// Copyright 2016 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package discv5
import (
"bytes"
"crypto/ecdsa"
"errors"
"fmt"
"net"
"time"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/common/mclock"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/crypto/sha3"
"github.com/ethereum/go-ethereum/log"
"github.com/ethereum/go-ethereum/p2p/netutil"
"github.com/ethereum/go-ethereum/rlp"
)
var (
errInvalidEvent = errors.New("invalid in current state")
errNoQuery = errors.New("no pending query")
)
const (
autoRefreshInterval = 1 * time.Hour
bucketRefreshInterval = 1 * time.Minute
seedCount = 30
seedMaxAge = 5 * 24 * time.Hour
lowPort = 1024
)
const testTopic = "foo"
const (
printTestImgLogs = false
)
// Network manages the table and all protocol interaction.
type Network struct {
db *nodeDB // database of known nodes
conn transport
netrestrict *netutil.Netlist
closed chan struct{} // closed when loop is done
closeReq chan struct{} // 'request to close'
refreshReq chan []*Node // lookups ask for refresh on this channel
refreshResp chan (<-chan struct{}) // ...and get the channel to block on from this one
read chan ingressPacket // ingress packets arrive here
timeout chan timeoutEvent
queryReq chan *findnodeQuery // lookups submit findnode queries on this channel
tableOpReq chan func()
tableOpResp chan struct{}
topicRegisterReq chan topicRegisterReq
topicSearchReq chan topicSearchReq
// State of the main loop.
tab *Table
topictab *topicTable
ticketStore *ticketStore
nursery []*Node
nodes map[NodeID]*Node // tracks active nodes with state != known
timeoutTimers map[timeoutEvent]*time.Timer
// Revalidation queues.
// Nodes put on these queues will be pinged eventually.
slowRevalidateQueue []*Node
fastRevalidateQueue []*Node
// Buffers for state transition.
sendBuf []*ingressPacket
}
// transport is implemented by the UDP transport.
// it is an interface so we can test without opening lots of UDP
// sockets and without generating a private key.
type transport interface {
sendPing(remote *Node, remoteAddr *net.UDPAddr, topics []Topic) (hash []byte)
sendNeighbours(remote *Node, nodes []*Node)
sendFindnodeHash(remote *Node, target common.Hash)
sendTopicRegister(remote *Node, topics []Topic, topicIdx int, pong []byte)
sendTopicNodes(remote *Node, queryHash common.Hash, nodes []*Node)
send(remote *Node, ptype nodeEvent, p interface{}) (hash []byte)
localAddr() *net.UDPAddr
Close()
}
type findnodeQuery struct {
remote *Node
target common.Hash
reply chan<- []*Node
nresults int // counter for received nodes
}
type topicRegisterReq struct {
add bool
topic Topic
}
type topicSearchReq struct {
topic Topic
found chan<- *Node
lookup chan<- bool
delay time.Duration
}
type topicSearchResult struct {
target lookupInfo
nodes []*Node
}
type timeoutEvent struct {
ev nodeEvent
node *Node
}
func newNetwork(conn transport, ourPubkey ecdsa.PublicKey, dbPath string, netrestrict *netutil.Netlist) (*Network, error) {
ourID := PubkeyID(&ourPubkey)
var db *nodeDB
if dbPath != "<no database>" {
var err error
if db, err = newNodeDB(dbPath, Version, ourID); err != nil {
return nil, err
}
}
tab := newTable(ourID, conn.localAddr())
net := &Network{
db: db,
conn: conn,
netrestrict: netrestrict,
tab: tab,
topictab: newTopicTable(db, tab.self),
ticketStore: newTicketStore(),
refreshReq: make(chan []*Node),
refreshResp: make(chan (<-chan struct{})),
closed: make(chan struct{}),
closeReq: make(chan struct{}),
read: make(chan ingressPacket, 100),
timeout: make(chan timeoutEvent),
timeoutTimers: make(map[timeoutEvent]*time.Timer),
tableOpReq: make(chan func()),
tableOpResp: make(chan struct{}),
queryReq: make(chan *findnodeQuery),
topicRegisterReq: make(chan topicRegisterReq),
topicSearchReq: make(chan topicSearchReq),
nodes: make(map[NodeID]*Node),
}
go net.loop()
return net, nil
}
// Close terminates the network listener and flushes the node database.
func (net *Network) Close() {
net.conn.Close()
select {
case <-net.closed:
case net.closeReq <- struct{}{}:
<-net.closed
}
}
// Self returns the local node.
