aboutsummaryrefslogblamecommitdiffstats
path: root/crypto/ecies/ecies_test.go
blob: 1c391f938dc06f8462d7f9e8380a00caa92f90c6 (plain) (tree)




























                                                                         




























































































































































































































































































































































































                                                                                         






































































































                                                                                
// Copyright (c) 2013 Kyle Isom <kyle@tyrfingr.is>
// Copyright (c) 2012 The Go Authors. All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//    * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//    * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
//    * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

package ecies

import (
    "bytes"
    "crypto/elliptic"
    "crypto/rand"
    "crypto/sha256"
    "flag"
    "fmt"
    "io/ioutil"
    "testing"
)

var dumpEnc bool

func init() {
    flDump := flag.Bool("dump", false, "write encrypted test message to file")
    flag.Parse()
    dumpEnc = *flDump
}

// Ensure the KDF generates appropriately sized keys.
func TestKDF(t *testing.T) {
    msg := []byte("Hello, world")
    h := sha256.New()

    k, err := concatKDF(h, msg, nil, 64)
    if err != nil {
        fmt.Println(err.Error())
        t.FailNow()
    }
    if len(k) != 64 {
        fmt.Printf("KDF: generated key is the wrong size (%d instead of 64\n",
            len(k))
        t.FailNow()
    }
}

var skLen int
var ErrBadSharedKeys = fmt.Errorf("ecies: shared keys don't match")

// cmpParams compares a set of ECIES parameters. We assume, as per the
// docs, that AES is the only supported symmetric encryption algorithm.
func cmpParams(p1, p2 *ECIESParams) bool {
    if p1.hashAlgo != p2.hashAlgo {
        return false
    } else if p1.KeyLen != p2.KeyLen {
        return false
    } else if p1.BlockSize != p2.BlockSize {
        return false
    }
    return true
}

// cmpPublic returns true if the two public keys represent the same pojnt.
func cmpPublic(pub1, pub2 PublicKey) bool {
    if pub1.X == nil || pub1.Y == nil {
        fmt.Println(ErrInvalidPublicKey.Error())
        return false
    }
    if pub2.X == nil || pub2.Y == nil {
        fmt.Println(ErrInvalidPublicKey.Error())
        return false
    }
    pub1Out := elliptic.Marshal(pub1.Curve, pub1.X, pub1.Y)
    pub2Out := elliptic.Marshal(pub2.Curve, pub2.X, pub2.Y)

    return bytes.Equal(pub1Out, pub2Out)
}

// cmpPrivate returns true if the two private keys are the same.
func cmpPrivate(prv1, prv2 *PrivateKey) bool {
    if prv1 == nil || prv1.D == nil {
        return false
    } else if prv2 == nil || prv2.D == nil {
        return false
    } else if prv1.D.Cmp(prv2.D) != 0 {
        return false
    } else {
        return cmpPublic(prv1.PublicKey, prv2.PublicKey)
    }
}

// Validate the ECDH component.
func TestSharedKey(t *testing.T) {
    prv1, err := GenerateKey(rand.Reader, DefaultCurve, nil)
    if err != nil {
        fmt.Println(err.Error())
        t.FailNow()
    }
    skLen = MaxSharedKeyLength(&prv1.PublicKey) / 2

    prv2, err := GenerateKey(rand.Reader, DefaultCurve, nil)
    if err != nil {
        fmt.Println(err.Error())
        t.FailNow()
    }

    sk1, err := prv1.GenerateShared(&prv2.PublicKey, skLen, skLen)
    if err != nil {
        fmt.Println(err.Error())
        t.FailNow()
    }

    sk2, err := prv2.GenerateShared(&prv1.PublicKey, skLen, skLen)
    if err != nil {
        fmt.Println(err.Error())
        t.FailNow()
    }

    if !bytes.Equal(sk1, sk2) {
        fmt.Println(ErrBadSharedKeys.Error())
        t.FailNow()
    }
}

// Verify that the key generation code fails when too much key data is
// requested.
func TestTooBigSharedKey(t *testing.T) {
    prv1, err := GenerateKey(rand.Reader, DefaultCurve, nil)
    if err != nil {
        fmt.Println(err.Error())
        t.FailNow()
    }

    prv2, err := GenerateKey(rand.Reader, DefaultCurve, nil)
    if err != nil {
        fmt.Println(err.Error())
        t.FailNow()
    }

    _, err = prv1.GenerateShared(&prv2.PublicKey, skLen*2, skLen*2)
    if err != ErrSharedKeyTooBig {
        fmt.Println("ecdh: shared key should be too large for curve")
        t.FailNow()
    }

    _, err = prv2.GenerateShared(&prv1.PublicKey, skLen*2, skLen*2)
    if err != ErrSharedKeyTooBig {
        fmt.Println("ecdh: shared key should be too large for curve")
        t.FailNow()
    }
}

