aboutsummaryrefslogtreecommitdiffstats
path: root/vendor/github.com/davecgh/go-spew/spew/format.go
blob: c49875bacbb88a2252d942c1ee9b84381305fa29 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
/*
 * Copyright (c) 2013-2016 Dave Collins <dave@davec.name>
 *
 * Permission to use, copy, modify, and distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 */

package spew

import (
    "bytes"
    "fmt"
    "reflect"
    "strconv"
    "strings"
)

// supportedFlags is a list of all the character flags supported by fmt package.
const supportedFlags = "0-+# "

// formatState implements the fmt.Formatter interface and contains information
// about the state of a formatting operation.  The NewFormatter function can
// be used to get a new Formatter which can be used directly as arguments
// in standard fmt package printing calls.
type formatState struct {
    value          interface{}
    fs             fmt.State
    depth          int
    pointers       map[uintptr]int
    ignoreNextType bool
    cs             *ConfigState
}

// buildDefaultFormat recreates the original format string without precision
// and width information to pass in to fmt.Sprintf in the case of an
// unrecognized type.  Unless new types are added to the language, this
// function won't ever be called.
func (f *formatState) buildDefaultFormat() (format string) {
    buf := bytes.NewBuffer(percentBytes)

    for _, flag := range supportedFlags {
        if f.fs.Flag(int(flag)) {
            buf.WriteRune(flag)
        }
    }

    buf.WriteRune('v')

    format = buf.String()
    return format
}

// constructOrigFormat recreates the original format string including precision
// and width information to pass along to the standard fmt package.  This allows
// automatic deferral of all format strings this package doesn't support.
func (f *formatState) constructOrigFormat(verb rune) (format string) {
    buf := bytes.NewBuffer(percentBytes)

    for _, flag := range supportedFlags {
        if f.fs.Flag(int(flag)) {
            buf.WriteRune(flag)
        }
    }

    if width, ok := f.fs.Width(); ok {
        buf.WriteString(strconv.Itoa(width))
    }

    if precision, ok := f.fs.Precision(); ok {
        buf.Write(precisionBytes)
        buf.WriteString(strconv.Itoa(precision))
    }

    buf.WriteRune(verb)

    format = buf.String()
    return format
}

// unpackValue returns values inside of non-nil interfaces when possible and
// ensures that types for values which have been unpacked from an interface
// are displayed when the show types flag is also set.
// This is useful for data types like structs, arrays, slices, and maps which
// can contain varying types packed inside an interface.
func (f *formatState) unpackValue(v reflect.Value) reflect.Value {
    if v.Kind() == reflect.Interface {
        f.ignoreNextType = false
        if !v.IsNil() {
            v = v.Elem()
        }
    }
    return v
}

// formatPtr handles formatting of pointers by indirecting them as necessary.
func (f *formatState) formatPtr(v reflect.Value) {
    // Display nil if top level pointer is nil.
    showTypes := f.fs.Flag('#')
    if v.IsNil() && (!showTypes || f.ignoreNextType) {
        f.fs.Write(nilAngleBytes)
        return
    }

    // Remove pointers at or below the current depth from map used to detect
    // circular refs.
    for k, depth := range f.pointers {
        if depth >= f.depth {
            delete(f.pointers, k)
        }
    }

    // Keep list of all dereferenced pointers to possibly show later.
    pointerChain := make([]uintptr, 0)

    // Figure out how many levels of indirection there are by derferencing
    // pointers and unpacking interfaces down the chain while detecting circular
    // references.
    nilFound := false
    cycleFound := false
    indirects := 0
    ve := v
    for ve.Kind() == reflect.Ptr {
        if ve.IsNil() {
            nilFound = true
            break
        }
        indirects++
        addr := ve.Pointer()
        pointerChain = append(pointerChain, addr)
        if pd, ok := f.pointers[addr]; ok && pd < f.depth {
            cycleFound = true
            indirects--
            break
        }
        f.pointers[addr] = f.depth

        ve = ve.Elem()
        if ve.Kind() == reflect.Interface {
            if ve.IsNil() {
                nilFound = true
                break
            }
            ve = ve.Elem()
        }
    }

