aboutsummaryrefslogblamecommitdiffstats
path: root/crypto/ecies/ecies_test.go
blob: cb09061ceda91b661a785eff76d2c087dae9315d (plain) (tree)




























                                                                         



               
                      


                         
                      


                   
                  
                 

                                                          


























                                                                                      


















































                                                                          
                                                        
























                                                                      





































                                                                                                               














                                                                      
                                                             




                                                                             
                                                             










                                                                             
                                                      



                                                 
                                                        



                                        
                                                          


                                            
                                                                












































































































                                                                                         








                                                                    
 







                                                                   
                                  
                                                                    













































                                                                           





























                                                                                      






















































                                                                           






































































































                                                                                







































                                                                                                     
// Copyright (c) 2013 Kyle Isom <kyle@tyrfingr.is>
// Copyright (c) 2012 The Go Authors. All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//    * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//    * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
//    * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

package ecies

import (
    "bytes"
    "crypto/ecdsa"
    "crypto/elliptic"
    "crypto/rand"
    "crypto/sha256"
    "encoding/hex"
    "flag"
    "fmt"
    "io/ioutil"
    "math/big"
    "testing"

    "github.com/ethereum/go-ethereum/crypto/secp256k1"
)

var dumpEnc bool

func init() {
    flDump := flag.Bool("dump", false, "write encrypted test message to file")
    flag.Parse()
    dumpEnc = *flDump
}

// Ensure the KDF generates appropriately sized keys.
func TestKDF(t *testing.T) {
    msg := []byte("Hello, world")
    h := sha256.New()

    k, err := concatKDF(h, msg, nil, 64)
    if err != nil {
        fmt.Println(err.Error())
        t.FailNow()
    }
    if len(k) != 64 {
        fmt.Printf("KDF: generated key is the wrong size (%d instead of 64\n",
            len(k))
        t.FailNow()
    }
}

var ErrBadSharedKeys = fmt.Errorf("ecies: shared keys don't match")

// cmpParams compares a set of ECIES parameters. We assume, as per the
// docs, that AES is the only supported symmetric encryption algorithm.
func cmpParams(p1, p2 *ECIESParams) bool {
    if p1.hashAlgo != p2.hashAlgo {
        return false
    } else if p1.KeyLen != p2.KeyLen {
        return false
    } else if p1.BlockSize != p2.BlockSize {
        return false
    }
    return true
}

// cmpPublic returns true if the two public keys represent the same pojnt.
func cmpPublic(pub1, pub2 PublicKey) bool {
    if pub1.X == nil || pub1.Y == nil {
        fmt.Println(ErrInvalidPublicKey.Error())
        return false
    }
    if pub2.X == nil || pub2.Y == nil {
        fmt.Println(ErrInvalidPublicKey.Error())
        return false
    }
    pub1Out := elliptic.Marshal(pub1.Curve, pub1.X, pub1.Y)
    pub2Out := elliptic.Marshal(pub2.Curve, pub2.X, pub2.Y)

    return bytes.Equal(pub1Out, pub2Out)
}

// cmpPrivate returns true if the two private keys are the same.
func cmpPrivate(prv1, prv2 *PrivateKey) bool {
    if prv1 == nil || prv1.D == nil {
        return false
    } else if prv2 == nil || prv2.D == nil {
        return false
    } else if prv1.D.Cmp(prv2.D) != 0 {
        return false
    } else {
        return cmpPublic(prv1.PublicKey, prv2.PublicKey)
    }
}

// Validate the ECDH component.
func TestSharedKey(t *testing.T) {
    prv1, err := GenerateKey(rand.Reader, DefaultCurve, nil)
    if err != nil {
        fmt.Println(err.Error())
        t.FailNow()
    }
    skLen := MaxSharedKeyLength(&prv1.PublicKey) / 2

    prv2, err := GenerateKey(rand.Reader, DefaultCurve, nil)
    if err != nil {
        fmt.Println(err.Error())
        t.FailNow()
    }

    sk1, err := prv1.GenerateShared(&prv2.PublicKey, skLen, skLen)
    if err != nil {
        fmt.Println(err.Error())
        t.FailNow()
    }

    sk2, err := prv2.GenerateShared(&prv1.PublicKey, skLen, skLen)
    if err != nil {
        fmt.Println(err.Error())
        t.FailNow()
    }

    if !bytes.Equal(sk1, sk2) {
        fmt.Println(ErrBadSharedKeys.Error())
        t.FailNow()
    }
}

