aboutsummaryrefslogblamecommitdiffstats
path: root/trie/iterator.go
blob: 42149a7d387aa1c8a920d2c7d27a079137bbe303 (plain) (tree)
1
2
3
4
5
6
7
8
9
                                         
                                                
  
                                                                                  



                                                                              
                                                                             
                                                                 
                                                               


                                                                           
                                                                                  
 
            
 

               
                        

                                                
 
                                                               
                      
                           
 

                                                                                 

 
                                                
                                        
                         
                                              






                                                                         
         

 

                                                       



                                                                
                                   
                 
         


                      

 


















                                                                                         
 



                                                                                 




                                                                                                

 
                          


                                                                                            
                                                                             
 
                                               


                                                       
                                               
                                      


























                                                  
         
























                                                                           


                                                                            
                                                                            


                                                                          
                                                               
                          


                                                                         

                                                

                            
                             


                                                        
                                                  
                           
                                                               
                          
         
                               
                                                                 
                                      


                                                                          
                 
                                                  





                                                                         
                                                     
         
 
                                               
      
             



                                       
                                                   



                                                
                                                            
                                                           
                                                                                               


                                                                    
                                                                                       




                                                                                  
                                          

                                                                                     

                                 
                                                                    















                                                                                                

                                     
                                                                  













                                                                                

                                     
                 

                                                     
         
                  

 



















                                                               




                                                                    
 




































                                                                                        

                            







                                                                           
                                                 










                                                     













                                                                                                  
 


                                             
         
                           
 







































































































                                                                                                                                                    
// Copyright 2014 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.

package trie

import (
    "bytes"
    "container/heap"
    "github.com/ethereum/go-ethereum/common"
)

// Iterator is a key-value trie iterator that traverses a Trie.
type Iterator struct {
    nodeIt NodeIterator

    Key   []byte // Current data key on which the iterator is positioned on
    Value []byte // Current data value on which the iterator is positioned on
}

// NewIterator creates a new key-value iterator.
func NewIterator(trie *Trie) *Iterator {
    return &Iterator{
        nodeIt: NewNodeIterator(trie),
    }
}

// FromNodeIterator creates a new key-value iterator from a node iterator
func NewIteratorFromNodeIterator(it NodeIterator) *Iterator {
    return &Iterator{
        nodeIt: it,
    }
}

// Next moves the iterator forward one key-value entry.
func (it *Iterator) Next() bool {
    for it.nodeIt.Next(true) {
        if it.nodeIt.Leaf() {
            it.Key = decodeCompact(it.nodeIt.Path())
            it.Value = it.nodeIt.LeafBlob()
            return true
        }
    }
    it.Key = nil
    it.Value = nil
    return false
}

// NodeIterator is an iterator to traverse the trie pre-order.
type NodeIterator interface {
    // Hash returns the hash of the current node
    Hash() common.Hash
    // Parent returns the hash of the parent of the current node
    Parent() common.Hash
    // Leaf returns true iff the current node is a leaf node.
    Leaf() bool
    // LeafBlob returns the contents of the node, if it is a leaf.
    // Callers must not retain references to the return value after calling Next()
    LeafBlob() []byte
    // Path returns the hex-encoded path to the current node.
    // Callers must not retain references to the return value after calling Next()
    Path() []byte
    // Next moves the iterator to the next node. If the parameter is false, any child
    // nodes will be skipped.
    Next(bool) bool
    // Error returns the error status of the iterator.
    Error() error
}

// nodeIteratorState represents the iteration state at one particular node of the
// trie, which can be resumed at a later invocation.
type nodeIteratorState struct {
    hash    common.Hash // Hash of the node being iterated (nil if not standalone)
    node    node        // Trie node being iterated
    parent  common.Hash // Hash of the first full ancestor node (nil if current is the root)
    child   int         // Child to be processed next
    pathlen int         // Length of the path to this node
}

type nodeIterator struct {
    trie  *Trie                // Trie being iterated
    stack []*nodeIteratorState // Hierarchy of trie nodes persisting the iteration state

    err error // Failure set in case of an internal error in the iterator

    path []byte // Path to the current node
}

// NewNodeIterator creates an post-order trie iterator.
func NewNodeIterator(trie *Trie) NodeIterator {
    if trie.Hash() == emptyState {
        return new(nodeIterator)
    }
    return &nodeIterator{trie: trie}
}

// Hash returns the hash of the current node
func (it *nodeIterator) Hash() common.Hash {
    if len(it.stack) == 0 {
        return common.Hash{}
    }

    return it.stack[len(it.stack)-1].hash
}

// Parent returns the hash of the parent node
func (it *nodeIterator) Parent() common.Hash {
    if len(it.stack) == 0 {
        return common.Hash{}
    }

    return it.stack[len(it.stack)-1].parent
}

// Leaf returns true if the current node is a leaf
func (it *nodeIterator) Leaf() bool {
    if len(it.stack) == 0 {
        return false
    }