    // Display type or indirection level depending on flags.
    if showTypes && !f.ignoreNextType {
        f.fs.Write(openParenBytes)
        f.fs.Write(bytes.Repeat(asteriskBytes, indirects))
        f.fs.Write([]byte(ve.Type().String()))
        f.fs.Write(closeParenBytes)
    } else {
        if nilFound || cycleFound {
            indirects += strings.Count(ve.Type().String(), "*")
        }
        f.fs.Write(openAngleBytes)
        f.fs.Write([]byte(strings.Repeat("*", indirects)))
        f.fs.Write(closeAngleBytes)
    }

    // Display pointer information depending on flags.
    if f.fs.Flag('+') && (len(pointerChain) > 0) {
        f.fs.Write(openParenBytes)
        for i, addr := range pointerChain {
            if i > 0 {
                f.fs.Write(pointerChainBytes)
            }
            printHexPtr(f.fs, addr)
        }
        f.fs.Write(closeParenBytes)
    }

    // Display dereferenced value.
    switch {
    case nilFound == true:
        f.fs.Write(nilAngleBytes)

    case cycleFound == true:
        f.fs.Write(circularShortBytes)

    default:
        f.ignoreNextType = true
        f.format(ve)
    }
}

// format is the main workhorse for providing the Formatter interface.  It
// uses the passed reflect value to figure out what kind of object we are
// dealing with and formats it appropriately.  It is a recursive function,
// however circular data structures are detected and handled properly.
func (f *formatState) format(v reflect.Value) {
    // Handle invalid reflect values immediately.
    kind := v.Kind()
    if kind == reflect.Invalid {
        f.fs.Write(invalidAngleBytes)
        return
    }

    // Handle pointers specially.
    if kind == reflect.Ptr {
        f.formatPtr(v)
        return
    }

    // Print type information unless already handled elsewhere.
    if !f.ignoreNextType && f.fs.Flag('#') {
        f.fs.Write(openParenBytes)
        f.fs.Write([]byte(v.Type().String()))
        f.fs.Write(closeParenBytes)
    }
    f.ignoreNextType = false

    // Call Stringer/error interfaces if they exist and the handle methods
    // flag is enabled.
    if !f.cs.DisableMethods {
        if (kind != reflect.Invalid) && (kind != reflect.Interface) {
            if handled := handleMethods(f.cs, f.fs, v); handled {
                return
            }
        }
    }

    switch kind {
    case reflect.Invalid:
        // Do nothing.  We should never get here since invalid has already
        // been handled above.

    case reflect.Bool:
        printBool(f.fs, v.Bool())

    case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Int:
        printInt(f.fs, v.Int(), 10)

    case reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uint:
        printUint(f.fs, v.Uint(), 10)

    case reflect.Float32:
        printFloat(f.fs, v.Float(), 32)

    case reflect.Float64:
        printFloat(f.fs, v.Float(), 64)

    case reflect.Complex64:
        printComplex(f.fs, v.Complex(), 32)

    case reflect.Complex128:
        printComplex(f.fs, v.Complex(), 64)

    case reflect.Slice:
        if v.IsNil() {
            f.fs.Write(nilAngleBytes)
            break
        }
        fallthrough

    case reflect.Array:
        f.fs.Write(openBracketBytes)
        f.depth++
        if (f.cs.MaxDepth != 0) && (f.depth > f.cs.MaxDepth) {
            f.fs.Write(maxShortBytes)
        } else {
            numEntries := v.Len()
            for i := 0; i < numEntries; i++ {
                if i > 0 {
                    f.fs.Write(spaceBytes)
                }
                f.ignoreNextType = true
                f.format(f.unpackValue(v.Index(i)))
            }
        }
        f.depth--
        f.fs.Write(closeBracketBytes)

    case reflect.String:
        f.fs.Write([]byte(v.String()))

    case reflect.Interface:
        // The only time we should get here is for nil interfaces due to
        // unpackValue calls.
        if v.IsNil() {
            f.fs.Write(nilAngleBytes)
        }

    case reflect.Ptr:
        // Do nothing.  We should never get here since pointers have already
        // been handled above.

