aboutsummaryrefslogblamecommitdiffstats
path: root/vendor/github.com/golang/snappy/encode_other.go
blob: dbcae905e6e047ba3c00f68057f5bf8541e981fa (plain) (tree)













































































































































































































































                                                                                                   
// Copyright 2016 The Snappy-Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// +build !amd64 appengine !gc noasm

package snappy

func load32(b []byte, i int) uint32 {
    b = b[i : i+4 : len(b)] // Help the compiler eliminate bounds checks on the next line.
    return uint32(b[0]) | uint32(b[1])<<8 | uint32(b[2])<<16 | uint32(b[3])<<24
}

func load64(b []byte, i int) uint64 {
    b = b[i : i+8 : len(b)] // Help the compiler eliminate bounds checks on the next line.
    return uint64(b[0]) | uint64(b[1])<<8 | uint64(b[2])<<16 | uint64(b[3])<<24 |
        uint64(b[4])<<32 | uint64(b[5])<<40 | uint64(b[6])<<48 | uint64(b[7])<<56
}

// emitLiteral writes a literal chunk and returns the number of bytes written.
//
// It assumes that:
//  dst is long enough to hold the encoded bytes
//  1 <= len(lit) && len(lit) <= 65536
func emitLiteral(dst, lit []byte) int {
    i, n := 0, uint(len(lit)-1)
    switch {
    case n < 60:
        dst[0] = uint8(n)<<2 | tagLiteral
        i = 1
    case n < 1<<8:
        dst[0] = 60<<2 | tagLiteral
        dst[1] = uint8(n)
        i = 2
    default:
        dst[0] = 61<<2 | tagLiteral
        dst[1] = uint8(n)
        dst[2] = uint8(n >> 8)
        i = 3
    }
    return i + copy(dst[i:], lit)
}

// emitCopy writes a copy chunk and returns the number of bytes written.
//
// It assumes that:
//  dst is long enough to hold the encoded bytes
//  1 <= offset && offset <= 65535
//  4 <= length && length <= 65535
func emitCopy(dst []byte, offset, length int) int {
    i := 0
    // The maximum length for a single tagCopy1 or tagCopy2 op is 64 bytes. The
    // threshold for this loop is a little higher (at 68 = 64 + 4), and the
    // length emitted down below is is a little lower (at 60 = 64 - 4), because
    // it's shorter to encode a length 67 copy as a length 60 tagCopy2 followed
    // by a length 7 tagCopy1 (which encodes as 3+2 bytes) than to encode it as
    // a length 64 tagCopy2 followed by a length 3 tagCopy2 (which encodes as
    // 3+3 bytes). The magic 4 in the 64±4 is because the minimum length for a
    // tagCopy1 op is 4 bytes, which is why a length 3 copy has to be an
    // encodes-as-3-bytes tagCopy2 instead of an encodes-as-2-bytes tagCopy1.
    for length >= 68 {
        // Emit a length 64 copy, encoded as 3 bytes.
        dst[i+0] = 63<<2 | tagCopy2
        dst[i+1] = uint8(offset)
        dst[i+2] = uint8(offset >> 8)
        i += 3
        length -= 64
    }
    if length > 64 {
        // Emit a length 60 copy, encoded as 3 bytes.
        dst[i+0] = 59<<2 | tagCopy2
        dst[i+1] = uint8(offset)
        dst[i+2] = uint8(offset >> 8)
        i += 3
        length -= 60
    }
    if length >= 12 || offset >= 2048 {
        // Emit the remaining copy, encoded as 3 bytes.
        dst[i+0] = uint8(length-1)<<2 | tagCopy2
        dst[i+1] = uint8(offset)
        dst[i+2] = uint8(offset >> 8)
        return i + 3
    }
    // Emit the remaining copy, encoded as 2 bytes.
    dst[i+0] = uint8(offset>>8)<<5 | uint8(length-4)<<2 | tagCopy1
    dst[i+1] = uint8(offset)
    return i + 2
}

// extendMatch returns the largest k such that k <= len(src) and that
// src[i:i+k-j] and src[j:k] have the same contents.
//
// It assumes that:
//  0 <= i && i < j && j <= len(src)
func extendMatch(src []byte, i, j int) int {
    for ; j < len(src) && src[i] == src[j]; i, j = i+1, j+1 {
    }
    return j
}

