HashKey hashes all of a tag's keys.
func (a Tags) HashKey() []byte {
    // Empty maps marshal to empty bytes.
    if len(a) == 0 {
        return nil
    }

    // Type invariant: Tags are sorted

    escaped := make(Tags, 0, len(a))
    sz := 0
    for _, t := range a {
        ek := escapeTag(t.Key)
        ev := escapeTag(t.Value)

        if len(ev) > 0 {
            escaped = append(escaped, Tag{Key: ek, Value: ev})
            sz += len(ek) + len(ev)
        }
    }

    sz += len(escaped) + (len(escaped) * 2) // separators

    // Generate marshaled bytes.
    b := make([]byte, sz)
    buf := b
    idx := 0
    for _, k := range escaped {
        buf[idx] = ','
        idx++
        copy(buf[idx:idx+len(k.Key)], k.Key)
        idx += len(k.Key)
        buf[idx] = '='
        idx++
        copy(buf[idx:idx+len(k.Value)], k.Value)
        idx += len(k.Value)
    }
    return b[:idx]
}

// CopyTags returns a shallow copy of tags.
func CopyTags(a Tags) Tags {
    other := make(Tags, len(a))
    copy(other, a)
    return other
}

// DeepCopyTags returns a deep copy of tags.
func DeepCopyTags(a Tags) Tags {
    // Calculate size of keys/values in bytes.
    var n int
    for _, t := range a {
        n += len(t.Key) + len(t.Value)
    }

    // Build single allocation for all key/values.
    buf := make([]byte, n)

    // Copy tags to new set.
    other := make(Tags, len(a))
    for i, t := range a {
        copy(buf, t.Key)
        other[i].Key, buf = buf[:len(t.Key)], buf[len(t.Key):]

        copy(buf, t.Value)
        other[i].Value, buf = buf[:len(t.Value)], buf[len(t.Value):]
    }

    return other
}

// Fields represents a mapping between a Point's field names and their
// values.
type Fields map[string]interface{}

// FieldIterator retuns a FieldIterator that can be used to traverse the
// fields of a point without constructing the in-memory map.
func (p *point) FieldIterator() FieldIterator {
    p.Reset()
    return p
}

type fieldIterator struct {
    start, end  int
    key, keybuf []byte
    valueBuf    []byte
    fieldType   FieldType
}

// Next indicates whether there any fields remaining.
func (p *point) Next() bool {
    p.it.start = p.it.end
    if p.it.start >= len(p.fields) {
        return false
    }

    p.it.end, p.it.key = scanTo(p.fields, p.it.start, '=')
    if escape.IsEscaped(p.it.key) {
        p.it.keybuf = escape.AppendUnescaped(p.it.keybuf[:0], p.it.key)
        p.it.key = p.it.keybuf
    }

    p.it.end, p.it.valueBuf = scanFieldValue(p.fields, p.it.end+1)
    p.it.end++

    if len(p.it.valueBuf) == 0 {
        p.it.fieldType = Empty
        return true
    }

    c := p.it.valueBuf[0]

    if c == '"' {
        p.it.fieldType = String
        return true
    }

    if strings.IndexByte(`0123456789-.nNiIu`, c) >= 0 {
        if p.it.valueBuf[len(p.it.valueBuf)-1] == 'i' {
            p.it.fieldType = Integer
            p.it.valueBuf = p.it.valueBuf[:len(p.it.valueBuf)-1]
        } else if p.it.valueBuf[len(p.it.valueBuf)-1] == 'u' {
            p.it.fieldType = Unsigned
            p.it.valueBuf = p.it.valueBuf[:len(p.it.valueBuf)-1]
        } else {
            p.it.fieldType = Float
        }
        return true
    }

    // to keep the same behavior that currently exists, default to boolean
    p.it.fieldType = Boolean
    return true
}

// FieldKey returns the key of the current field.
func (p *point) FieldKey() []byte {
    return p.it.key
}

// Type returns the FieldType of the current field.
func (p *point) Type() FieldType {
    return p.it.fieldType
}

// StringValue returns the string value of the current field.
func (p *point) StringValue() string {
    return unescapeStringField(string(p.it.valueBuf[1 : len(p.it.valueBuf)-1]))
}

