aboutsummaryrefslogtreecommitdiffstats
path: root/crypto/crypto.go
blob: 4567fafc729c9336b9fd99ce65fea9be1b7b47ea (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
// Copyright 2014 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.

package crypto

import (
    "crypto/ecdsa"
    "crypto/elliptic"
    "crypto/rand"
    "encoding/hex"
    "errors"
    "fmt"
    "io"
    "io/ioutil"
    "math/big"
    "os"

    "github.com/ethereum/go-ethereum/common"
    "github.com/ethereum/go-ethereum/common/math"
    "github.com/ethereum/go-ethereum/rlp"
    "golang.org/x/crypto/sha3"
)

var (
    secp256k1N, _  = new(big.Int).SetString("fffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141", 16)
    secp256k1halfN = new(big.Int).Div(secp256k1N, big.NewInt(2))
)

var errInvalidPubkey = errors.New("invalid secp256k1 public key")

// Keccak256 calculates and returns the Keccak256 hash of the input data.
func Keccak256(data ...[]byte) []byte {
    d := sha3.NewLegacyKeccak256()
    for _, b := range data {
        d.Write(b)
    }
    return d.Sum(nil)
}

// Keccak256Hash calculates and returns the Keccak256 hash of the input data,
// converting it to an internal Hash data structure.
func Keccak256Hash(data ...[]byte) (h common.Hash) {
    d := sha3.NewLegacyKeccak256()
    for _, b := range data {
        d.Write(b)
    }
    d.Sum(h[:0])
    return h
}

// Keccak512 calculates and returns the Keccak512 hash of the input data.
func Keccak512(data ...[]byte) []byte {
    d := sha3.NewLegacyKeccak512()
    for _, b := range data {
        d.Write(b)
    }
    return d.Sum(nil)
}

// CreateAddress creates an ethereum address given the bytes and the nonce
func CreateAddress(b common.Address, nonce uint64) common.Address {
    data, _ := rlp.EncodeToBytes([]interface{}{b, nonce})
    return common.BytesToAddress(Keccak256(data)[12:])
}

// CreateAddress2 creates an ethereum address given the address bytes, initial
// contract code hash and a salt.
func CreateAddress2(b common.Address, salt [32]byte, inithash []byte) common.Address {
    return common.BytesToAddress(Keccak256([]byte{0xff}, b.Bytes(), salt[:], inithash)[12:])
}

// ToECDSA creates a private key with the given D value.
func ToECDSA(d []byte) (*ecdsa.PrivateKey, error) {
    return toECDSA(d, true)
}

// ToECDSAUnsafe blindly converts a binary blob to a private key. It should almost
// never be used unless you are sure the input is valid and want to avoid hitting
// errors due to bad origin encoding (0 prefixes cut off).
func ToECDSAUnsafe(d []byte) *ecdsa.PrivateKey {
    priv, _ := toECDSA(d, false)
    return priv
}

// toECDSA creates a private key with the given D value. The strict parameter
// controls whether the key's length should be enforced at the curve size or
// it can also accept legacy encodings (0 prefixes).
func toECDSA(d []byte, strict bool) (*ecdsa.PrivateKey, error) {
    priv := new(ecdsa.PrivateKey)
    priv.PublicKey.Curve = S256()
    if strict && 8*len(d) != priv.Params().BitSize {
        return nil, fmt.Errorf("invalid length, need %d bits", priv.Params().BitSize)
    }
    priv.D = new(big.Int).SetBytes(d)

    // The priv.D must < N
    if priv.D.Cmp(secp256k1N) >= 0 {
        return nil, fmt.Errorf("invalid private key, >=N")
    }
    // The priv.D must not be zero or negative.
    if priv.D.Sign() <= 0 {
        return nil, fmt.Errorf("invalid private key, zero or negative")
    }

    priv.PublicKey.X, priv.PublicKey.Y = priv.PublicKey.Curve.ScalarBaseMult(d)
    if priv.PublicKey.X == nil {
        return nil, errors.New("invalid private key")
    }
    return priv, nil
}

// FromECDSA exports a private key into a binary dump.
func FromECDSA(priv *ecdsa.PrivateKey) []byte {
    if priv == nil {
        return nil
    }
    return math.PaddedBigBytes(priv.D, priv.Params().BitSize/8)
}

// UnmarshalPubkey converts bytes to a secp256k1 public key.
func UnmarshalPubkey(pub []byte) (*ecdsa.PublicKey, error) {
    x, y := elliptic.Unmarshal(S256(), pub)
    if x == nil {
        return nil, errInvalidPubkey
    }
    return &ecdsa.PublicKey{Curve: S256(), X: x, Y: y}, nil
}

func FromECDSAPub(pub *ecdsa.PublicKey) []byte {
    if pub == nil || pub.X == nil || pub.Y == nil {
        return nil
    }
    return elliptic.Marshal(S256(), pub.X, pub.Y)
}

// HexToECDSA parses a secp256k1 private key.
func HexToECDSA(hexkey string) (*ecdsa.PrivateKey, error) {
    b, err := hex.DecodeString(hexkey)
    if err != nil {
        return nil, errors.New("invalid hex string")
    }
    return ToECDSA(b)
}

// LoadECDSA loads a secp256k1 private key from the given file.
func LoadECDSA(file string) (*ecdsa.PrivateKey, error) {
    buf := make([]byte, 64)
    fd, err := os.Open(file)
    if err != nil {
        return nil, err
    }
    defer fd.Close()
    if _, err := io.ReadFull(fd, buf); err != nil {
        return nil, err
    }

    key, err := hex.DecodeString(string(buf))
    if err != nil {
        return nil, err
    }
    return ToECDSA(key)
}

// SaveECDSA saves a secp256k1 private key to the given file with
// restrictive permissions. The key data is saved hex-encoded.
func SaveECDSA(file string, key *ecdsa.PrivateKey) error {
    k := hex.EncodeToString(FromECDSA(key))
    return ioutil.WriteFile(file, []byte(k), 0600)
}

func GenerateKey() (*ecdsa.PrivateKey, error) {
    return ecdsa.GenerateKey(S256(), rand.Reader)
}

// ValidateSignatureValues verifies whether the signature values are valid with
// the given chain rules. The v value is assumed to be either 0 or 1.
func ValidateSignatureValues(v byte, r, s *big.Int, homestead bool) bool {
    if r.Cmp(common.Big1) < 0 || s.Cmp(common.Big1) < 0 {
        return false
    }
    // reject upper range of s values (ECDSA malleability)
    // see discussion in secp256k1/libsecp256k1/include/secp256k1.h
    if homestead && s.Cmp(secp256k1halfN) > 0 {
        return false
    }
    // Frontier: allow s to be in full N range
    return r.Cmp(secp256k1N) < 0 && s.Cmp(secp256k1N) < 0 && (v == 0 || v == 1)
}

func PubkeyToAddress(p ecdsa.PublicKey) common.Address {
    pubBytes := FromECDSAPub(&p)
    return common.BytesToAddress(Keccak256(pubBytes[1:])[12:])
}

func zeroBytes(bytes []byte) {
    for i := range bytes {
        bytes[i] = 0
    }
}