aboutsummaryrefslogtreecommitdiffstats
path: root/crypto/secp256k1/libsecp256k1/src/tests_exhaustive.c
diff options
context:
space:
mode:
Diffstat (limited to 'crypto/secp256k1/libsecp256k1/src/tests_exhaustive.c')
-rw-r--r--crypto/secp256k1/libsecp256k1/src/tests_exhaustive.c470
1 files changed, 0 insertions, 470 deletions
diff --git a/crypto/secp256k1/libsecp256k1/src/tests_exhaustive.c b/crypto/secp256k1/libsecp256k1/src/tests_exhaustive.c
deleted file mode 100644
index b040bb073..000000000
--- a/crypto/secp256k1/libsecp256k1/src/tests_exhaustive.c
+++ /dev/null
@@ -1,470 +0,0 @@
-/***********************************************************************
- * Copyright (c) 2016 Andrew Poelstra *
- * Distributed under the MIT software license, see the accompanying *
- * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
- **********************************************************************/
-
-#if defined HAVE_CONFIG_H
-#include "libsecp256k1-config.h"
-#endif
-
-#include <stdio.h>
-#include <stdlib.h>
-
-#include <time.h>
-
-#undef USE_ECMULT_STATIC_PRECOMPUTATION
-
-#ifndef EXHAUSTIVE_TEST_ORDER
-/* see group_impl.h for allowable values */
-#define EXHAUSTIVE_TEST_ORDER 13
-#define EXHAUSTIVE_TEST_LAMBDA 9 /* cube root of 1 mod 13 */
-#endif
-
-#include "include/secp256k1.h"
-#include "group.h"
-#include "secp256k1.c"
-#include "testrand_impl.h"
-
-#ifdef ENABLE_MODULE_RECOVERY
-#include "src/modules/recovery/main_impl.h"
-#include "include/secp256k1_recovery.h"
-#endif
-
-/** stolen from tests.c */
-void ge_equals_ge(const secp256k1_ge *a, const secp256k1_ge *b) {
- CHECK(a->infinity == b->infinity);
- if (a->infinity) {
- return;
- }
- CHECK(secp256k1_fe_equal_var(&a->x, &b->x));
- CHECK(secp256k1_fe_equal_var(&a->y, &b->y));
-}
-
-void ge_equals_gej(const secp256k1_ge *a, const secp256k1_gej *b) {
- secp256k1_fe z2s;
- secp256k1_fe u1, u2, s1, s2;
- CHECK(a->infinity == b->infinity);
- if (a->infinity) {
- return;
- }
- /* Check a.x * b.z^2 == b.x && a.y * b.z^3 == b.y, to avoid inverses. */
- secp256k1_fe_sqr(&z2s, &b->z);
- secp256k1_fe_mul(&u1, &a->x, &z2s);
- u2 = b->x; secp256k1_fe_normalize_weak(&u2);
- secp256k1_fe_mul(&s1, &a->y, &z2s); secp256k1_fe_mul(&s1, &s1, &b->z);
- s2 = b->y; secp256k1_fe_normalize_weak(&s2);
- CHECK(secp256k1_fe_equal_var(&u1, &u2));
- CHECK(secp256k1_fe_equal_var(&s1, &s2));
-}
-
-void random_fe(secp256k1_fe *x) {
- unsigned char bin[32];
- do {
- secp256k1_rand256(bin);
- if (secp256k1_fe_set_b32(x, bin)) {
- return;
- }
- } while(1);
-}
-/** END stolen from tests.c */
-
-int secp256k1_nonce_function_smallint(unsigned char *nonce32, const unsigned char *msg32,
- const unsigned char *key32, const unsigned char *algo16,
- void *data, unsigned int attempt) {
- secp256k1_scalar s;
- int *idata = data;
- (void)msg32;
- (void)key32;
- (void)algo16;
- /* Some nonces cannot be used because they'd cause s and/or r to be zero.
