aboutsummaryrefslogtreecommitdiffstats
path: root/trie/iterator.go
blob: 8cad51aff439b69b50036267e67c88a02a697912 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
// Copyright 2014 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.

package trie

import "github.com/ethereum/go-ethereum/common"

// Iterator is a key-value trie iterator that traverses a Trie.
type Iterator struct {
    trie   *Trie
    nodeIt *NodeIterator
    keyBuf []byte

    Key   []byte // Current data key on which the iterator is positioned on
    Value []byte // Current data value on which the iterator is positioned on
}

// NewIterator creates a new key-value iterator.
func NewIterator(trie *Trie) *Iterator {
    return &Iterator{
        trie:   trie,
        nodeIt: NewNodeIterator(trie),
        keyBuf: make([]byte, 0, 64),
        Key:    nil,
    }
}

// Next moves the iterator forward one key-value entry.
func (it *Iterator) Next() bool {
    for it.nodeIt.Next() {
        if it.nodeIt.Leaf {
            it.Key = it.makeKey()
            it.Value = it.nodeIt.LeafBlob
            return true
        }
    }
    it.Key = nil
    it.Value = nil
    return false
}

func (it *Iterator) makeKey() []byte {
    key := it.keyBuf[:0]
    for _, se := range it.nodeIt.stack {
        switch node := se.node.(type) {
        case fullNode:
            if se.child <= 16 {
                key = append(key, byte(se.child))
            }
        case shortNode:
            if hasTerm(node.Key) {
                key = append(key, node.Key[:len(node.Key)-1]...)
            } else {
                key = append(key, node.Key...)
            }
        }
    }
    return decodeCompact(key)
}

// nodeIteratorState represents the iteration state at one particular node of the
// trie, which can be resumed at a later invocation.
type nodeIteratorState struct {
    hash   common.Hash // Hash of the node being iterated (nil if not standalone)
    node   node        // Trie node being iterated
    parent common.Hash // Hash of the first full ancestor node (nil if current is the root)
    child  int         // Child to be processed next
}

// NodeIterator is an iterator to traverse the trie post-order.
type NodeIterator struct {
    trie  *Trie                // Trie being iterated
    stack []*nodeIteratorState // Hierarchy of trie nodes persisting the iteration state

    Hash     common.Hash // Hash of the current node being iterated (nil if not standalone)
    Node     node        // Current node being iterated (internal representation)
    Parent   common.Hash // Hash of the first full ancestor node (nil if current is the root)
    Leaf     bool        // Flag whether the current node is a value (data) node
    LeafBlob []byte      // Data blob contained within a leaf (otherwise nil)

    Error error // Failure set in case of an internal error in the iterator
}

// NewNodeIterator creates an post-order trie iterator.
func NewNodeIterator(trie *Trie) *NodeIterator {
    if trie.Hash() == emptyState {
        return new(NodeIterator)
    }
    return &NodeIterator{trie: trie}
}

// Next moves the iterator to the next node, returning whether there are any
// further nodes. In case of an internal error this method returns false and
// sets the Error field to the encountered failure.
func (it *NodeIterator) Next() bool {
    // If the iterator failed previously, don't do anything
    if it.Error != nil {
        return false
    }
    // Otherwise step forward with the iterator and report any errors
    if err := it.step(); err != nil {
        it.Error = err
        return false
    }
    return it.retrieve()
}

// step moves the iterator to the next node of the trie.
func (it *NodeIterator) step() error {
    if it.trie == nil {
        // Abort if we reached the end of the iteration
        return nil
    }
    if len(it.stack) == 0 {
        // Initialize the iterator if we've just started.
        root := it.trie.Hash()
        state := &nodeIteratorState{node: it.trie.root, child: -1}
        if root != emptyRoot {
            state.hash = root
        }
        it.stack = append(it.stack, state)
    } else {
        // Continue iterating at the previous node otherwise.
        it.stack = it.stack[:len(it.stack)-1]
        if len(it.stack) == 0 {
            it.trie = nil
            return nil
        }
    }

    // Continue iteration to the next child
    for {
        parent := it.stack[len(it.stack)-1]
        ancestor := parent.hash
        if (ancestor == common.Hash{}) {
            ancestor = parent.parent
        }
        if node, ok := parent.node.(fullNode); ok {
            // Full node, traverse all children, then the node itself
            if parent.child >= len(node.Children) {
                break
            }
            for parent.child++; parent.child < len(node.Children); parent.child++ {
                if current := node.Children[parent.child]; current != nil {
                    it.stack = append(it.stack, &nodeIteratorState{
                        hash:   common.BytesToHash(node.hash),
                        node:   current,
                        parent: ancestor,
                        child:  -1,
                    })
                    break
                }
            }
        } else if node, ok := parent.node.(shortNode); ok {
            // Short node, traverse the pointer singleton child, then the node itself
            if parent.child >= 0 {
                break
            }
            parent.child++
            it.stack = append(it.stack, &nodeIteratorState{
                hash:   common.BytesToHash(node.hash),
                node:   node.Val,
                parent: ancestor,
                child:  -1,
            })
        } else if hash, ok := parent.node.(hashNode); ok {
            // Hash node, resolve the hash child from the database, then the node itself
            if parent.child >= 0 {
                break
            }
            parent.child++

            node, err := it.trie.resolveHash(hash, nil, nil)
            if err != nil {
                return err
            }
            it.stack = append(it.stack, &nodeIteratorState{
                hash:   common.BytesToHash(hash),
                node:   node,
                parent: ancestor,
                child:  -1,
            })
        } else {
            break
        }
    }
    return nil
}

// retrieve pulls and caches the current trie node the iterator is traversing.
// In case of a value node, the additional leaf blob is also populated with the
// data contents for external interpretation.
//
// The method returns whether there are any more data left for inspection.
func (it *NodeIterator) retrieve() bool {
    // Clear out any previously set values
    it.Hash, it.Node, it.Parent, it.Leaf, it.LeafBlob = common.Hash{}, nil, common.Hash{}, false, nil

    // If the iteration's done, return no available data
    if it.trie == nil {
        return false
    }
    // Otherwise retrieve the current node and resolve leaf accessors
    state := it.stack[len(it.stack)-1]

    it.Hash, it.Node, it.Parent = state.hash, state.node, state.parent
    if value, ok := it.Node.(valueNode); ok {
        it.Leaf, it.LeafBlob = true, []byte(value)
    }
    return true
}