diff options
Diffstat (limited to 'crypto/secp256k1/libsecp256k1/src/ecmult_gen_impl.h')
-rw-r--r-- | crypto/secp256k1/libsecp256k1/src/ecmult_gen_impl.h | 205 |
1 files changed, 205 insertions, 0 deletions
diff --git a/crypto/secp256k1/libsecp256k1/src/ecmult_gen_impl.h b/crypto/secp256k1/libsecp256k1/src/ecmult_gen_impl.h new file mode 100644 index 000000000..2ee27377f --- /dev/null +++ b/crypto/secp256k1/libsecp256k1/src/ecmult_gen_impl.h @@ -0,0 +1,205 @@ +/********************************************************************** + * Copyright (c) 2013, 2014, 2015 Pieter Wuille, Gregory Maxwell * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or http://www.opensource.org/licenses/mit-license.php.* + **********************************************************************/ + +#ifndef _SECP256K1_ECMULT_GEN_IMPL_H_ +#define _SECP256K1_ECMULT_GEN_IMPL_H_ + +#include "scalar.h" +#include "group.h" +#include "ecmult_gen.h" +#include "hash_impl.h" +#ifdef USE_ECMULT_STATIC_PRECOMPUTATION +#include "ecmult_static_context.h" +#endif +static void secp256k1_ecmult_gen_context_init(secp256k1_ecmult_gen_context *ctx) { + ctx->prec = NULL; +} + +static void secp256k1_ecmult_gen_context_build(secp256k1_ecmult_gen_context *ctx, const secp256k1_callback* cb) { +#ifndef USE_ECMULT_STATIC_PRECOMPUTATION + secp256k1_ge prec[1024]; + secp256k1_gej gj; + secp256k1_gej nums_gej; + int i, j; +#endif + + if (ctx->prec != NULL) { + return; + } +#ifndef USE_ECMULT_STATIC_PRECOMPUTATION + ctx->prec = (secp256k1_ge_storage (*)[64][16])checked_malloc(cb, sizeof(*ctx->prec)); + + /* get the generator */ + secp256k1_gej_set_ge(&gj, &secp256k1_ge_const_g); + + /* Construct a group element with no known corresponding scalar (nothing up my sleeve). */ + { + static const unsigned char nums_b32[33] = "The scalar for this x is unknown"; + secp256k1_fe nums_x; + secp256k1_ge nums_ge; + VERIFY_CHECK(secp256k1_fe_set_b32(&nums_x, nums_b32)); + VERIFY_CHECK(secp256k1_ge_set_xo_var(&nums_ge, &nums_x, 0)); + secp256k1_gej_set_ge(&nums_gej, &nums_ge); + /* Add G to make the bits in x uniformly distributed. */ + secp256k1_gej_add_ge_var(&nums_gej, &nums_gej, &secp256k1_ge_const_g, NULL); + } + + /* compute prec. */ + { + secp256k1_gej precj[1024]; /* Jacobian versions of prec. */ + secp256k1_gej gbase; + secp256k1_gej numsbase; + gbase = gj; /* 16^j * G */ + numsbase = nums_gej; /* 2^j * nums. */ + for (j = 0; j < 64; j++) { + /* Set precj[j*16 .. j*16+15] to (numsbase, numsbase + gbase, ..., numsbase + 15*gbase). */ + precj[j*16] = numsbase; + for (i = 1; i < 16; i++) { + secp256k1_gej_add_var(&precj[j*16 + i], &precj[j*16 + i - 1], &gbase, NULL); + } + /* Multiply gbase by 16. */ + for (i = 0; i < 4; i++) { + secp256k1_gej_double_var(&gbase, &gbase, NULL); + } + /* Multiply numbase by 2. */ + secp256k1_gej_double_var(&numsbase, &numsbase, NULL); + if (j == 62) { + /* In the last iteration, numsbase is (1 - 2^j) * nums instead. */ + secp256k1_gej_neg(&numsbase, &numsbase); + secp256k1_gej_add_var(&numsbase, &numsbase, &nums_gej, NULL); + } + } + secp256k1_ge_set_all_gej_var(1024, prec, precj, cb); + } + for (j = 0; j < 64; j++) { + for (i = 0; i < 16; i++) { + secp256k1_ge_to_storage(&(*ctx->prec)[j][i], &prec[j*16 + i]); + } + } +#else + (void)cb; + ctx->prec = (secp256k1_ge_storage (*)[64][16])secp256k1_ecmult_static_context; +#endif + secp256k1_ecmult_gen_blind(ctx, NULL); +} + +static int secp256k1_ecmult_gen_context_is_built(const secp256k1_ecmult_gen_context* ctx) { + return ctx->prec != NULL; +} + +static void secp256k1_ecmult_gen_context_clone(secp256k1_ecmult_gen_context *dst, + const secp256k1_ecmult_gen_context *src, const secp256k1_callback* cb) { + if (src->prec == NULL) { + dst->prec = NULL; + } else { +#ifndef USE_ECMULT_STATIC_PRECOMPUTATION + dst->prec = (secp256k1_ge_storage (*)[64][16])checked_malloc(cb, sizeof(*dst->prec)); + memcpy(dst->prec, src->prec, sizeof(*dst->prec)); +#else + (void)cb; + dst->prec = src->prec; +#endif + dst->initial = src->initial; + dst->blind = src->blind; + } +} + +static void secp256k1_ecmult_gen_context_clear(secp256k1_ecmult_gen_context *ctx) { +#ifndef USE_ECMULT_STATIC_PRECOMPUTATION + free(ctx->prec); +#endif + secp256k1_scalar_clear(&ctx->blind); + secp256k1_gej_clear(&ctx->initial); + ctx->prec = NULL; +} + +static void secp256k1_ecmult_gen(const secp256k1_ecmult_gen_context *ctx, secp256k1_gej *r, const secp256k1_scalar *gn) { + secp256k1_ge add; + secp256k1_ge_storage adds; + secp256k1_scalar gnb; + int bits; + int i, j; + memset(&adds, 0, sizeof(adds)); + *r = ctx->initial; + /* Blind scalar/point multiplication by computing (n-b)G + bG instead of nG. */ + secp256k1_scalar_add(&gnb, gn, &ctx->blind); + add.infinity = 0; + for (j = 0; j < 64; j++) { + bits = secp256k1_scalar_get_bits(&gnb, j * 4, 4); + for (i = 0; i < 16; i++) { + /** This uses a conditional move to avoid any secret data in array indexes. + * _Any_ use of secret indexes has been demonstrated to result in timing + * sidechannels, even when the cache-line access patterns are uniform. + * See also: + * "A word of warning", CHES 2013 Rump Session, by Daniel J. Bernstein and Peter Schwabe + * (https://cryptojedi.org/peter/data/chesrump-20130822.pdf) and + * "Cache Attacks and Countermeasures: the Case of AES", RSA 2006, + * by Dag Arne Osvik, Adi Shamir, and Eran Tromer + * (http://www.tau.ac.il/~tromer/papers/cache.pdf) + */ + secp256k1_ge_storage_cmov(&adds, &(*ctx->prec)[j][i], i == bits); + } + secp256k1_ge_from_storage(&add, &adds); + secp256k1_gej_add_ge(r, r, &add); + } + bits = 0; + secp256k1_ge_clear(&add); + secp256k1_scalar_clear(&gnb); +} + +/* Setup blinding values for secp256k1_ecmult_gen. */ +static void secp256k1_ecmult_gen_blind(secp256k1_ecmult_gen_context *ctx, const unsigned char *seed32) { + secp256k1_scalar b; + secp256k1_gej gb; + secp256k1_fe s; + unsigned char nonce32[32]; + secp256k1_rfc6979_hmac_sha256_t rng; + int retry; + unsigned char keydata[64] = {0}; + if (seed32 == NULL) { + /* When seed is NULL, reset the initial point and blinding value. */ + secp256k1_gej_set_ge(&ctx->initial, &secp256k1_ge_const_g); + secp256k1_gej_neg(&ctx->initial, &ctx->initial); + secp256k1_scalar_set_int(&ctx->blind, 1); + } + /* The prior blinding value (if not reset) is chained forward by including it in the hash. */ + secp256k1_scalar_get_b32(nonce32, &ctx->blind); + /** Using a CSPRNG allows a failure free interface, avoids needing large amounts of random data, + * and guards against weak or adversarial seeds. This is a simpler and safer interface than + * asking the caller for blinding values directly and expecting them to retry on failure. + */ + memcpy(keydata, nonce32, 32); + if (seed32 != NULL) { + memcpy(keydata + 32, seed32, 32); + } + secp256k1_rfc6979_hmac_sha256_initialize(&rng, keydata, seed32 ? 64 : 32); + memset(keydata, 0, sizeof(keydata)); + /* Retry for out of range results to achieve uniformity. */ + do { + secp256k1_rfc6979_hmac_sha256_generate(&rng, nonce32, 32); + retry = !secp256k1_fe_set_b32(&s, nonce32); + retry |= secp256k1_fe_is_zero(&s); + } while (retry); + /* Randomize the projection to defend against multiplier sidechannels. */ + secp256k1_gej_rescale(&ctx->initial, &s); + secp256k1_fe_clear(&s); + do { + secp256k1_rfc6979_hmac_sha256_generate(&rng, nonce32, 32); + secp256k1_scalar_set_b32(&b, nonce32, &retry); + /* A blinding value of 0 works, but would undermine the projection hardening. */ + retry |= secp256k1_scalar_is_zero(&b); + } while (retry); + secp256k1_rfc6979_hmac_sha256_finalize(&rng); + memset(nonce32, 0, 32); + secp256k1_ecmult_gen(ctx, &gb, &b); + secp256k1_scalar_negate(&b, &b); + ctx->blind = b; + ctx->initial = gb; + secp256k1_scalar_clear(&b); + secp256k1_gej_clear(&gb); +} + +#endif |