aboutsummaryrefslogtreecommitdiffstats
path: root/crypto/bn256/cloudflare/optate.go
diff options
context:
space:
mode:
Diffstat (limited to 'crypto/bn256/cloudflare/optate.go')
-rw-r--r--crypto/bn256/cloudflare/optate.go271
1 files changed, 271 insertions, 0 deletions
diff --git a/crypto/bn256/cloudflare/optate.go b/crypto/bn256/cloudflare/optate.go
new file mode 100644
index 000000000..b71e50e3a
--- /dev/null
+++ b/crypto/bn256/cloudflare/optate.go
@@ -0,0 +1,271 @@
+package bn256
+
+func lineFunctionAdd(r, p *twistPoint, q *curvePoint, r2 *gfP2) (a, b, c *gfP2, rOut *twistPoint) {
+ // See the mixed addition algorithm from "Faster Computation of the
+ // Tate Pairing", http://arxiv.org/pdf/0904.0854v3.pdf
+ B := (&gfP2{}).Mul(&p.x, &r.t)
+
+ D := (&gfP2{}).Add(&p.y, &r.z)
+ D.Square(D).Sub(D, r2).Sub(D, &r.t).Mul(D, &r.t)
+
+ H := (&gfP2{}).Sub(B, &r.x)
+ I := (&gfP2{}).Square(H)
+
+ E := (&gfP2{}).Add(I, I)
+ E.Add(E, E)
+
+ J := (&gfP2{}).Mul(H, E)
+
+ L1 := (&gfP2{}).Sub(D, &r.y)
+ L1.Sub(L1, &r.y)
+
+ V := (&gfP2{}).Mul(&r.x, E)
+
+ rOut = &twistPoint{}
+ rOut.x.Square(L1).Sub(&rOut.x, J).Sub(&rOut.x, V).Sub(&rOut.x, V)
+
+ rOut.z.Add(&r.z, H).Square(&rOut.z).Sub(&rOut.z, &r.t).Sub(&rOut.z, I)
+
+ t := (&gfP2{}).Sub(V, &rOut.x)
+ t.Mul(t, L1)
+ t2 := (&gfP2{}).Mul(&r.y, J)
+ t2.Add(t2, t2)
+ rOut.y.Sub(t, t2)
+
+ rOut.t.Square(&rOut.z)
+
+ t.Add(&p.y, &rOut.z).Square(t).Sub(t, r2).Sub(t, &rOut.t)
+
+ t2.Mul(L1, &p.x)
+ t2.Add(t2, t2)
+ a = (&gfP2{}).Sub(t2, t)
+
+ c = (&gfP2{}).MulScalar(&rOut.z, &q.y)
+ c.Add(c, c)
+
+ b = (&gfP2{}).Neg(L1)
+ b.MulScalar(b, &q.x).Add(b, b)
+
+ return
+}
+
+func lineFunctionDouble(r *twistPoint, q *curvePoint) (a, b, c *gfP2, rOut *twistPoint) {
+ // See the doubling algorithm for a=0 from "Faster Computation of the
+ // Tate Pairing", http://arxiv.org/pdf/0904.0854v3.pdf
+ A := (&gfP2{}).Square(&r.x)
+ B := (&gfP2{}).Square(&r.y)
+ C := (&gfP2{}).Square(B)
+
+ D := (&gfP2{}).Add(&r.x, B)
+ D.Square(D).Sub(D, A).Sub(D, C).Add(D, D)
+
+ E := (&gfP2{}).Add(A, A)
+ E.Add(E, A)
+
+ G := (&gfP2{}).Square(E)
+
+ rOut = &twistPoint{}
+ rOut.x.Sub(G, D).Sub(&rOut.x, D)
+
+ rOut.z.Add(&r.y, &r.z).Square(&rOut.z).Sub(&rOut.z, B).Sub(&rOut.z, &r.t)
+
+ rOut.y.Sub(D, &rOut.x).Mul(&rOut.y, E)
+ t := (&gfP2{}).Add(C, C)
+ t.Add(t, t).Add(t, t)
+ rOut.y.Sub(&rOut.y, t)
+
+ rOut.t.Square(&rOut.z)
+
+ t.Mul(E, &r.t).Add(t, t)
+ b = (&gfP2{}).Neg(t)
+ b.MulScalar(b, &q.x)
+
