aboutsummaryrefslogtreecommitdiffstats
path: root/crypto/bn256/cloudflare/bn256.go
diff options
context:
space:
mode:
Diffstat (limited to 'crypto/bn256/cloudflare/bn256.go')
-rw-r--r--crypto/bn256/cloudflare/bn256.go481
1 files changed, 481 insertions, 0 deletions
diff --git a/crypto/bn256/cloudflare/bn256.go b/crypto/bn256/cloudflare/bn256.go
new file mode 100644
index 000000000..c6ea2d07e
--- /dev/null
+++ b/crypto/bn256/cloudflare/bn256.go
@@ -0,0 +1,481 @@
+// Package bn256 implements a particular bilinear group at the 128-bit security
+// level.
+//
+// Bilinear groups are the basis of many of the new cryptographic protocols that
+// have been proposed over the past decade. They consist of a triplet of groups
+// (G₁, G₂ and GT) such that there exists a function e(g₁ˣ,g₂ʸ)=gTˣʸ (where gₓ
+// is a generator of the respective group). That function is called a pairing
+// function.
+//
+// This package specifically implements the Optimal Ate pairing over a 256-bit
+// Barreto-Naehrig curve as described in
+// http://cryptojedi.org/papers/dclxvi-20100714.pdf. Its output is compatible
+// with the implementation described in that paper.
+package bn256
+
+import (
+ "crypto/rand"
+ "errors"
+ "io"
+ "math/big"
+)
+
+func randomK(r io.Reader) (k *big.Int, err error) {
+ for {
+ k, err = rand.Int(r, Order)
+ if k.Sign() > 0 || err != nil {
+ return
+ }
+ }
+}
+
+// G1 is an abstract cyclic group. The zero value is suitable for use as the
+// output of an operation, but cannot be used as an input.
+type G1 struct {
+ p *curvePoint
+}
+
+// RandomG1 returns x and g₁ˣ where x is a random, non-zero number read from r.
+func RandomG1(r io.Reader) (*big.Int, *G1, error) {
+ k, err := randomK(r)
+ if err != nil {
+ return nil, nil, err
+ }
+
+ return k, new(G1).ScalarBaseMult(k), nil
+}
+
+func (g *G1) String() string {
+ return "bn256.G1" + g.p.String()
+}
+
+// ScalarBaseMult sets e to g*k where g is the generator of the group and then
+// returns e.
+func (e *G1) ScalarBaseMult(k *big.Int) *G1 {
+ if e.p == nil {
+ e.p = &curvePoint{}
+ }
+ e.p.Mul(curveGen, k)
+ return e
+}
+
+// ScalarMult sets e to a*k and then returns e.
+func (e *G1) ScalarMult(a *G1, k *big.Int) *G1 {
+ if e.p == nil {
+ e.p = &curvePoint{}
+ }
+ e.p.Mul(a.p, k)
+ return e
+}
+
+// Add sets e to a+b and then returns e.
+func (e *G1) Add(a, b *G1) *G1 {
+ if e.p == nil {
+ e.p = &curvePoint{}
+ }
+ e.p.Add(a.p, b.p)
+ return e
+}
+
+// Neg sets e to -a and then returns e.
+func (e *G1) Neg(a *G1) *G1 {
+ if e.p == nil {
+ e.p = &curvePoint{}
+ }
+ e.p.Neg(a.p)
+ return e
+}
+
+// Set sets e to a and then returns e.
+func (e *G1) Set(a *G1) *G1 {
+ if e.p == nil {
+ e.p = &curvePoint{}
+ }
+ e.p.Set(a.p)
+ return e
+}
+
+// Marshal converts e to a byte slice.
+func (e *G1) Marshal() []byte {
+ // Each value is a 256-bit number.
+ const numBytes = 256 / 8
+
+ e.p.MakeAffine()
+ ret := make([]byte, numBytes*2)
+ if e.p.IsInfinity() {
+ return ret
+ }
+ temp := &gfP{}
+
+ montDecode(temp, &e.p.x)
+ temp.Marshal(ret)
+ montDecode(temp, &e.p.y)
+ temp.Marshal(ret[numBytes:])
+
+ return ret
+}
+
+// Unmarshal sets e to the result of converting the output of Marshal back into
+// a group element and then returns e.