// The returned node should not be modified by the caller.
func (net *Network) Self() *Node {
return net.tab.self
}
// ReadRandomNodes fills the given slice with random nodes from the
// table. It will not write the same node more than once. The nodes in
// the slice are copies and can be modified by the caller.
func (net *Network) ReadRandomNodes(buf []*Node) (n int) {
net.reqTableOp(func() { n = net.tab.readRandomNodes(buf) })
return n
}
// SetFallbackNodes sets the initial points of contact. These nodes
// are used to connect to the network if the table is empty and there
// are no known nodes in the database.
func (net *Network) SetFallbackNodes(nodes []*Node) error {
nursery := make([]*Node, 0, len(nodes))
for _, n := range nodes {
if err := n.validateComplete(); err != nil {
return fmt.Errorf("bad bootstrap/fallback node %q (%v)", n, err)
}
// Recompute cpy.sha because the node might not have been
// created by NewNode or ParseNode.
cpy := *n
cpy.sha = crypto.Keccak256Hash(n.ID[:])
nursery = append(nursery, &cpy)
}
net.reqRefresh(nursery)
return nil
}
// Resolve searches for a specific node with the given ID.
// It returns nil if the node could not be found.
func (net *Network) Resolve(targetID NodeID) *Node {
result := net.lookup(crypto.Keccak256Hash(targetID[:]), true)
for _, n := range result {
if n.ID == targetID {
return n
}
}
return nil
}
// Lookup performs a network search for nodes close
// to the given target. It approaches the target by querying
// nodes that are closer to it on each iteration.
// The given target does not need to be an actual node
// identifier.
//
// The local node may be included in the result.
func (net *Network) Lookup(targetID NodeID) []*Node {
return net.lookup(crypto.Keccak256Hash(targetID[:]), false)
}
func (net *Network) lookup(target common.Hash, stopOnMatch bool) []*Node {
var (
asked = make(map[NodeID]bool)
seen = make(map[NodeID]bool)
reply = make(chan []*Node, alpha)
result = nodesByDistance{target: target}
pendingQueries = 0
)
// Get initial answers from the local node.
result.push(net.tab.self, bucketSize)
for {
// Ask the α closest nodes that we haven't asked yet.
for i := 0; i < len(result.entries) && pendingQueries < alpha; i++ {
n := result.entries[i]
if !asked[n.ID] {
asked[n.ID] = true
pendingQueries++
net.reqQueryFindnode(n, target, reply)
}
}
if pendingQueries == 0 {
// We have asked all closest nodes, stop the search.
break
}
// Wait for the next reply.
select {
case nodes := <-reply:
for _, n := range nodes {
if n != nil && !seen[n.ID] {
seen[n.ID] = true
result.push(n, bucketSize)
if stopOnMatch && n.sha == target {
return result.entries
}
}
}
pendingQueries--
case <-time.After(respTimeout):
// forget all pending requests, start new ones
pendingQueries = 0
reply = make(chan []*Node, alpha)
}
}
return result.entries
}
func (net *Network) RegisterTopic(topic Topic, stop <-chan struct{}) {
select {
case net.topicRegisterReq <- topicRegisterReq{true, topic}:
case <-net.closed:
return
}
select {
case <-net.closed:
case <-stop:
select {
case net.topicRegisterReq <- topicRegisterReq{false, topic}:
case <-net.closed:
}
}
}
func (net *Network) SearchTopic(topic Topic, setPeriod <-chan time.Duration, found chan<- *Node, lookup chan<- bool) {
for {
select {
case <-net.closed:
return
case delay, ok := <-setPeriod:
select {
case net.topicSearchReq <- topicSearchReq{topic: topic, found: found, lookup: lookup, delay: delay}:
case <-net.closed:
return
}
if !ok {
return
}
}
}
}
func (net *Network) reqRefresh(nursery []*Node) <-chan struct{} {
select {
case net.refreshReq <- nursery:
return <-net.refreshResp
case <-net.closed:
return net.closed
}
}
func (net *Network) reqQueryFindnode(n *Node, target common.Hash, reply chan []*Node) bool {
q := &findnodeQuery{remote: n, target: target, reply: reply}
select {
case net.queryReq <- q:
return true
case <-net.closed:
return false
}
}
func (net *Network) reqReadPacket(pkt ingressPacket) {
select {
case net.read <- pkt:
case <-net.closed:
}
}
func (net *Network) reqTableOp(f func()) (called bool) {
select {
case net.tableOpReq <- f:
<-net.tableOpResp
return true
case <-net.closed:
return false
}
}
// TODO: external address handling.
type topicSearchInfo struct {
lookupChn chan<- bool
period time.Duration
}
const maxSearchCount = 5
func (net *Network) loop() {
var (
refreshTimer = time.NewTicker(autoRefreshInterval)
bucketRefreshTimer = time.NewTimer(bucketRefreshInterval)
refreshDone chan struct{} // closed when the 'refresh' lookup has ended
)
// Tracking the next ticket to register.