// Ensure a public key can be successfully marshalled and unmarshalled, and
// that the decoded key is the same as the original.
func TestMarshalPublic(t *testing.T) {
    prv, err := GenerateKey(rand.Reader, DefaultCurve, nil)
    if err != nil {
        fmt.Println(err.Error())
        t.FailNow()
    }

    out, err := MarshalPublic(&prv.PublicKey)
    if err != nil {
        fmt.Println(err.Error())
        t.FailNow()
    }

    pub, err := UnmarshalPublic(out)
    if err != nil {
        fmt.Println(err.Error())
        t.FailNow()
    }

    if !cmpPublic(prv.PublicKey, *pub) {
        fmt.Println("ecies: failed to unmarshal public key")
        t.FailNow()
    }
}

// Ensure that a private key can be encoded into DER format, and that
// the resulting key is properly parsed back into a public key.
func TestMarshalPrivate(t *testing.T) {
    prv, err := GenerateKey(rand.Reader, DefaultCurve, nil)
    if err != nil {
        fmt.Println(err.Error())
        t.FailNow()
    }

    out, err := MarshalPrivate(prv)
    if err != nil {
        fmt.Println(err.Error())
        t.FailNow()
    }

    if dumpEnc {
        ioutil.WriteFile("test.out", out, 0644)
    }

    prv2, err := UnmarshalPrivate(out)
    if err != nil {
        fmt.Println(err.Error())
        t.FailNow()
    }

    if !cmpPrivate(prv, prv2) {
        fmt.Println("ecdh: private key import failed")
        t.FailNow()
    }
}

// Ensure that a private key can be successfully encoded to PEM format, and
// the resulting key is properly parsed back in.
func TestPrivatePEM(t *testing.T) {
    prv, err := GenerateKey(rand.Reader, DefaultCurve, nil)
    if err != nil {
        fmt.Println(err.Error())
        t.FailNow()
    }

    out, err := ExportPrivatePEM(prv)
    if err != nil {
        fmt.Println(err.Error())
        t.FailNow()
    }

    if dumpEnc {
        ioutil.WriteFile("test.key", out, 0644)
    }

    prv2, err := ImportPrivatePEM(out)
    if err != nil {
        fmt.Println(err.Error())
        t.FailNow()
    } else if !cmpPrivate(prv, prv2) {
        fmt.Println("ecdh: import from PEM failed")
        t.FailNow()
    }
}

// Ensure that a public key can be successfully encoded to PEM format, and
// the resulting key is properly parsed back in.
func TestPublicPEM(t *testing.T) {
    prv, err := GenerateKey(rand.Reader, DefaultCurve, nil)
    if err != nil {
        fmt.Println(err.Error())
        t.FailNow()
    }

    out, err := ExportPublicPEM(&prv.PublicKey)
    if err != nil {
        fmt.Println(err.Error())
        t.FailNow()
    }

    if dumpEnc {
        ioutil.WriteFile("test.pem", out, 0644)
    }

    pub2, err := ImportPublicPEM(out)
    if err != nil {
        fmt.Println(err.Error())
        t.FailNow()
    } else if !cmpPublic(prv.PublicKey, *pub2) {
        fmt.Println("ecdh: import from PEM failed")
        t.FailNow()
    }
}

// Benchmark the generation of P256 keys.
func BenchmarkGenerateKeyP256(b *testing.B) {
    for i := 0; i < b.N; i++ {
        if _, err := GenerateKey(rand.Reader, elliptic.P256(), nil); err != nil {
            fmt.Println(err.Error())
            b.FailNow()
        }
    }
}

// Benchmark the generation of P256 shared keys.
func BenchmarkGenSharedKeyP256(b *testing.B) {
    prv, err := GenerateKey(rand.Reader, elliptic.P256(), nil)
    if err != nil {
        fmt.Println(err.Error())
        b.FailNow()
    }

    for i := 0; i < b.N; i++ {
        _, err := prv.GenerateShared(&prv.PublicKey, skLen, skLen)
        if err != nil {
            fmt.Println(err.Error())
            b.FailNow()
        }
    }
}

// Verify that an encrypted message can be successfully decrypted.
func TestEncryptDecrypt(t *testing.T) {
    prv1, err := GenerateKey(rand.Reader, DefaultCurve, nil)
    if err != nil {
        fmt.Println(err.Error())
        t.FailNow()
    }

    prv2, err := GenerateKey(rand.Reader, DefaultCurve, nil)
    if err != nil {
        fmt.Println(err.Error())
        t.FailNow()
    }

    message := []byte("Hello, world.")
    ct, err := Encrypt(rand.Reader, &prv2.PublicKey, message, nil, nil)
    if err != nil {
        fmt.Println(err.Error())
        t.FailNow()
    }

    pt, err := prv2.Decrypt(rand.Reader, ct, nil, nil)
    if err != nil {
        fmt.Println(err.Error())
        t.FailNow()
    }

    if !bytes.Equal(pt, message) {
        fmt.Println("ecies: plaintext doesn't match message")
        t.FailNow()
    }