+func (e *G1) Unmarshal(m []byte) ([]byte, error) {
+ // Each value is a 256-bit number.
+ const numBytes = 256 / 8
+ if len(m) < 2*numBytes {
+ return nil, errors.New("bn256: not enough data")
+ }
+ // Unmarshal the points and check their caps
+ if e.p == nil {
+ e.p = &curvePoint{}
+ } else {
+ e.p.x, e.p.y = gfP{0}, gfP{0}
+ }
+ var err error
+ if err = e.p.x.Unmarshal(m); err != nil {
+ return nil, err
+ }
+ if err = e.p.y.Unmarshal(m[numBytes:]); err != nil {
+ return nil, err
+ }
+ // Encode into Montgomery form and ensure it's on the curve
+ montEncode(&e.p.x, &e.p.x)
+ montEncode(&e.p.y, &e.p.y)
+
+ zero := gfP{0}
+ if e.p.x == zero && e.p.y == zero {
+ // This is the point at infinity.
+ e.p.y = *newGFp(1)
+ e.p.z = gfP{0}
+ e.p.t = gfP{0}
+ } else {
+ e.p.z = *newGFp(1)
+ e.p.t = *newGFp(1)
+
+ if !e.p.IsOnCurve() {
+ return nil, errors.New("bn256: malformed point")
+ }
+ }
+ return m[2*numBytes:], nil
+}
+
+// G2 is an abstract cyclic group. The zero value is suitable for use as the
+// output of an operation, but cannot be used as an input.
+type G2 struct {
+ p *twistPoint
+}
+
+// RandomG2 returns x and g₂ˣ where x is a random, non-zero number read from r.
+func RandomG2(r io.Reader) (*big.Int, *G2, error) {
+ k, err := randomK(r)
+ if err != nil {
+ return nil, nil, err
+ }
+
+ return k, new(G2).ScalarBaseMult(k), nil
+}
+
+func (e *G2) String() string {
+ return "bn256.G2" + e.p.String()
+}
+
+// ScalarBaseMult sets e to g*k where g is the generator of the group and then
+// returns out.
+func (e *G2) ScalarBaseMult(k *big.Int) *G2 {
+ if e.p == nil {
+ e.p = &twistPoint{}
+ }
+ e.p.Mul(twistGen, k)
+ return e
+}
+
+// ScalarMult sets e to a*k and then returns e.
+func (e *G2) ScalarMult(a *G2, k *big.Int) *G2 {
+ if e.p == nil {
+ e.p = &twistPoint{}
+ }
+ e.p.Mul(a.p, k)
+ return e
+}
+
+// Add sets e to a+b and then returns e.
+func (e *G2) Add(a, b *G2) *G2 {
+ if e.p == nil {
+ e.p = &twistPoint{}
+ }
+ e.p.Add(a.p, b.p)
+ return e
+}
+
+// Neg sets e to -a and then returns e.
+func (e *G2) Neg(a *G2) *G2 {
+ if e.p == nil {
+ e.p = &twistPoint{}
+ }
+ e.p.Neg(a.p)
+ return e
+}
+
+// Set sets e to a and then returns e.
+func (e *G2) Set(a *G2) *G2 {
+ if e.p == nil {
+ e.p = &twistPoint{}
+ }
+ e.p.Set(a.p)
+ return e
+}
+
+// Marshal converts e into a byte slice.
+func (e *G2) Marshal() []byte {
+ // Each value is a 256-bit number.
+ const numBytes = 256 / 8
+
+ if e.p == nil {
+ e.p = &twistPoint{}
+ }
+
+ e.p.MakeAffine()
+ ret := make([]byte, numBytes*4)
+ if e.p.IsInfinity() {
+ return ret
+ }
+ temp := &gfP{}
+
+ montDecode(temp, &e.p.x.x)
+ temp.Marshal(ret)
+ montDecode(temp, &e.p.x.y)
+ temp.Marshal(ret[numBytes:])
+ montDecode(temp, &e.p.y.x)
+ temp.Marshal(ret[2*numBytes:])
+ montDecode(temp, &e.p.y.y)
+ temp.Marshal(ret[3*numBytes:])
+
+ return ret
+}
+
+// Unmarshal sets e to the result of converting the output of Marshal back into
+// a group element and then returns e.