var (
nextTicket *ticketRef
nextRegisterTimer *time.Timer
nextRegisterTime <-chan time.Time
)
defer func() {
if nextRegisterTimer != nil {
nextRegisterTimer.Stop()
}
}()
resetNextTicket := func() {
ticket, timeout := net.ticketStore.nextFilteredTicket()
if nextTicket != ticket {
nextTicket = ticket
if nextRegisterTimer != nil {
nextRegisterTimer.Stop()
nextRegisterTime = nil
}
if ticket != nil {
nextRegisterTimer = time.NewTimer(timeout)
nextRegisterTime = nextRegisterTimer.C
}
}
}
// Tracking registration and search lookups.
var (
topicRegisterLookupTarget lookupInfo
topicRegisterLookupDone chan []*Node
topicRegisterLookupTick = time.NewTimer(0)
searchReqWhenRefreshDone []topicSearchReq
searchInfo = make(map[Topic]topicSearchInfo)
activeSearchCount int
)
topicSearchLookupDone := make(chan topicSearchResult, 100)
topicSearch := make(chan Topic, 100)
<-topicRegisterLookupTick.C
statsDump := time.NewTicker(10 * time.Second)
loop:
for {
resetNextTicket()
select {
case <-net.closeReq:
log.Trace("<-net.closeReq")
break loop
// Ingress packet handling.
case pkt := <-net.read:
//fmt.Println("read", pkt.ev)
log.Trace("<-net.read")
n := net.internNode(&pkt)
prestate := n.state
status := "ok"
if err := net.handle(n, pkt.ev, &pkt); err != nil {
status = err.Error()
}
log.Trace("", "msg", log.Lazy{Fn: func() string {
return fmt.Sprintf("<<< (%d) %v from %x@%v: %v -> %v (%v)",
net.tab.count, pkt.ev, pkt.remoteID[:8], pkt.remoteAddr, prestate, n.state, status)
}})
// TODO: persist state if n.state goes >= known, delete if it goes <= known
// State transition timeouts.
case timeout := <-net.timeout:
log.Trace("<-net.timeout")
if net.timeoutTimers[timeout] == nil {
// Stale timer (was aborted).
continue
}
delete(net.timeoutTimers, timeout)
prestate := timeout.node.state
status := "ok"
if err := net.handle(timeout.node, timeout.ev, nil); err != nil {
status = err.Error()
}
log.Trace("", "msg", log.Lazy{Fn: func() string {
return fmt.Sprintf("--- (%d) %v for %x@%v: %v -> %v (%v)",
net.tab.count, timeout.ev, timeout.node.ID[:8], timeout.node.addr(), prestate, timeout.node.state, status)
}})
// Querying.
case q := <-net.queryReq:
log.Trace("<-net.queryReq")
if !q.start(net) {
q.remote.deferQuery(q)
}
// Interacting with the table.
case f := <-net.tableOpReq:
log.Trace("<-net.tableOpReq")
f()
net.tableOpResp <- struct{}{}
// Topic registration stuff.
case req := <-net.topicRegisterReq:
log.Trace("<-net.topicRegisterReq")
if !req.add {
net.ticketStore.removeRegisterTopic(req.topic)
continue
}
net.ticketStore.addTopic(req.topic, true)
// If we're currently waiting idle (nothing to look up), give the ticket store a
// chance to start it sooner. This should speed up convergence of the radius
// determination for new topics.