func hash(u, shift uint32) uint32 {
    return (u * 0x1e35a7bd) >> shift
}

// encodeBlock encodes a non-empty src to a guaranteed-large-enough dst. It
// assumes that the varint-encoded length of the decompressed bytes has already
// been written.
//
// It also assumes that:
//  len(dst) >= MaxEncodedLen(len(src)) &&
//  minNonLiteralBlockSize <= len(src) && len(src) <= maxBlockSize
func encodeBlock(dst, src []byte) (d int) {
    // Initialize the hash table. Its size ranges from 1<<8 to 1<<14 inclusive.
    // The table element type is uint16, as s < sLimit and sLimit < len(src)
    // and len(src) <= maxBlockSize and maxBlockSize == 65536.
    const (
        maxTableSize = 1 << 14
        // tableMask is redundant, but helps the compiler eliminate bounds
        // checks.
        tableMask = maxTableSize - 1
    )
    shift := uint32(32 - 8)
    for tableSize := 1 << 8; tableSize < maxTableSize && tableSize < len(src); tableSize *= 2 {
        shift--
    }
    // In Go, all array elements are zero-initialized, so there is no advantage
    // to a smaller tableSize per se. However, it matches the C++ algorithm,
    // and in the asm versions of this code, we can get away with zeroing only
    // the first tableSize elements.
    var table [maxTableSize]uint16

    // sLimit is when to stop looking for offset/length copies. The inputMargin
    // lets us use a fast path for emitLiteral in the main loop, while we are
    // looking for copies.
    sLimit := len(src) - inputMargin

    // nextEmit is where in src the next emitLiteral should start from.
    nextEmit := 0

    // The encoded form must start with a literal, as there are no previous
    // bytes to copy, so we start looking for hash matches at s == 1.
    s := 1
    nextHash := hash(load32(src, s), shift)

    for {
        // Copied from the C++ snappy implementation:
        //
        // Heuristic match skipping: If 32 bytes are scanned with no matches
        // found, start looking only at every other byte. If 32 more bytes are
        // scanned (or skipped), look at every third byte, etc.. When a match
        // is found, immediately go back to looking at every byte. This is a
        // small loss (~5% performance, ~0.1% density) for compressible data
        // due to more bookkeeping, but for non-compressible data (such as
        // JPEG) it's a huge win since the compressor quickly "realizes" the
        // data is incompressible and doesn't bother looking for matches
        // everywhere.
        //
        // The "skip" variable keeps track of how many bytes there are since
        // the last match; dividing it by 32 (ie. right-shifting by five) gives
        // the number of bytes to move ahead for each iteration.
        skip := 32

        nextS := s
        candidate := 0
        for {
            s = nextS
            bytesBetweenHashLookups := skip >> 5
            nextS = s + bytesBetweenHashLookups
            skip += bytesBetweenHashLookups
            if nextS > sLimit {
                goto emitRemainder
            }
            candidate = int(table[nextHash&tableMask])
            table[nextHash&tableMask] = uint16(s)
            nextHash = hash(load32(src, nextS), shift)
            if load32(src, s) == load32(src, candidate) {
                break
            }
        }

        // A 4-byte match has been found. We'll later see if more than 4 bytes
        // match. But, prior to the match, src[nextEmit:s] are unmatched. Emit
        // them as literal bytes.
        d += emitLiteral(dst[d:], src[nextEmit:s])

        // Call emitCopy, and then see if another emitCopy could be our next
        // move. Repeat until we find no match for the input immediately after
        // what was consumed by the last emitCopy call.
        //
        // If we exit this loop normally then we need to call emitLiteral next,
        // though we don't yet know how big the literal will be. We handle that
        // by proceeding to the next iteration of the main loop. We also can
        // exit this loop via goto if we get close to exhausting the input.
        for {
            // Invariant: we have a 4-byte match at s, and no need to emit any
            // literal bytes prior to s.
            base := s

            // Extend the 4-byte match as long as possible.
            //
            // This is an inlined version of:
            //  s = extendMatch(src, candidate+4, s+4)
            s += 4
            for i := candidate + 4; s < len(src) && src[i] == src[s]; i, s = i+1, s+1 {
            }

            d += emitCopy(dst[d:], base-candidate, s-base)
            nextEmit = s
            if s >= sLimit {
                goto emitRemainder
            }

            // We could immediately start working at s now, but to improve
            // compression we first update the hash table at s-1 and at s. If
            // another emitCopy is not our next move, also calculate nextHash
            // at s+1. At least on GOARCH=amd64, these three hash calculations
            // are faster as one load64 call (with some shifts) instead of
            // three load32 calls.
            x := load64(src, s-1)
            prevHash := hash(uint32(x>>0), shift)
            table[prevHash&tableMask] = uint16(s - 1)
            currHash := hash(uint32(x>>8), shift)
            candidate = int(table[currHash&tableMask])
            table[currHash&tableMask] = uint16(s)
            if uint32(x>>8) != load32(src, candidate) {
                nextHash = hash(uint32(x>>16), shift)
                s++
                break
            }
        }
    }

emitRemainder:
    if nextEmit < len(src) {
        d += emitLiteral(dst[d:], src[nextEmit:])
    }
    return d
}