+ a = (&gfP2{}).Add(&r.x, E)
+ a.Square(a).Sub(a, A).Sub(a, G)
+ t.Add(B, B).Add(t, t)
+ a.Sub(a, t)
+
+ c = (&gfP2{}).Mul(&rOut.z, &r.t)
+ c.Add(c, c).MulScalar(c, &q.y)
+
+ return
+}
+
+func mulLine(ret *gfP12, a, b, c *gfP2) {
+ a2 := &gfP6{}
+ a2.y.Set(a)
+ a2.z.Set(b)
+ a2.Mul(a2, &ret.x)
+ t3 := (&gfP6{}).MulScalar(&ret.y, c)
+
+ t := (&gfP2{}).Add(b, c)
+ t2 := &gfP6{}
+ t2.y.Set(a)
+ t2.z.Set(t)
+ ret.x.Add(&ret.x, &ret.y)
+
+ ret.y.Set(t3)
+
+ ret.x.Mul(&ret.x, t2).Sub(&ret.x, a2).Sub(&ret.x, &ret.y)
+ a2.MulTau(a2)
+ ret.y.Add(&ret.y, a2)
+}
+
+// sixuPlus2NAF is 6u+2 in non-adjacent form.
+var sixuPlus2NAF = []int8{0, 0, 0, 1, 0, 1, 0, -1, 0, 0, 1, -1, 0, 0, 1, 0,
+ 0, 1, 1, 0, -1, 0, 0, 1, 0, -1, 0, 0, 0, 0, 1, 1,
+ 1, 0, 0, -1, 0, 0, 1, 0, 0, 0, 0, 0, -1, 0, 0, 1,
+ 1, 0, 0, -1, 0, 0, 0, 1, 1, 0, -1, 0, 0, 1, 0, 1, 1}
+
+// miller implements the Miller loop for calculating the Optimal Ate pairing.
+// See algorithm 1 from http://cryptojedi.org/papers/dclxvi-20100714.pdf
+func miller(q *twistPoint, p *curvePoint) *gfP12 {
+ ret := (&gfP12{}).SetOne()
+
+ aAffine := &twistPoint{}
+ aAffine.Set(q)
+ aAffine.MakeAffine()
+
+ bAffine := &curvePoint{}
+ bAffine.Set(p)
+ bAffine.MakeAffine()
+
+ minusA := &twistPoint{}
+ minusA.Neg(aAffine)
+
+ r := &twistPoint{}
+ r.Set(aAffine)
+
+ r2 := (&gfP2{}).Square(&aAffine.y)
+
+ for i := len(sixuPlus2NAF) - 1; i > 0; i-- {
+ a, b, c, newR := lineFunctionDouble(r, bAffine)
+ if i != len(sixuPlus2NAF)-1 {
+ ret.Square(ret)
+ }
+
+ mulLine(ret, a, b, c)
+ r = newR
+
+ switch sixuPlus2NAF[i-1] {
+ case 1:
+ a, b, c, newR = lineFunctionAdd(r, aAffine, bAffine, r2)
+ case -1:
+ a, b, c, newR = lineFunctionAdd(r, minusA, bAffine, r2)
+ default:
+ continue
+ }
+
+ mulLine(ret, a, b, c)
+ r = newR
+ }
+
+ // In order to calculate Q1 we have to convert q from the sextic twist
+ // to the full GF(p^12) group, apply the Frobenius there, and convert
+ // back.
+ //
+ // The twist isomorphism is (x', y') -> (xω², yω³). If we consider just
+ // x for a moment, then after applying the Frobenius, we have x̄ω^(2p)
+ // where x̄ is the conjugate of x. If we are going to apply the inverse
+ // isomorphism we need a value with a single coefficient of ω² so we
+ // rewrite this as x̄ω^(2p-2)ω². ξ⁶ = ω and, due to the construction of
+ // p, 2p-2 is a multiple of six. Therefore we can rewrite as
+ // x̄ξ^((p-1)/3)ω² and applying the inverse isomorphism eliminates the
+ // ω².