// if topicRegisterLookupDone == nil {
if topicRegisterLookupTarget.target == (common.Hash{}) {
log.Trace("topicRegisterLookupTarget == null")
if topicRegisterLookupTick.Stop() {
<-topicRegisterLookupTick.C
}
target, delay := net.ticketStore.nextRegisterLookup()
topicRegisterLookupTarget = target
topicRegisterLookupTick.Reset(delay)
}
case nodes := <-topicRegisterLookupDone:
log.Trace("<-topicRegisterLookupDone")
net.ticketStore.registerLookupDone(topicRegisterLookupTarget, nodes, func(n *Node) []byte {
net.ping(n, n.addr())
return n.pingEcho
})
target, delay := net.ticketStore.nextRegisterLookup()
topicRegisterLookupTarget = target
topicRegisterLookupTick.Reset(delay)
topicRegisterLookupDone = nil
case <-topicRegisterLookupTick.C:
log.Trace("<-topicRegisterLookupTick")
if (topicRegisterLookupTarget.target == common.Hash{}) {
target, delay := net.ticketStore.nextRegisterLookup()
topicRegisterLookupTarget = target
topicRegisterLookupTick.Reset(delay)
topicRegisterLookupDone = nil
} else {
topicRegisterLookupDone = make(chan []*Node)
target := topicRegisterLookupTarget.target
go func() { topicRegisterLookupDone <- net.lookup(target, false) }()
}
case <-nextRegisterTime:
log.Trace("<-nextRegisterTime")
net.ticketStore.ticketRegistered(*nextTicket)
//fmt.Println("sendTopicRegister", nextTicket.t.node.addr().String(), nextTicket.t.topics, nextTicket.idx, nextTicket.t.pong)
net.conn.sendTopicRegister(nextTicket.t.node, nextTicket.t.topics, nextTicket.idx, nextTicket.t.pong)
case req := <-net.topicSearchReq:
if refreshDone == nil {
log.Trace("<-net.topicSearchReq")
info, ok := searchInfo[req.topic]
if ok {
if req.delay == time.Duration(0) {
delete(searchInfo, req.topic)
net.ticketStore.removeSearchTopic(req.topic)
} else {
info.period = req.delay
searchInfo[req.topic] = info
}
continue
}
if req.delay != time.Duration(0) {
var info topicSearchInfo
info.period = req.delay
info.lookupChn = req.lookup
searchInfo[req.topic] = info
net.ticketStore.addSearchTopic(req.topic, req.found)
topicSearch <- req.topic
}
} else {
searchReqWhenRefreshDone = append(searchReqWhenRefreshDone, req)
}
case topic := <-topicSearch:
if activeSearchCount < maxSearchCount {
activeSearchCount++
target := net.ticketStore.nextSearchLookup(topic)
go func() {
nodes := net.lookup(target.target, false)
topicSearchLookupDone <- topicSearchResult{target: target, nodes: nodes}
}()
}
period := searchInfo[topic].period
if period != time.Duration(0) {
go func() {
time.Sleep(period)
topicSearch <- topic
}()
}
case res := <-topicSearchLookupDone:
activeSearchCount--
if lookupChn := searchInfo[res.target.topic].lookupChn; lookupChn != nil {
lookupChn <- net.ticketStore.radius[res.target.topic].converged
}
net.ticketStore.searchLookupDone(res.target, res.nodes, func(n *Node, topic Topic) []byte {
if n.state != nil && n.state.canQuery {
return net.conn.send(n, topicQueryPacket, topicQuery{Topic: topic}) // TODO: set expiration
} else {
if n.state == unknown {
net.ping(n, n.addr())
}
return nil
}
})
case <-statsDump.C:
log.Trace("<-statsDump.C")
/*r, ok := net.ticketStore.radius[testTopic]
if !ok {
fmt.Printf("(%x) no radius @ %v\n", net.tab.self.ID[:8], time.Now())
} else {
topics := len(net.ticketStore.tickets)
tickets := len(net.ticketStore.nodes)
rad := r.radius / (maxRadius/10000+1)
fmt.Printf("(%x) topics:%d radius:%d tickets:%d @ %v\n", net.tab.self.ID[:8], topics, rad, tickets, time.Now())
}*/
tm := mclock.Now()
for topic, r := range net.ticketStore.radius {
if printTestImgLogs {
rad := r.radius / (maxRadius/1000000 + 1)
minrad := r.minRadius / (maxRadius/1000000 + 1)
fmt.Printf("*R %d %v %016x %v\n", tm/1000000, topic, net.tab.self.sha[:8], rad)
fmt.Printf("*MR %d %v %016x %v\n", tm/1000000, topic, net.tab.self.sha[:8], minrad)
}
}
for topic, t := range net.topictab.topics {
wp := t.wcl.nextWaitPeriod(tm)
if printTestImgLogs {
fmt.Printf("*W %d %v %016x %d\n", tm/1000000, topic, net.tab.self.sha[:8], wp/1000000)
}
}
// Periodic / lookup-initiated bucket refresh.
case <-refreshTimer.C:
log.Trace("<-refreshTimer.C")
// TODO: ideally we would start the refresh timer after
// fallback nodes have been set for the first time.
if refreshDone == nil {
refreshDone = make(chan struct{})
net.refresh(refreshDone)
}
case <-bucketRefreshTimer.C:
target := net.tab.chooseBucketRefreshTarget()
go func() {
net.lookup(target, false)
bucketRefreshTimer.Reset(bucketRefreshInterval)
}()
case newNursery := <-net.refreshReq:
log.Trace("<-net.refreshReq")
if newNursery != nil {
net.nursery = newNursery
}
if refreshDone == nil {
refreshDone = make(chan struct{})
net.refresh(refreshDone)
}
net.refreshResp <- refreshDone
case <-refreshDone:
log.Trace("<-net.refreshDone", "table size", net.tab.count)
if net.tab.count != 0 {
refreshDone = nil
list := searchReqWhenRefreshDone
searchReqWhenRefreshDone = nil
go func() {
for _, req := range list {
net.topicSearchReq <- req
}
}()
} else {
refreshDone = make(chan struct{})
net.refresh(refreshDone)
}
}
}
log.Trace("loop stopped")
log.Debug(fmt.Sprintf("shutting down"))
if net.conn != nil {
net.conn.Close()
}
if refreshDone != nil {
// TODO: wait for pending refresh.