    case reflect.Map:
        // nil maps should be indicated as different than empty maps
        if v.IsNil() {
            f.fs.Write(nilAngleBytes)
            break
        }

        f.fs.Write(openMapBytes)
        f.depth++
        if (f.cs.MaxDepth != 0) && (f.depth > f.cs.MaxDepth) {
            f.fs.Write(maxShortBytes)
        } else {
            keys := v.MapKeys()
            if f.cs.SortKeys {
                sortValues(keys, f.cs)
            }
            for i, key := range keys {
                if i > 0 {
                    f.fs.Write(spaceBytes)
                }
                f.ignoreNextType = true
                f.format(f.unpackValue(key))
                f.fs.Write(colonBytes)
                f.ignoreNextType = true
                f.format(f.unpackValue(v.MapIndex(key)))
            }
        }
        f.depth--
        f.fs.Write(closeMapBytes)

    case reflect.Struct:
        numFields := v.NumField()
        f.fs.Write(openBraceBytes)
        f.depth++
        if (f.cs.MaxDepth != 0) && (f.depth > f.cs.MaxDepth) {
            f.fs.Write(maxShortBytes)
        } else {
            vt := v.Type()
            for i := 0; i < numFields; i++ {
                if i > 0 {
                    f.fs.Write(spaceBytes)
                }
                vtf := vt.Field(i)
                if f.fs.Flag('+') || f.fs.Flag('#') {
                    f.fs.Write([]byte(vtf.Name))
                    f.fs.Write(colonBytes)
                }
                f.format(f.unpackValue(v.Field(i)))
            }
        }
        f.depth--
        f.fs.Write(closeBraceBytes)

    case reflect.Uintptr:
        printHexPtr(f.fs, uintptr(v.Uint()))

    case reflect.UnsafePointer, reflect.Chan, reflect.Func:
        printHexPtr(f.fs, v.Pointer())

    // There were not any other types at the time this code was written, but
    // fall back to letting the default fmt package handle it if any get added.
    default:
        format := f.buildDefaultFormat()
        if v.CanInterface() {
            fmt.Fprintf(f.fs, format, v.Interface())
        } else {
            fmt.Fprintf(f.fs, format, v.String())
        }
    }
}

// Format satisfies the fmt.Formatter interface. See NewFormatter for usage
// details.
func (f *formatState) Format(fs fmt.State, verb rune) {
    f.fs = fs

    // Use standard formatting for verbs that are not v.
    if verb != 'v' {
        format := f.constructOrigFormat(verb)
        fmt.Fprintf(fs, format, f.value)
        return
    }

    if f.value == nil {
        if fs.Flag('#') {
            fs.Write(interfaceBytes)
        }
        fs.Write(nilAngleBytes)
        return
    }

    f.format(reflect.ValueOf(f.value))
}

// newFormatter is a helper function to consolidate the logic from the various
// public methods which take varying config states.
func newFormatter(cs *ConfigState, v interface{}) fmt.Formatter {
    fs := &formatState{value: v, cs: cs}
    fs.pointers = make(map[uintptr]int)
    return fs
}

/*
NewFormatter returns a custom formatter that satisfies the fmt.Formatter
interface.  As a result, it integrates cleanly with standard fmt package
printing functions.  The formatter is useful for inline printing of smaller data
types similar to the standard %v format specifier.

The custom formatter only responds to the %v (most compact), %+v (adds pointer
addresses), %#v (adds types), or %#+v (adds types and pointer addresses) verb
combinations.  Any other verbs such as %x and %q will be sent to the the
standard fmt package for formatting.  In addition, the custom formatter ignores
the width and precision arguments (however they will still work on the format
specifiers not handled by the custom formatter).

Typically this function shouldn't be called directly.  It is much easier to make
use of the custom formatter by calling one of the convenience functions such as
Printf, Println, or Fprintf.
*/
func NewFormatter(v interface{}) fmt.Formatter {
    return newFormatter(&Config, v)
}