    _, err = prv1.Decrypt(rand.Reader, ct, nil, nil)
    if err == nil {
        fmt.Println("ecies: encryption should not have succeeded")
        t.FailNow()
    }
}

// TestMarshalEncryption validates the encode/decode produces a valid
// ECIES encryption key.
func TestMarshalEncryption(t *testing.T) {
    prv1, err := GenerateKey(rand.Reader, DefaultCurve, nil)
    if err != nil {
        fmt.Println(err.Error())
        t.FailNow()
    }

    out, err := MarshalPrivate(prv1)
    if err != nil {
        fmt.Println(err.Error())
        t.FailNow()
    }

    prv2, err := UnmarshalPrivate(out)
    if err != nil {
        fmt.Println(err.Error())
        t.FailNow()
    }

    message := []byte("Hello, world.")
    ct, err := Encrypt(rand.Reader, &prv2.PublicKey, message, nil, nil)
    if err != nil {
        fmt.Println(err.Error())
        t.FailNow()
    }

    pt, err := prv2.Decrypt(rand.Reader, ct, nil, nil)
    if err != nil {
        fmt.Println(err.Error())
        t.FailNow()
    }

    if !bytes.Equal(pt, message) {
        fmt.Println("ecies: plaintext doesn't match message")
        t.FailNow()
    }

    _, err = prv1.Decrypt(rand.Reader, ct, nil, nil)
    if err != nil {
        fmt.Println(err.Error())
        t.FailNow()
    }

}

type testCase struct {
    Curve    elliptic.Curve
    Name     string
    Expected bool
}

var testCases = []testCase{
    testCase{
        Curve:    elliptic.P256(),
        Name:     "P256",
        Expected: true,
    },
    testCase{
        Curve:    elliptic.P384(),
        Name:     "P384",
        Expected: true,
    },
    testCase{
        Curve:    elliptic.P521(),
        Name:     "P521",
        Expected: true,
    },
}

// Test parameter selection for each curve, and that P224 fails automatic
// parameter selection (see README for a discussion of P224). Ensures that
// selecting a set of parameters automatically for the given curve works.
func TestParamSelection(t *testing.T) {
    for _, c := range testCases {
        testParamSelection(t, c)
    }
}

func testParamSelection(t *testing.T, c testCase) {
    params := ParamsFromCurve(c.Curve)
    if params == nil && c.Expected {
        fmt.Printf("%s (%s)\n", ErrInvalidParams.Error(), c.Name)
        t.FailNow()
    } else if params != nil && !c.Expected {
        fmt.Printf("ecies: parameters should be invalid (%s)\n",
            c.Name)
        t.FailNow()
    }

    prv1, err := GenerateKey(rand.Reader, DefaultCurve, nil)
    if err != nil {
        fmt.Printf("%s (%s)\n", err.Error(), c.Name)
        t.FailNow()
    }

    prv2, err := GenerateKey(rand.Reader, DefaultCurve, nil)
    if err != nil {
        fmt.Printf("%s (%s)\n", err.Error(), c.Name)
        t.FailNow()
    }

    message := []byte("Hello, world.")
    ct, err := Encrypt(rand.Reader, &prv2.PublicKey, message, nil, nil)
    if err != nil {
        fmt.Printf("%s (%s)\n", err.Error(), c.Name)
        t.FailNow()
    }

    pt, err := prv2.Decrypt(rand.Reader, ct, nil, nil)
    if err != nil {
        fmt.Printf("%s (%s)\n", err.Error(), c.Name)
        t.FailNow()
    }

    if !bytes.Equal(pt, message) {
        fmt.Printf("ecies: plaintext doesn't match message (%s)\n",
            c.Name)
        t.FailNow()
    }

    _, err = prv1.Decrypt(rand.Reader, ct, nil, nil)
    if err == nil {
        fmt.Printf("ecies: encryption should not have succeeded (%s)\n",
            c.Name)
        t.FailNow()
    }

}

// Ensure that the basic public key validation in the decryption operation
// works.
func TestBasicKeyValidation(t *testing.T) {
    badBytes := []byte{0, 1, 5, 6, 7, 8, 9}

    prv, err := GenerateKey(rand.Reader, DefaultCurve, nil)
    if err != nil {
        fmt.Println(err.Error())
        t.FailNow()
    }

    message := []byte("Hello, world.")
    ct, err := Encrypt(rand.Reader, &prv.PublicKey, message, nil, nil)
    if err != nil {
        fmt.Println(err.Error())
        t.FailNow()
    }

    for _, b := range badBytes {
        ct[0] = b
        _, err := prv.Decrypt(rand.Reader, ct, nil, nil)
        if err != ErrInvalidPublicKey {
            fmt.Println("ecies: validated an invalid key")
            t.FailNow()
        }
    }
}