//<-refreshResults
}
// Cancel all pending timeouts.
for _, timer := range net.timeoutTimers {
timer.Stop()
}
if net.db != nil {
net.db.close()
}
close(net.closed)
}
// Everything below runs on the Network.loop goroutine
// and can modify Node, Table and Network at any time without locking.
func (net *Network) refresh(done chan<- struct{}) {
var seeds []*Node
if net.db != nil {
seeds = net.db.querySeeds(seedCount, seedMaxAge)
}
if len(seeds) == 0 {
seeds = net.nursery
}
if len(seeds) == 0 {
log.Trace("no seed nodes found")
close(done)
return
}
for _, n := range seeds {
log.Debug("", "msg", log.Lazy{Fn: func() string {
var age string
if net.db != nil {
age = time.Since(net.db.lastPong(n.ID)).String()
} else {
age = "unknown"
}
return fmt.Sprintf("seed node (age %s): %v", age, n)
}})
n = net.internNodeFromDB(n)
if n.state == unknown {
net.transition(n, verifyinit)
}
// Force-add the seed node so Lookup does something.
// It will be deleted again if verification fails.
net.tab.add(n)
}
// Start self lookup to fill up the buckets.
go func() {
net.Lookup(net.tab.self.ID)
close(done)
}()
}
// Node Interning.
func (net *Network) internNode(pkt *ingressPacket) *Node {
if n := net.nodes[pkt.remoteID]; n != nil {
n.IP = pkt.remoteAddr.IP
n.UDP = uint16(pkt.remoteAddr.Port)
n.TCP = uint16(pkt.remoteAddr.Port)
return n
}
n := NewNode(pkt.remoteID, pkt.remoteAddr.IP, uint16(pkt.remoteAddr.Port), uint16(pkt.remoteAddr.Port))
n.state = unknown
net.nodes[pkt.remoteID] = n
return n
}
func (net *Network) internNodeFromDB(dbn *Node) *Node {
if n := net.nodes[dbn.ID]; n != nil {
return n
}
n := NewNode(dbn.ID, dbn.IP, dbn.UDP, dbn.TCP)
n.state = unknown
net.nodes[n.ID] = n
return n
}
func (net *Network) internNodeFromNeighbours(sender *net.UDPAddr, rn rpcNode) (n *Node, err error) {
if rn.ID == net.tab.self.ID {
return nil, errors.New("is self")
}
if rn.UDP <= lowPort {
return nil, errors.New("low port")
}
n = net.nodes[rn.ID]
if n == nil {
// We haven't seen this node before.
n, err = nodeFromRPC(sender, rn)
if net.netrestrict != nil && !net.netrestrict.Contains(n.IP) {
return n, errors.New("not contained in netrestrict whitelist")
}
if err == nil {
n.state = unknown
net.nodes[n.ID] = n
}
return n, err
}
if !n.IP.Equal(rn.IP) || n.UDP != rn.UDP || n.TCP != rn.TCP {
if n.state == known {
// reject address change if node is known by us
err = fmt.Errorf("metadata mismatch: got %v, want %v", rn, n)
} else {
// accept otherwise; this will be handled nicer with signed ENRs
n.IP = rn.IP
n.UDP = rn.UDP
n.TCP = rn.TCP
}
}
return n, err
}
// nodeNetGuts is embedded in Node and contains fields.
type nodeNetGuts struct {
// This is a cached copy of sha3(ID) which is used for node
// distance calculations. This is part of Node in order to make it
// possible to write tests that need a node at a certain distance.
// In those tests, the content of sha will not actually correspond
// with ID.
sha common.Hash
// State machine fields. Access to these fields
// is restricted to the Network.loop goroutine.
state *nodeState
pingEcho []byte // hash of last ping sent by us
pingTopics []Topic // topic set sent by us in last ping
deferredQueries []*findnodeQuery // queries that can't be sent yet
pendingNeighbours *findnodeQuery // current query, waiting for reply
queryTimeouts int
}
func (n *nodeNetGuts) deferQuery(q *findnodeQuery) {
n.deferredQueries = append(n.deferredQueries, q)
}
func (n *nodeNetGuts) startNextQuery(net *Network) {
if len(n.deferredQueries) == 0 {
return
}
nextq := n.deferredQueries[0]
if nextq.start(net) {
n.deferredQueries = append(n.deferredQueries[:0], n.deferredQueries[1:]...)