- * The signing function has retry logic here that just re-calls the nonce
- * function with an increased `attempt`. So if attempt > 0 this means we
- * need to change the nonce to avoid an infinite loop. */
- if (attempt > 0) {
- *idata = (*idata + 1) % EXHAUSTIVE_TEST_ORDER;
- }
- secp256k1_scalar_set_int(&s, *idata);
- secp256k1_scalar_get_b32(nonce32, &s);
- return 1;
-}
-
-#ifdef USE_ENDOMORPHISM
-void test_exhaustive_endomorphism(const secp256k1_ge *group, int order) {
- int i;
- for (i = 0; i < order; i++) {
- secp256k1_ge res;
- secp256k1_ge_mul_lambda(&res, &group[i]);
- ge_equals_ge(&group[i * EXHAUSTIVE_TEST_LAMBDA % EXHAUSTIVE_TEST_ORDER], &res);
- }
-}
-#endif
-
-void test_exhaustive_addition(const secp256k1_ge *group, const secp256k1_gej *groupj, int order) {
- int i, j;
-
- /* Sanity-check (and check infinity functions) */
- CHECK(secp256k1_ge_is_infinity(&group[0]));
- CHECK(secp256k1_gej_is_infinity(&groupj[0]));
- for (i = 1; i < order; i++) {
- CHECK(!secp256k1_ge_is_infinity(&group[i]));
- CHECK(!secp256k1_gej_is_infinity(&groupj[i]));
- }
-
- /* Check all addition formulae */
- for (j = 0; j < order; j++) {
- secp256k1_fe fe_inv;
- secp256k1_fe_inv(&fe_inv, &groupj[j].z);
- for (i = 0; i < order; i++) {
- secp256k1_ge zless_gej;
- secp256k1_gej tmp;
- /* add_var */
- secp256k1_gej_add_var(&tmp, &groupj[i], &groupj[j], NULL);
- ge_equals_gej(&group[(i + j) % order], &tmp);
- /* add_ge */
- if (j > 0) {
- secp256k1_gej_add_ge(&tmp, &groupj[i], &group[j]);
- ge_equals_gej(&group[(i + j) % order], &tmp);
- }
- /* add_ge_var */
- secp256k1_gej_add_ge_var(&tmp, &groupj[i], &group[j], NULL);
- ge_equals_gej(&group[(i + j) % order], &tmp);
- /* add_zinv_var */
- zless_gej.infinity = groupj[j].infinity;
- zless_gej.x = groupj[j].x;
- zless_gej.y = groupj[j].y;
- secp256k1_gej_add_zinv_var(&tmp, &groupj[i], &zless_gej, &fe_inv);
- ge_equals_gej(&group[(i + j) % order], &tmp);
- }
- }
-
- /* Check doubling */
- for (i = 0; i < order; i++) {
- secp256k1_gej tmp;
- if (i > 0) {
- secp256k1_gej_double_nonzero(&tmp, &groupj[i], NULL);
- ge_equals_gej(&group[(2 * i) % order], &tmp);
- }
- secp256k1_gej_double_var(&tmp, &groupj[i], NULL);
- ge_equals_gej(&group[(2 * i) % order], &tmp);
- }
-
- /* Check negation */
- for (i = 1; i < order; i++) {
- secp256k1_ge tmp;
- secp256k1_gej tmpj;
- secp256k1_ge_neg(&tmp, &group[i]);
- ge_equals_ge(&group[order - i], &tmp);
- secp256k1_gej_neg(&tmpj, &groupj[i]);
- ge_equals_gej(&group[order - i], &tmpj);
- }
-}
-
-void test_exhaustive_ecmult(const secp256k1_context *ctx, const secp256k1_ge *group, const secp256k1_gej *groupj, int order) {
- int i, j, r_log;
- for (r_log = 1; r_log < order; r_log++) {
- for (j = 0; j < order; j++) {
- for (i = 0; i < order; i++) {
- secp256k1_gej tmp;
- secp256k1_scalar na, ng;
- secp256k1_scalar_set_int(&na, i);
- secp256k1_scalar_set_int(&ng, j);
-
- secp256k1_ecmult(&ctx->ecmult_ctx, &tmp, &groupj[r_log], &na, &ng);
- ge_equals_gej(&group[(i * r_log + j) % order], &tmp);
-
- if (i > 0) {
- secp256k1_ecmult_const(&tmp, &group[i], &ng);
- ge_equals_gej(&group[(i * j) % order], &tmp);
- }
- }
- }
- }
-}
-
-void r_from_k(secp256k1_scalar *r, const secp256k1_ge *group, int k) {
- secp256k1_fe x;
- unsigned char x_bin[32];
- k %= EXHAUSTIVE_TEST_ORDER;
- x = group[k].x;
- secp256k1_fe_normalize(&x);
- secp256k1_fe_get_b32(x_bin, &x);
- secp256k1_scalar_set_b32(r, x_bin, NULL);
-}
-
-void test_exhaustive_verify(const secp256k1_context *ctx, const secp256k1_ge *group, int order) {
- int s, r, msg, key;
- for (s = 1; s < order; s++) {
- for (r = 1; r < order; r++) {
- for (msg = 1; msg < order; msg++) {
- for (key = 1; key < order; key++) {
- secp256k1_ge nonconst_ge;
- secp256k1_ecdsa_signature sig;
- secp256k1_pubkey pk;
- secp256k1_scalar sk_s, msg_s, r_s, s_s;
- secp256k1_scalar s_times_k_s, msg_plus_r_times_sk_s;
- int k, should_verify;
- unsigned char msg32[32];
-
- secp256k1_scalar_set_int(&s_s, s);
- secp256k1_scalar_set_int(&r_s, r);
- secp256k1_scalar_set_int(&msg_s, msg);
- secp256k1_scalar_set_int(&sk_s, key);
-
- /* Verify by hand */
- /* Run through every k value that gives us this r and check that *one* works.