+ //
+ // A similar argument can be made for the y value.
+
+ q1 := &twistPoint{}
+ q1.x.Conjugate(&aAffine.x).Mul(&q1.x, xiToPMinus1Over3)
+ q1.y.Conjugate(&aAffine.y).Mul(&q1.y, xiToPMinus1Over2)
+ q1.z.SetOne()
+ q1.t.SetOne()
+
+ // For Q2 we are applying the p² Frobenius. The two conjugations cancel
+ // out and we are left only with the factors from the isomorphism. In
+ // the case of x, we end up with a pure number which is why
+ // xiToPSquaredMinus1Over3 is ∈ GF(p). With y we get a factor of -1. We
+ // ignore this to end up with -Q2.
+
+ minusQ2 := &twistPoint{}
+ minusQ2.x.MulScalar(&aAffine.x, xiToPSquaredMinus1Over3)
+ minusQ2.y.Set(&aAffine.y)
+ minusQ2.z.SetOne()
+ minusQ2.t.SetOne()
+
+ r2.Square(&q1.y)
+ a, b, c, newR := lineFunctionAdd(r, q1, bAffine, r2)
+ mulLine(ret, a, b, c)
+ r = newR
+
+ r2.Square(&minusQ2.y)
+ a, b, c, newR = lineFunctionAdd(r, minusQ2, bAffine, r2)
+ mulLine(ret, a, b, c)
+ r = newR
+
+ return ret
+}
+
+// finalExponentiation computes the (p¹²-1)/Order-th power of an element of
+// GF(p¹²) to obtain an element of GT (steps 13-15 of algorithm 1 from
+// http://cryptojedi.org/papers/dclxvi-20100714.pdf)
+func finalExponentiation(in *gfP12) *gfP12 {
+ t1 := &gfP12{}
+
+ // This is the p^6-Frobenius
+ t1.x.Neg(&in.x)
+ t1.y.Set(&in.y)
+
+ inv := &gfP12{}
+ inv.Invert(in)
+ t1.Mul(t1, inv)
+
+ t2 := (&gfP12{}).FrobeniusP2(t1)
+ t1.Mul(t1, t2)
+
+ fp := (&gfP12{}).Frobenius(t1)
+ fp2 := (&gfP12{}).FrobeniusP2(t1)
+ fp3 := (&gfP12{}).Frobenius(fp2)
+
+ fu := (&gfP12{}).Exp(t1, u)
+ fu2 := (&gfP12{}).Exp(fu, u)
+ fu3 := (&gfP12{}).Exp(fu2, u)
+
+ y3 := (&gfP12{}).Frobenius(fu)
+ fu2p := (&gfP12{}).Frobenius(fu2)
+ fu3p := (&gfP12{}).Frobenius(fu3)
+ y2 := (&gfP12{}).FrobeniusP2(fu2)
+
+ y0 := &gfP12{}
+ y0.Mul(fp, fp2).Mul(y0, fp3)
+
+ y1 := (&gfP12{}).Conjugate(t1)
+ y5 := (&gfP12{}).Conjugate(fu2)
+ y3.Conjugate(y3)
+ y4 := (&gfP12{}).Mul(fu, fu2p)
+ y4.Conjugate(y4)
+
+ y6 := (&gfP12{}).Mul(fu3, fu3p)
+ y6.Conjugate(y6)
+
+ t0 := (&gfP12{}).Square(y6)
+ t0.Mul(t0, y4).Mul(t0, y5)
+ t1.Mul(y3, y5).Mul(t1, t0)
+ t0.Mul(t0, y2)
+ t1.Square(t1).Mul(t1, t0).Square(t1)
+ t0.Mul(t1, y1)
+ t1.Mul(t1, y0)
+ t0.Square(t0).Mul(t0, t1)
+
+ return t0
+}
+
+func optimalAte(a *twistPoint, b *curvePoint) *gfP12 {
+ e := miller(a, b)
+ ret := finalExponentiation(e)
+
+ if a.IsInfinity() || b.IsInfinity() {
+ ret.SetOne()
+ }
+ return ret
+}