}
}
func (q *findnodeQuery) start(net *Network) bool {
// Satisfy queries against the local node directly.
if q.remote == net.tab.self {
closest := net.tab.closest(crypto.Keccak256Hash(q.target[:]), bucketSize)
q.reply <- closest.entries
return true
}
if q.remote.state.canQuery && q.remote.pendingNeighbours == nil {
net.conn.sendFindnodeHash(q.remote, q.target)
net.timedEvent(respTimeout, q.remote, neighboursTimeout)
q.remote.pendingNeighbours = q
return true
}
// If the node is not known yet, it won't accept queries.
// Initiate the transition to known.
// The request will be sent later when the node reaches known state.
if q.remote.state == unknown {
net.transition(q.remote, verifyinit)
}
return false
}
// Node Events (the input to the state machine).
type nodeEvent uint
//go:generate stringer -type=nodeEvent
const (
// Packet type events.
// These correspond to packet types in the UDP protocol.
pingPacket = iota + 1
pongPacket
findnodePacket
neighborsPacket
findnodeHashPacket
topicRegisterPacket
topicQueryPacket
topicNodesPacket
// Non-packet events.
// Event values in this category are allocated outside
// the packet type range (packet types are encoded as a single byte).
pongTimeout nodeEvent = iota + 256
pingTimeout
neighboursTimeout
)
// Node State Machine.
type nodeState struct {
name string
handle func(*Network, *Node, nodeEvent, *ingressPacket) (next *nodeState, err error)
enter func(*Network, *Node)
canQuery bool
}
func (s *nodeState) String() string {
return s.name
}
var (
unknown *nodeState
verifyinit *nodeState
verifywait *nodeState
remoteverifywait *nodeState
known *nodeState
contested *nodeState
unresponsive *nodeState
)
func init() {
unknown = &nodeState{
name: "unknown",
enter: func(net *Network, n *Node) {
net.tab.delete(n)
n.pingEcho = nil
// Abort active queries.
for _, q := range n.deferredQueries {
q.reply <- nil
}
n.deferredQueries = nil
if n.pendingNeighbours != nil {
n.pendingNeighbours.reply <- nil
n.pendingNeighbours = nil
}
n.queryTimeouts = 0
},
handle: func(net *Network, n *Node, ev nodeEvent, pkt *ingressPacket) (*nodeState, error) {
switch ev {
case pingPacket:
net.handlePing(n, pkt)
net.ping(n, pkt.remoteAddr)
return verifywait, nil
default:
return unknown, errInvalidEvent
}
},
}
verifyinit = &nodeState{
name: "verifyinit",
enter: func(net *Network, n *Node) {
net.ping(n, n.addr())
},
handle: func(net *Network, n *Node, ev nodeEvent, pkt *ingressPacket) (*nodeState, error) {
switch ev {
case pingPacket:
net.handlePing(n, pkt)
return verifywait, nil
case pongPacket:
err := net.handleKnownPong(n, pkt)
return remoteverifywait, err
case pongTimeout:
return unknown, nil
default:
return verifyinit, errInvalidEvent
}
},
}
verifywait = &nodeState{
name: "verifywait",
handle: func(net *Network, n *Node, ev nodeEvent, pkt *ingressPacket) (*nodeState, error) {
switch ev {
case pingPacket:
net.handlePing(n, pkt)
return verifywait, nil
case pongPacket:
err := net.handleKnownPong(n, pkt)
return known, err
case pongTimeout:
return unknown, nil
default:
return verifywait, errInvalidEvent
}
},
}
remoteverifywait = &nodeState{
name: "remoteverifywait",
enter: func(net *Network, n *Node) {
net.timedEvent(respTimeout, n, pingTimeout)
},
handle: func(net *Network, n *Node, ev nodeEvent, pkt *ingressPacket) (*nodeState, error) {
switch ev {
case pingPacket:
net.handlePing(n, pkt)
return remoteverifywait, nil
case pingTimeout:
return known, nil
default:
return remoteverifywait, errInvalidEvent
}
},
}
known = &nodeState{
name: "known",
canQuery: true,
enter: func(net *Network, n *Node) {
n.queryTimeouts = 0
n.startNextQuery(net)
// Insert into the table and start revalidation of the last node
// in the bucket if it is full.
last := net.tab.add(n)
if last != nil && last.state == known {
// TODO: do this asynchronously
net.transition(last, contested)
}
},
handle: func(net *Network, n *Node, ev nodeEvent, pkt *ingressPacket) (*nodeState, error) {
switch ev {
case pingPacket:
net.handlePing(n, pkt)
return known, nil
case pongPacket:
err := net.handleKnownPong(n, pkt)
return known, err
default:
return net.handleQueryEvent(n, ev, pkt)
}
},
}
contested = &nodeState{
name: "contested",
canQuery: true,
enter: func(net *Network, n *Node) {
net.ping(n, n.addr())
},
handle: func(net *Network, n *Node, ev nodeEvent, pkt *ingressPacket) (*nodeState, error) {
switch ev {
case pongPacket:
// Node is still alive.