- * Note there could be none, there could be multiple, ECDSA is weird. */
- should_verify = 0;
- for (k = 0; k < order; k++) {
- secp256k1_scalar check_x_s;
- r_from_k(&check_x_s, group, k);
- if (r_s == check_x_s) {
- secp256k1_scalar_set_int(&s_times_k_s, k);
- secp256k1_scalar_mul(&s_times_k_s, &s_times_k_s, &s_s);
- secp256k1_scalar_mul(&msg_plus_r_times_sk_s, &r_s, &sk_s);
- secp256k1_scalar_add(&msg_plus_r_times_sk_s, &msg_plus_r_times_sk_s, &msg_s);
- should_verify |= secp256k1_scalar_eq(&s_times_k_s, &msg_plus_r_times_sk_s);
- }
- }
- /* nb we have a "high s" rule */
- should_verify &= !secp256k1_scalar_is_high(&s_s);
-
- /* Verify by calling verify */
- secp256k1_ecdsa_signature_save(&sig, &r_s, &s_s);
- memcpy(&nonconst_ge, &group[sk_s], sizeof(nonconst_ge));
- secp256k1_pubkey_save(&pk, &nonconst_ge);
- secp256k1_scalar_get_b32(msg32, &msg_s);
- CHECK(should_verify ==
- secp256k1_ecdsa_verify(ctx, &sig, msg32, &pk));
- }
- }
- }
- }
-}
-
-void test_exhaustive_sign(const secp256k1_context *ctx, const secp256k1_ge *group, int order) {
- int i, j, k;
-
- /* Loop */
- for (i = 1; i < order; i++) { /* message */
- for (j = 1; j < order; j++) { /* key */
- for (k = 1; k < order; k++) { /* nonce */
- const int starting_k = k;
- secp256k1_ecdsa_signature sig;
- secp256k1_scalar sk, msg, r, s, expected_r;
- unsigned char sk32[32], msg32[32];
- secp256k1_scalar_set_int(&msg, i);
- secp256k1_scalar_set_int(&sk, j);
- secp256k1_scalar_get_b32(sk32, &sk);
- secp256k1_scalar_get_b32(msg32, &msg);
-
- secp256k1_ecdsa_sign(ctx, &sig, msg32, sk32, secp256k1_nonce_function_smallint, &k);
-
- secp256k1_ecdsa_signature_load(ctx, &r, &s, &sig);
- /* Note that we compute expected_r *after* signing -- this is important
- * because our nonce-computing function function might change k during
- * signing. */
- r_from_k(&expected_r, group, k);
- CHECK(r == expected_r);
- CHECK((k * s) % order == (i + r * j) % order ||
- (k * (EXHAUSTIVE_TEST_ORDER - s)) % order == (i + r * j) % order);
-
- /* Overflow means we've tried every possible nonce */
- if (k < starting_k) {
- break;
- }
- }
- }
- }
-
- /* We would like to verify zero-knowledge here by counting how often every
- * possible (s, r) tuple appears, but because the group order is larger
- * than the field order, when coercing the x-values to scalar values, some
- * appear more often than others, so we are actually not zero-knowledge.
- * (This effect also appears in the real code, but the difference is on the
- * order of 1/2^128th the field order, so the deviation is not useful to a
- * computationally bounded attacker.)