    _, ok := it.stack[len(it.stack)-1].node.(valueNode)
    return ok
}

// LeafBlob returns the data for the current node, if it is a leaf
func (it *nodeIterator) LeafBlob() []byte {
    if len(it.stack) == 0 {
        return nil
    }

    if node, ok := it.stack[len(it.stack)-1].node.(valueNode); ok {
        return []byte(node)
    }
    return nil
}

// Path returns the hex-encoded path to the current node
func (it *nodeIterator) Path() []byte {
    return it.path
}

// Error returns the error set in case of an internal error in the iterator
func (it *nodeIterator) Error() error {
    return it.err
}

// Next moves the iterator to the next node, returning whether there are any
// further nodes. In case of an internal error this method returns false and
// sets the Error field to the encountered failure. If `descend` is false,
// skips iterating over any subnodes of the current node.
func (it *nodeIterator) Next(descend bool) bool {
    // If the iterator failed previously, don't do anything
    if it.err != nil {
        return false
    }
    // Otherwise step forward with the iterator and report any errors
    if err := it.step(descend); err != nil {
        it.err = err
        return false
    }
    return it.trie != nil
}

// step moves the iterator to the next node of the trie.
func (it *nodeIterator) step(descend bool) error {
    if it.trie == nil {
        // Abort if we reached the end of the iteration
        return nil
    }
    if len(it.stack) == 0 {
        // Initialize the iterator if we've just started.
        root := it.trie.Hash()
        state := &nodeIteratorState{node: it.trie.root, child: -1}
        if root != emptyRoot {
            state.hash = root
        }
        it.stack = append(it.stack, state)
        return nil
    }

    if !descend {
        // If we're skipping children, pop the current node first
        it.path = it.path[:it.stack[len(it.stack)-1].pathlen]
        it.stack = it.stack[:len(it.stack)-1]
    }

    // Continue iteration to the next child
outer:
    for {
        if len(it.stack) == 0 {
            it.trie = nil
            return nil
        }
        parent := it.stack[len(it.stack)-1]
        ancestor := parent.hash
        if (ancestor == common.Hash{}) {
            ancestor = parent.parent
        }
        if node, ok := parent.node.(*fullNode); ok {
            // Full node, iterate over children
            for parent.child++; parent.child < len(node.Children); parent.child++ {
                child := node.Children[parent.child]
                if child != nil {
                    hash, _ := child.cache()
                    it.stack = append(it.stack, &nodeIteratorState{
                        hash:    common.BytesToHash(hash),
                        node:    child,
                        parent:  ancestor,
                        child:   -1,
                        pathlen: len(it.path),
                    })
                    it.path = append(it.path, byte(parent.child))
                    break outer
                }
            }
        } else if node, ok := parent.node.(*shortNode); ok {
            // Short node, return the pointer singleton child
            if parent.child < 0 {
                parent.child++
                hash, _ := node.Val.cache()
                it.stack = append(it.stack, &nodeIteratorState{
                    hash:    common.BytesToHash(hash),
                    node:    node.Val,
                    parent:  ancestor,
                    child:   -1,
                    pathlen: len(it.path),
                })
                if hasTerm(node.Key) {
                    it.path = append(it.path, node.Key[:len(node.Key)-1]...)
                } else {
                    it.path = append(it.path, node.Key...)
                }
                break
            }
        } else if hash, ok := parent.node.(hashNode); ok {
            // Hash node, resolve the hash child from the database
            if parent.child < 0 {
                parent.child++
                node, err := it.trie.resolveHash(hash, nil, nil)
                if err != nil {
                    return err
                }
                it.stack = append(it.stack, &nodeIteratorState{
                    hash:    common.BytesToHash(hash),
                    node:    node,
                    parent:  ancestor,
                    child:   -1,
                    pathlen: len(it.path),
                })
                break
            }
        }
        it.path = it.path[:parent.pathlen]
        it.stack = it.stack[:len(it.stack)-1]
    }
    return nil
}

func compareNodes(a, b NodeIterator) int {
    cmp := bytes.Compare(a.Path(), b.Path())
    if cmp != 0 {
        return cmp
    }

    if a.Leaf() && !b.Leaf() {
        return -1
    } else if b.Leaf() && !a.Leaf() {
        return 1
    }

    cmp = bytes.Compare(a.Hash().Bytes(), b.Hash().Bytes())
    if cmp != 0 {
        return cmp
    }

    return bytes.Compare(a.LeafBlob(), b.LeafBlob())
}

type differenceIterator struct {
    a, b  NodeIterator // Nodes returned are those in b - a.
    eof   bool         // Indicates a has run out of elements
    count int          // Number of nodes scanned on either trie
}