err := net.handleKnownPong(n, pkt)
return known, err
case pongTimeout:
net.tab.deleteReplace(n)
return unresponsive, nil
case pingPacket:
net.handlePing(n, pkt)
return contested, nil
default:
return net.handleQueryEvent(n, ev, pkt)
}
},
}
unresponsive = &nodeState{
name: "unresponsive",
canQuery: true,
handle: func(net *Network, n *Node, ev nodeEvent, pkt *ingressPacket) (*nodeState, error) {
switch ev {
case pingPacket:
net.handlePing(n, pkt)
return known, nil
case pongPacket:
err := net.handleKnownPong(n, pkt)
return known, err
default:
return net.handleQueryEvent(n, ev, pkt)
}
},
}
}
// handle processes packets sent by n and events related to n.
func (net *Network) handle(n *Node, ev nodeEvent, pkt *ingressPacket) error {
//fmt.Println("handle", n.addr().String(), n.state, ev)
if pkt != nil {
if err := net.checkPacket(n, ev, pkt); err != nil {
//fmt.Println("check err:", err)
return err
}
// Start the background expiration goroutine after the first
// successful communication. Subsequent calls have no effect if it
// is already running. We do this here instead of somewhere else
// so that the search for seed nodes also considers older nodes
// that would otherwise be removed by the expirer.
if net.db != nil {
net.db.ensureExpirer()
}
}
if n.state == nil {
n.state = unknown //???
}
next, err := n.state.handle(net, n, ev, pkt)
net.transition(n, next)
//fmt.Println("new state:", n.state)
return err
}
func (net *Network) checkPacket(n *Node, ev nodeEvent, pkt *ingressPacket) error {
// Replay prevention checks.
switch ev {
case pingPacket, findnodeHashPacket, neighborsPacket:
// TODO: check date is > last date seen
// TODO: check ping version
case pongPacket:
if !bytes.Equal(pkt.data.(*pong).ReplyTok, n.pingEcho) {
// fmt.Println("pong reply token mismatch")
return fmt.Errorf("pong reply token mismatch")
}
n.pingEcho = nil
}
// Address validation.
// TODO: Ideally we would do the following:
// - reject all packets with wrong address except ping.
// - for ping with new address, transition to verifywait but keep the
// previous node (with old address) around. if the new one reaches known,
// swap it out.
return nil
}
func (net *Network) transition(n *Node, next *nodeState) {
if n.state != next {
n.state = next
if next.enter != nil {
next.enter(net, n)
}
}
// TODO: persist/unpersist node
}
func (net *Network) timedEvent(d time.Duration, n *Node, ev nodeEvent) {
timeout := timeoutEvent{ev, n}
net.timeoutTimers[timeout] = time.AfterFunc(d, func() {
select {
case net.timeout <- timeout:
case <-net.closed:
}
})
}
func (net *Network) abortTimedEvent(n *Node, ev nodeEvent) {
timer := net.timeoutTimers[timeoutEvent{ev, n}]
if timer != nil {
timer.Stop()
delete(net.timeoutTimers, timeoutEvent{ev, n})
}
}
func (net *Network) ping(n *Node, addr *net.UDPAddr) {
//fmt.Println("ping", n.addr().String(), n.ID.String(), n.sha.Hex())
if n.pingEcho != nil || n.ID == net.tab.self.ID {
//fmt.Println(" not sent")
return
}
log.Trace("Pinging remote node", "node", n.ID)
n.pingTopics = net.ticketStore.regTopicSet()
n.pingEcho = net.conn.sendPing(n, addr, n.pingTopics)
net.timedEvent(respTimeout, n, pongTimeout)
}
func (net *Network) handlePing(n *Node, pkt *ingressPacket) {
log.Trace("Handling remote ping", "node", n.ID)
ping := pkt.data.(*ping)
n.TCP = ping.From.TCP
t := net.topictab.getTicket(n, ping.Topics)
pong := &pong{
To: makeEndpoint(n.addr(), n.TCP), // TODO: maybe use known TCP port from DB
ReplyTok: pkt.hash,
Expiration: uint64(time.Now().Add(expiration).Unix()),
}
ticketToPong(t, pong)
net.conn.send(n, pongPacket, pong)
}
func (net *Network) handleKnownPong(n *Node, pkt *ingressPacket) error {
log.Trace("Handling known pong", "node", n.ID)
net.abortTimedEvent(n, pongTimeout)
now := mclock.Now()
ticket, err := pongToTicket(now, n.pingTopics, n, pkt)
if err == nil {
// fmt.Printf("(%x) ticket: %+v\n", net.tab.self.ID[:8], pkt.data)