- */
-}
-
-#ifdef ENABLE_MODULE_RECOVERY
-void test_exhaustive_recovery_sign(const secp256k1_context *ctx, const secp256k1_ge *group, int order) {
- int i, j, k;
-
- /* Loop */
- for (i = 1; i < order; i++) { /* message */
- for (j = 1; j < order; j++) { /* key */
- for (k = 1; k < order; k++) { /* nonce */
- const int starting_k = k;
- secp256k1_fe r_dot_y_normalized;
- secp256k1_ecdsa_recoverable_signature rsig;
- secp256k1_ecdsa_signature sig;
- secp256k1_scalar sk, msg, r, s, expected_r;
- unsigned char sk32[32], msg32[32];
- int expected_recid;
- int recid;
- secp256k1_scalar_set_int(&msg, i);
- secp256k1_scalar_set_int(&sk, j);
- secp256k1_scalar_get_b32(sk32, &sk);
- secp256k1_scalar_get_b32(msg32, &msg);
-
- secp256k1_ecdsa_sign_recoverable(ctx, &rsig, msg32, sk32, secp256k1_nonce_function_smallint, &k);
-
- /* Check directly */
- secp256k1_ecdsa_recoverable_signature_load(ctx, &r, &s, &recid, &rsig);
- r_from_k(&expected_r, group, k);
- CHECK(r == expected_r);
- CHECK((k * s) % order == (i + r * j) % order ||
- (k * (EXHAUSTIVE_TEST_ORDER - s)) % order == (i + r * j) % order);
- /* In computing the recid, there is an overflow condition that is disabled in
- * scalar_low_impl.h `secp256k1_scalar_set_b32` because almost every r.y value
- * will exceed the group order, and our signing code always holds out for r
- * values that don't overflow, so with a proper overflow check the tests would
- * loop indefinitely. */
- r_dot_y_normalized = group[k].y;
- secp256k1_fe_normalize(&r_dot_y_normalized);
- /* Also the recovery id is flipped depending if we hit the low-s branch */
- if ((k * s) % order == (i + r * j) % order) {
- expected_recid = secp256k1_fe_is_odd(&r_dot_y_normalized) ? 1 : 0;
- } else {
- expected_recid = secp256k1_fe_is_odd(&r_dot_y_normalized) ? 0 : 1;
- }
- CHECK(recid == expected_recid);
-
- /* Convert to a standard sig then check */
- secp256k1_ecdsa_recoverable_signature_convert(ctx, &sig, &rsig);
- secp256k1_ecdsa_signature_load(ctx, &r, &s, &sig);
- /* Note that we compute expected_r *after* signing -- this is important
- * because our nonce-computing function function might change k during
- * signing. */
- r_from_k(&expected_r, group, k);
- CHECK(r == expected_r);
- CHECK((k * s) % order == (i + r * j) % order ||
- (k * (EXHAUSTIVE_TEST_ORDER - s)) % order == (i + r * j) % order);
-
- /* Overflow means we've tried every possible nonce */
- if (k < starting_k) {
- break;
- }
- }
- }
- }
-}
-
-void test_exhaustive_recovery_verify(const secp256k1_context *ctx, const secp256k1_ge *group, int order) {
- /* This is essentially a copy of test_exhaustive_verify, with recovery added */
- int s, r, msg, key;
- for (s = 1; s < order; s++) {
- for (r = 1; r < order; r++) {
- for (msg = 1; msg < order; msg++) {
- for (key = 1; key < order; key++) {
- secp256k1_ge nonconst_ge;
- secp256k1_ecdsa_recoverable_signature rsig;
- secp256k1_ecdsa_signature sig;
- secp256k1_pubkey pk;
- secp256k1_scalar sk_s, msg_s, r_s, s_s;
- secp256k1_scalar s_times_k_s, msg_plus_r_times_sk_s;
- int recid = 0;
- int k, should_verify;
- unsigned char msg32[32];
-
- secp256k1_scalar_set_int(&s_s, s);
- secp256k1_scalar_set_int(&r_s, r);
- secp256k1_scalar_set_int(&msg_s, msg);
- secp256k1_scalar_set_int(&sk_s, key);
- secp256k1_scalar_get_b32(msg32, &msg_s);
-
- /* Verify by hand */
- /* Run through every k value that gives us this r and check that *one* works.