// NewDifferenceIterator constructs a NodeIterator that iterates over elements in b that
// are not in a. Returns the iterator, and a pointer to an integer recording the number
// of nodes seen.
func NewDifferenceIterator(a, b NodeIterator) (NodeIterator, *int) {
    a.Next(true)
    it := &differenceIterator{
        a: a,
        b: b,
    }
    return it, &it.count
}

func (it *differenceIterator) Hash() common.Hash {
    return it.b.Hash()
}

func (it *differenceIterator) Parent() common.Hash {
    return it.b.Parent()
}

func (it *differenceIterator) Leaf() bool {
    return it.b.Leaf()
}

func (it *differenceIterator) LeafBlob() []byte {
    return it.b.LeafBlob()
}

func (it *differenceIterator) Path() []byte {
    return it.b.Path()
}

func (it *differenceIterator) Next(bool) bool {
    // Invariants:
    // - We always advance at least one element in b.
    // - At the start of this function, a's path is lexically greater than b's.
    if !it.b.Next(true) {
        return false
    }
    it.count += 1

    if it.eof {
        // a has reached eof, so we just return all elements from b
        return true
    }

    for {
        switch compareNodes(it.a, it.b) {
        case -1:
            // b jumped past a; advance a
            if !it.a.Next(true) {
                it.eof = true
                return true
            }
            it.count += 1
        case 1:
            // b is before a
            return true
        case 0:
            // a and b are identical; skip this whole subtree if the nodes have hashes
            hasHash := it.a.Hash() == common.Hash{}
            if !it.b.Next(hasHash) {
                return false
            }
            it.count += 1
            if !it.a.Next(hasHash) {
                it.eof = true
                return true
            }
            it.count += 1
        }
    }
}

func (it *differenceIterator) Error() error {
    if err := it.a.Error(); err != nil {
        return err
    }
    return it.b.Error()
}

type nodeIteratorHeap []NodeIterator

func (h nodeIteratorHeap) Len() int            { return len(h) }
func (h nodeIteratorHeap) Less(i, j int) bool  { return compareNodes(h[i], h[j]) < 0 }
func (h nodeIteratorHeap) Swap(i, j int)       { h[i], h[j] = h[j], h[i] }
func (h *nodeIteratorHeap) Push(x interface{}) { *h = append(*h, x.(NodeIterator)) }
func (h *nodeIteratorHeap) Pop() interface{} {
    n := len(*h)
    x := (*h)[n-1]
    *h = (*h)[0 : n-1]
    return x
}

type unionIterator struct {
    items *nodeIteratorHeap // Nodes returned are the union of the ones in these iterators
    count int               // Number of nodes scanned across all tries
    err   error             // The error, if one has been encountered
}

// NewUnionIterator constructs a NodeIterator that iterates over elements in the union
// of the provided NodeIterators. Returns the iterator, and a pointer to an integer
// recording the number of nodes visited.
func NewUnionIterator(iters []NodeIterator) (NodeIterator, *int) {
    h := make(nodeIteratorHeap, len(iters))
    copy(h, iters)
    heap.Init(&h)

    ui := &unionIterator{
        items: &h,
    }
    return ui, &ui.count
}

func (it *unionIterator) Hash() common.Hash {
    return (*it.items)[0].Hash()
}

func (it *unionIterator) Parent() common.Hash {
    return (*it.items)[0].Parent()
}

func (it *unionIterator) Leaf() bool {
    return (*it.items)[0].Leaf()
}

func (it *unionIterator) LeafBlob() []byte {
    return (*it.items)[0].LeafBlob()
}

func (it *unionIterator) Path() []byte {
    return (*it.items)[0].Path()
}

// Next returns the next node in the union of tries being iterated over.
//
// It does this by maintaining a heap of iterators, sorted by the iteration
// order of their next elements, with one entry for each source trie. Each
// time Next() is called, it takes the least element from the heap to return,
// advancing any other iterators that also point to that same element. These
// iterators are called with descend=false, since we know that any nodes under
// these nodes will also be duplicates, found in the currently selected iterator.
// Whenever an iterator is advanced, it is pushed back into the heap if it still
// has elements remaining.
//
// In the case that descend=false - eg, we're asked to ignore all subnodes of the
// current node - we also advance any iterators in the heap that have the current
// path as a prefix.
func (it *unionIterator) Next(descend bool) bool {
    if len(*it.items) == 0 {
        return false
    }

    // Get the next key from the union
    least := heap.Pop(it.items).(NodeIterator)

    // Skip over other nodes as long as they're identical, or, if we're not descending, as
    // long as they have the same prefix as the current node.
    for len(*it.items) > 0 && ((!descend && bytes.HasPrefix((*it.items)[0].Path(), least.Path())) || compareNodes(least, (*it.items)[0]) == 0) {
        skipped := heap.Pop(it.items).(NodeIterator)
        // Skip the whole subtree if the nodes have hashes; otherwise just skip this node
        if skipped.Next(skipped.Hash() == common.Hash{}) {
            it.count += 1
            // If there are more elements, push the iterator back on the heap
            heap.Push(it.items, skipped)
        }
    }

    if least.Next(descend) {
        it.count += 1
        heap.Push(it.items, least)
    }

    return len(*it.items) > 0
}

func (it *unionIterator) Error() error {
    for i := 0; i < len(*it.items); i++ {
        if err := (*it.items)[i].Error(); err != nil {
            return err
        }
    }
    return nil
}