// IntegerValue returns the integer value of the current field.
func (p *point) IntegerValue() (int64, error) {
    n, err := parseIntBytes(p.it.valueBuf, 10, 64)
    if err != nil {
        return 0, fmt.Errorf("unable to parse integer value %q: %v", p.it.valueBuf, err)
    }
    return n, nil
}

// UnsignedValue returns the unsigned value of the current field.
func (p *point) UnsignedValue() (uint64, error) {
    n, err := parseUintBytes(p.it.valueBuf, 10, 64)
    if err != nil {
        return 0, fmt.Errorf("unable to parse unsigned value %q: %v", p.it.valueBuf, err)
    }
    return n, nil
}

// BooleanValue returns the boolean value of the current field.
func (p *point) BooleanValue() (bool, error) {
    b, err := parseBoolBytes(p.it.valueBuf)
    if err != nil {
        return false, fmt.Errorf("unable to parse bool value %q: %v", p.it.valueBuf, err)
    }
    return b, nil
}

// FloatValue returns the float value of the current field.
func (p *point) FloatValue() (float64, error) {
    f, err := parseFloatBytes(p.it.valueBuf, 64)
    if err != nil {
        return 0, fmt.Errorf("unable to parse floating point value %q: %v", p.it.valueBuf, err)
    }
    return f, nil
}

// Reset resets the iterator to its initial state.
func (p *point) Reset() {
    p.it.fieldType = Empty
    p.it.key = nil
    p.it.valueBuf = nil
    p.it.start = 0
    p.it.end = 0
}

// MarshalBinary encodes all the fields to their proper type and returns the binary
// represenation
// NOTE: uint64 is specifically not supported due to potential overflow when we decode
// again later to an int64
// NOTE2: uint is accepted, and may be 64 bits, and is for some reason accepted...
func (p Fields) MarshalBinary() []byte {
    var b []byte
    keys := make([]string, 0, len(p))

    for k := range p {
        keys = append(keys, k)
    }

    // Not really necessary, can probably be removed.
    sort.Strings(keys)

    for i, k := range keys {
        if i > 0 {
            b = append(b, ',')
        }
        b = appendField(b, k, p[k])
    }

    return b
}

func appendField(b []byte, k string, v interface{}) []byte {
    b = append(b, []byte(escape.String(k))...)
    b = append(b, '=')

    // check popular types first
    switch v := v.(type) {
    case float64:
        b = strconv.AppendFloat(b, v, 'f', -1, 64)
    case int64:
        b = strconv.AppendInt(b, v, 10)
        b = append(b, 'i')
    case string:
        b = append(b, '"')
        b = append(b, []byte(EscapeStringField(v))...)
        b = append(b, '"')
    case bool:
        b = strconv.AppendBool(b, v)
    case int32:
        b = strconv.AppendInt(b, int64(v), 10)
        b = append(b, 'i')
    case int16:
        b = strconv.AppendInt(b, int64(v), 10)
        b = append(b, 'i')
    case int8:
        b = strconv.AppendInt(b, int64(v), 10)
        b = append(b, 'i')
    case int:
        b = strconv.AppendInt(b, int64(v), 10)
        b = append(b, 'i')
    case uint64:
        b = strconv.AppendUint(b, v, 10)
        b = append(b, 'u')
    case uint32:
        b = strconv.AppendInt(b, int64(v), 10)
        b = append(b, 'i')
    case uint16:
        b = strconv.AppendInt(b, int64(v), 10)
        b = append(b, 'i')
    case uint8:
        b = strconv.AppendInt(b, int64(v), 10)
        b = append(b, 'i')
    case uint:
        // TODO: 'uint' should be converted to writing as an unsigned integer,
        // but we cannot since that would break backwards compatibility.
        b = strconv.AppendInt(b, int64(v), 10)
        b = append(b, 'i')
    case float32:
        b = strconv.AppendFloat(b, float64(v), 'f', -1, 32)
    case []byte:
        b = append(b, v...)
    case nil:
        // skip
    default:
        // Can't determine the type, so convert to string
        b = append(b, '"')
        b = append(b, []byte(EscapeStringField(fmt.Sprintf("%v", v)))...)
        b = append(b, '"')

    }

    return b
}

type byteSlices [][]byte

func (a byteSlices) Len() int           { return len(a) }
func (a byteSlices) Less(i, j int) bool { return bytes.Compare(a[i], a[j]) == -1 }
func (a byteSlices) Swap(i, j int)      { a[i], a[j] = a[j], a[i] }