- * Note there could be none, there could be multiple, ECDSA is weird. */
- should_verify = 0;
- for (k = 0; k < order; k++) {
- secp256k1_scalar check_x_s;
- r_from_k(&check_x_s, group, k);
- if (r_s == check_x_s) {
- secp256k1_scalar_set_int(&s_times_k_s, k);
- secp256k1_scalar_mul(&s_times_k_s, &s_times_k_s, &s_s);
- secp256k1_scalar_mul(&msg_plus_r_times_sk_s, &r_s, &sk_s);
- secp256k1_scalar_add(&msg_plus_r_times_sk_s, &msg_plus_r_times_sk_s, &msg_s);
- should_verify |= secp256k1_scalar_eq(&s_times_k_s, &msg_plus_r_times_sk_s);
- }
- }
- /* nb we have a "high s" rule */
- should_verify &= !secp256k1_scalar_is_high(&s_s);
-
- /* We would like to try recovering the pubkey and checking that it matches,
- * but pubkey recovery is impossible in the exhaustive tests (the reason
- * being that there are 12 nonzero r values, 12 nonzero points, and no
- * overlap between the sets, so there are no valid signatures). */
-
- /* Verify by converting to a standard signature and calling verify */
- secp256k1_ecdsa_recoverable_signature_save(&rsig, &r_s, &s_s, recid);
- secp256k1_ecdsa_recoverable_signature_convert(ctx, &sig, &rsig);
- memcpy(&nonconst_ge, &group[sk_s], sizeof(nonconst_ge));
- secp256k1_pubkey_save(&pk, &nonconst_ge);
- CHECK(should_verify ==
- secp256k1_ecdsa_verify(ctx, &sig, msg32, &pk));
- }
- }
- }
- }
-}
-#endif
-
-int main(void) {
- int i;
- secp256k1_gej groupj[EXHAUSTIVE_TEST_ORDER];
- secp256k1_ge group[EXHAUSTIVE_TEST_ORDER];
-
- /* Build context */
- secp256k1_context *ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY);
-
- /* TODO set z = 1, then do num_tests runs with random z values */
-
- /* Generate the entire group */
- secp256k1_gej_set_infinity(&groupj[0]);
- secp256k1_ge_set_gej(&group[0], &groupj[0]);
- for (i = 1; i < EXHAUSTIVE_TEST_ORDER; i++) {
- /* Set a different random z-value for each Jacobian point */
- secp256k1_fe z;
- random_fe(&z);
-
- secp256k1_gej_add_ge(&groupj[i], &groupj[i - 1], &secp256k1_ge_const_g);
- secp256k1_ge_set_gej(&group[i], &groupj[i]);
- secp256k1_gej_rescale(&groupj[i], &z);
-
- /* Verify against ecmult_gen */
- {
- secp256k1_scalar scalar_i;
- secp256k1_gej generatedj;
- secp256k1_ge generated;
-
- secp256k1_scalar_set_int(&scalar_i, i);
- secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &generatedj, &scalar_i);
- secp256k1_ge_set_gej(&generated, &generatedj);
-
- CHECK(group[i].infinity == 0);
- CHECK(generated.infinity == 0);
- CHECK(secp256k1_fe_equal_var(&generated.x, &group[i].x));
- CHECK(secp256k1_fe_equal_var(&generated.y, &group[i].y));
- }
- }
-
- /* Run the tests */
-#ifdef USE_ENDOMORPHISM
- test_exhaustive_endomorphism(group, EXHAUSTIVE_TEST_ORDER);
-#endif
- test_exhaustive_addition(group, groupj, EXHAUSTIVE_TEST_ORDER);
- test_exhaustive_ecmult(ctx, group, groupj, EXHAUSTIVE_TEST_ORDER);
- test_exhaustive_sign(ctx, group, EXHAUSTIVE_TEST_ORDER);
- test_exhaustive_verify(ctx, group, EXHAUSTIVE_TEST_ORDER);
-
-#ifdef ENABLE_MODULE_RECOVERY
- test_exhaustive_recovery_sign(ctx, group, EXHAUSTIVE_TEST_ORDER);
- test_exhaustive_recovery_verify(ctx, group, EXHAUSTIVE_TEST_ORDER);
-#endif
-
- secp256k1_context_destroy(ctx);
- return 0;
-}
-