+func (e *G2) Unmarshal(m []byte) ([]byte, error) {
+ // Each value is a 256-bit number.
+ const numBytes = 256 / 8
+ if len(m) < 4*numBytes {
+ return nil, errors.New("bn256: not enough data")
+ }
+ // Unmarshal the points and check their caps
+ if e.p == nil {
+ e.p = &twistPoint{}
+ }
+ var err error
+ if err = e.p.x.x.Unmarshal(m); err != nil {
+ return nil, err
+ }
+ if err = e.p.x.y.Unmarshal(m[numBytes:]); err != nil {
+ return nil, err
+ }
+ if err = e.p.y.x.Unmarshal(m[2*numBytes:]); err != nil {
+ return nil, err
+ }
+ if err = e.p.y.y.Unmarshal(m[3*numBytes:]); err != nil {
+ return nil, err
+ }
+ // Encode into Montgomery form and ensure it's on the curve
+ montEncode(&e.p.x.x, &e.p.x.x)
+ montEncode(&e.p.x.y, &e.p.x.y)
+ montEncode(&e.p.y.x, &e.p.y.x)
+ montEncode(&e.p.y.y, &e.p.y.y)
+
+ if e.p.x.IsZero() && e.p.y.IsZero() {
+ // This is the point at infinity.
+ e.p.y.SetOne()
+ e.p.z.SetZero()
+ e.p.t.SetZero()
+ } else {
+ e.p.z.SetOne()
+ e.p.t.SetOne()
+
+ if !e.p.IsOnCurve() {
+ return nil, errors.New("bn256: malformed point")
+ }
+ }
+ return m[4*numBytes:], nil
+}
+
+// GT is an abstract cyclic group. The zero value is suitable for use as the
+// output of an operation, but cannot be used as an input.
+type GT struct {
+ p *gfP12
+}
+
+// Pair calculates an Optimal Ate pairing.
+func Pair(g1 *G1, g2 *G2) *GT {
+ return &GT{optimalAte(g2.p, g1.p)}
+}
+
+// PairingCheck calculates the Optimal Ate pairing for a set of points.
+func PairingCheck(a []*G1, b []*G2) bool {
+ acc := new(gfP12)
+ acc.SetOne()
+
+ for i := 0; i < len(a); i++ {
+ if a[i].p.IsInfinity() || b[i].p.IsInfinity() {
+ continue
+ }
+ acc.Mul(acc, miller(b[i].p, a[i].p))
+ }
+ return finalExponentiation(acc).IsOne()
+}
+
+// Miller applies Miller's algorithm, which is a bilinear function from the
+// source groups to F_p^12. Miller(g1, g2).Finalize() is equivalent to Pair(g1,
+// g2).
+func Miller(g1 *G1, g2 *G2) *GT {
+ return &GT{miller(g2.p, g1.p)}
+}
+
+func (g *GT) String() string {
+ return "bn256.GT" + g.p.String()
+}
+
+// ScalarMult sets e to a*k and then returns e.
+func (e *GT) ScalarMult(a *GT, k *big.Int) *GT {
+ if e.p == nil {
+ e.p = &gfP12{}
+ }
+ e.p.Exp(a.p, k)
+ return e
+}
+
+// Add sets e to a+b and then returns e.
+func (e *GT) Add(a, b *GT) *GT {
+ if e.p == nil {
+ e.p = &gfP12{}
+ }
+ e.p.Mul(a.p, b.p)
+ return e
+}
+
+// Neg sets e to -a and then returns e.
+func (e *GT) Neg(a *GT) *GT {
+ if e.p == nil {
+ e.p = &gfP12{}
+ }
+ e.p.Conjugate(a.p)
+ return e
+}
+
+// Set sets e to a and then returns e.
+func (e *GT) Set(a *GT) *GT {
+ if e.p == nil {
+ e.p = &gfP12{}
+ }
+ e.p.Set(a.p)
+ return e
+}
+
+// Finalize is a linear function from F_p^12 to GT.
+func (e *GT) Finalize() *GT {
+ ret := finalExponentiation(e.p)
+ e.p.Set(ret)
+ return e
+}
+
+// Marshal converts e into a byte slice.
+func (e *GT) Marshal() []byte {
+ // Each value is a 256-bit number.