net.ticketStore.addTicket(now, pkt.data.(*pong).ReplyTok, ticket)
} else {
log.Trace("Failed to convert pong to ticket", "err", err)
}
n.pingEcho = nil
n.pingTopics = nil
return err
}
func (net *Network) handleQueryEvent(n *Node, ev nodeEvent, pkt *ingressPacket) (*nodeState, error) {
switch ev {
case findnodePacket:
target := crypto.Keccak256Hash(pkt.data.(*findnode).Target[:])
results := net.tab.closest(target, bucketSize).entries
net.conn.sendNeighbours(n, results)
return n.state, nil
case neighborsPacket:
err := net.handleNeighboursPacket(n, pkt)
return n.state, err
case neighboursTimeout:
if n.pendingNeighbours != nil {
n.pendingNeighbours.reply <- nil
n.pendingNeighbours = nil
}
n.queryTimeouts++
if n.queryTimeouts > maxFindnodeFailures && n.state == known {
return contested, errors.New("too many timeouts")
}
return n.state, nil
// v5
case findnodeHashPacket:
results := net.tab.closest(pkt.data.(*findnodeHash).Target, bucketSize).entries
net.conn.sendNeighbours(n, results)
return n.state, nil
case topicRegisterPacket:
//fmt.Println("got topicRegisterPacket")
regdata := pkt.data.(*topicRegister)
pong, err := net.checkTopicRegister(regdata)
if err != nil {
//fmt.Println(err)
return n.state, fmt.Errorf("bad waiting ticket: %v", err)
}
net.topictab.useTicket(n, pong.TicketSerial, regdata.Topics, int(regdata.Idx), pong.Expiration, pong.WaitPeriods)
return n.state, nil
case topicQueryPacket:
// TODO: handle expiration
topic := pkt.data.(*topicQuery).Topic
results := net.topictab.getEntries(topic)
if _, ok := net.ticketStore.tickets[topic]; ok {
results = append(results, net.tab.self) // we're not registering in our own table but if we're advertising, return ourselves too
}
if len(results) > 10 {
results = results[:10]
}
var hash common.Hash
copy(hash[:], pkt.hash)
net.conn.sendTopicNodes(n, hash, results)
return n.state, nil
case topicNodesPacket:
p := pkt.data.(*topicNodes)
if net.ticketStore.gotTopicNodes(n, p.Echo, p.Nodes) {
n.queryTimeouts++
if n.queryTimeouts > maxFindnodeFailures && n.state == known {
return contested, errors.New("too many timeouts")
}
}
return n.state, nil
default:
return n.state, errInvalidEvent
}
}
func (net *Network) checkTopicRegister(data *topicRegister) (*pong, error) {
var pongpkt ingressPacket
if err := decodePacket(data.Pong, &pongpkt); err != nil {
return nil, err
}
if pongpkt.ev != pongPacket {
return nil, errors.New("is not pong packet")
}
if pongpkt.remoteID != net.tab.self.ID {
return nil, errors.New("not signed by us")
}
// check that we previously authorised all topics
// that the other side is trying to register.
if rlpHash(data.Topics) != pongpkt.data.(*pong).TopicHash {
return nil, errors.New("topic hash mismatch")
}
if data.Idx < 0 || int(data.Idx) >= len(data.Topics) {
return nil, errors.New("topic index out of range")
}
return pongpkt.data.(*pong), nil
}
func rlpHash(x interface{}) (h common.Hash) {
hw := sha3.NewKeccak256()
rlp.Encode(hw, x)
hw.Sum(h[:0])
return h
}
func (net *Network) handleNeighboursPacket(n *Node, pkt *ingressPacket) error {
if n.pendingNeighbours == nil {
return errNoQuery
}
net.abortTimedEvent(n, neighboursTimeout)
req := pkt.data.(*neighbors)
nodes := make([]*Node, len(req.Nodes))
for i, rn := range req.Nodes {
nn, err := net.internNodeFromNeighbours(pkt.remoteAddr, rn)
if err != nil {
log.Debug(fmt.Sprintf("invalid neighbour (%v) from %x@%v: %v", rn.IP, n.ID[:8], pkt.remoteAddr, err))
continue
}
nodes[i] = nn
// Start validation of query results immediately.
// This fills the table quickly.
// TODO: generates way too many packets, maybe do it via queue.
if nn.state == unknown {
net.transition(nn, verifyinit)
}
}
// TODO: don't ignore second packet
n.pendingNeighbours.reply <- nodes
n.pendingNeighbours = nil
// Now that this query is done, start the next one.
n.startNextQuery(net)
return nil
}