+ const numBytes = 256 / 8
+
+ ret := make([]byte, numBytes*12)
+ temp := &gfP{}
+
+ montDecode(temp, &e.p.x.x.x)
+ temp.Marshal(ret)
+ montDecode(temp, &e.p.x.x.y)
+ temp.Marshal(ret[numBytes:])
+ montDecode(temp, &e.p.x.y.x)
+ temp.Marshal(ret[2*numBytes:])
+ montDecode(temp, &e.p.x.y.y)
+ temp.Marshal(ret[3*numBytes:])
+ montDecode(temp, &e.p.x.z.x)
+ temp.Marshal(ret[4*numBytes:])
+ montDecode(temp, &e.p.x.z.y)
+ temp.Marshal(ret[5*numBytes:])
+ montDecode(temp, &e.p.y.x.x)
+ temp.Marshal(ret[6*numBytes:])
+ montDecode(temp, &e.p.y.x.y)
+ temp.Marshal(ret[7*numBytes:])
+ montDecode(temp, &e.p.y.y.x)
+ temp.Marshal(ret[8*numBytes:])
+ montDecode(temp, &e.p.y.y.y)
+ temp.Marshal(ret[9*numBytes:])
+ montDecode(temp, &e.p.y.z.x)
+ temp.Marshal(ret[10*numBytes:])
+ montDecode(temp, &e.p.y.z.y)
+ temp.Marshal(ret[11*numBytes:])
+
+ return ret
+}
+
+// Unmarshal sets e to the result of converting the output of Marshal back into
+// a group element and then returns e.
+func (e *GT) Unmarshal(m []byte) ([]byte, error) {
+ // Each value is a 256-bit number.
+ const numBytes = 256 / 8
+
+ if len(m) < 12*numBytes {
+ return nil, errors.New("bn256: not enough data")
+ }
+
+ if e.p == nil {
+ e.p = &gfP12{}
+ }
+
+ var err error
+ if err = e.p.x.x.x.Unmarshal(m); err != nil {
+ return nil, err
+ }
+ if err = e.p.x.x.y.Unmarshal(m[numBytes:]); err != nil {
+ return nil, err
+ }
+ if err = e.p.x.y.x.Unmarshal(m[2*numBytes:]); err != nil {
+ return nil, err
+ }
+ if err = e.p.x.y.y.Unmarshal(m[3*numBytes:]); err != nil {
+ return nil, err
+ }
+ if err = e.p.x.z.x.Unmarshal(m[4*numBytes:]); err != nil {
+ return nil, err
+ }
+ if err = e.p.x.z.y.Unmarshal(m[5*numBytes:]); err != nil {
+ return nil, err
+ }
+ if err = e.p.y.x.x.Unmarshal(m[6*numBytes:]); err != nil {
+ return nil, err
+ }
+ if err = e.p.y.x.y.Unmarshal(m[7*numBytes:]); err != nil {
+ return nil, err
+ }
+ if err = e.p.y.y.x.Unmarshal(m[8*numBytes:]); err != nil {
+ return nil, err
+ }
+ if err = e.p.y.y.y.Unmarshal(m[9*numBytes:]); err != nil {
+ return nil, err
+ }
+ if err = e.p.y.z.x.Unmarshal(m[10*numBytes:]); err != nil {
+ return nil, err
+ }
+ if err = e.p.y.z.y.Unmarshal(m[11*numBytes:]); err != nil {
+ return nil, err
+ }
+ montEncode(&e.p.x.x.x, &e.p.x.x.x)
+ montEncode(&e.p.x.x.y, &e.p.x.x.y)
+ montEncode(&e.p.x.y.x, &e.p.x.y.x)
+ montEncode(&e.p.x.y.y, &e.p.x.y.y)
+ montEncode(&e.p.x.z.x, &e.p.x.z.x)
+ montEncode(&e.p.x.z.y, &e.p.x.z.y)
+ montEncode(&e.p.y.x.x, &e.p.y.x.x)
+ montEncode(&e.p.y.x.y, &e.p.y.x.y)
+ montEncode(&e.p.y.y.x, &e.p.y.y.x)
+ montEncode(&e.p.y.y.y, &e.p.y.y.y)
+ montEncode(&e.p.y.z.x, &e.p.y.z.x)
+ montEncode(&e.p.y.z.y, &e.p.y.z.y)
+
+ return m[12*numBytes:], nil
+}