func TestSharedKeyPadding(t *testing.T) {
    // sanity checks
    prv0 := hexKey("1adf5c18167d96a1f9a0b1ef63be8aa27eaf6032c233b2b38f7850cf5b859fd9")
    prv1 := hexKey("97a076fc7fcd9208240668e31c9abee952cbb6e375d1b8febc7499d6e16f1a")
    x0, _ := new(big.Int).SetString("1a8ed022ff7aec59dc1b440446bdda5ff6bcb3509a8b109077282b361efffbd8", 16)
    x1, _ := new(big.Int).SetString("6ab3ac374251f638d0abb3ef596d1dc67955b507c104e5f2009724812dc027b8", 16)
    y0, _ := new(big.Int).SetString("e040bd480b1deccc3bc40bd5b1fdcb7bfd352500b477cb9471366dbd4493f923", 16)
    y1, _ := new(big.Int).SetString("8ad915f2b503a8be6facab6588731fefeb584fd2dfa9a77a5e0bba1ec439e4fa", 16)

    if prv0.PublicKey.X.Cmp(x0) != 0 {
        t.Errorf("mismatched prv0.X:\nhave: %x\nwant: %x\n", prv0.PublicKey.X.Bytes(), x0.Bytes())
    }
    if prv0.PublicKey.Y.Cmp(y0) != 0 {
        t.Errorf("mismatched prv0.Y:\nhave: %x\nwant: %x\n", prv0.PublicKey.Y.Bytes(), y0.Bytes())
    }
    if prv1.PublicKey.X.Cmp(x1) != 0 {
        t.Errorf("mismatched prv1.X:\nhave: %x\nwant: %x\n", prv1.PublicKey.X.Bytes(), x1.Bytes())
    }
    if prv1.PublicKey.Y.Cmp(y1) != 0 {
        t.Errorf("mismatched prv1.Y:\nhave: %x\nwant: %x\n", prv1.PublicKey.Y.Bytes(), y1.Bytes())
    }

    // test shared secret generation
    sk1, err := prv0.GenerateShared(&prv1.PublicKey, 16, 16)
    if err != nil {
        fmt.Println(err.Error())
    }

    sk2, err := prv1.GenerateShared(&prv0.PublicKey, 16, 16)
    if err != nil {
        t.Fatal(err.Error())
    }

    if !bytes.Equal(sk1, sk2) {
        t.Fatal(ErrBadSharedKeys.Error())
    }
}

// Verify that the key generation code fails when too much key data is
// requested.
func TestTooBigSharedKey(t *testing.T) {
    prv1, err := GenerateKey(rand.Reader, DefaultCurve, nil)
    if err != nil {
        fmt.Println(err.Error())
        t.FailNow()
    }

    prv2, err := GenerateKey(rand.Reader, DefaultCurve, nil)
    if err != nil {
        fmt.Println(err.Error())
        t.FailNow()
    }

    _, err = prv1.GenerateShared(&prv2.PublicKey, 32, 32)
    if err != ErrSharedKeyTooBig {
        fmt.Println("ecdh: shared key should be too large for curve")
        t.FailNow()
    }

    _, err = prv2.GenerateShared(&prv1.PublicKey, 32, 32)
    if err != ErrSharedKeyTooBig {
        fmt.Println("ecdh: shared key should be too large for curve")
        t.FailNow()
    }
}

// Ensure a public key can be successfully marshalled and unmarshalled, and
// that the decoded key is the same as the original.
func TestMarshalPublic(t *testing.T) {
    prv, err := GenerateKey(rand.Reader, DefaultCurve, nil)
    if err != nil {
        t.Fatalf("GenerateKey error: %s", err)
    }

    out, err := MarshalPublic(&prv.PublicKey)
    if err != nil {
        t.Fatalf("MarshalPublic error: %s", err)
    }

    pub, err := UnmarshalPublic(out)
    if err != nil {
        t.Fatalf("UnmarshalPublic error: %s", err)
    }

    if !cmpPublic(prv.PublicKey, *pub) {
        t.Fatal("ecies: failed to unmarshal public key")
    }
}

// Ensure that a private key can be encoded into DER format, and that
// the resulting key is properly parsed back into a public key.
func TestMarshalPrivate(t *testing.T) {
    prv, err := GenerateKey(rand.Reader, DefaultCurve, nil)
    if err != nil {
        fmt.Println(err.Error())
        t.FailNow()
    }

    out, err := MarshalPrivate(prv)
    if err != nil {
        fmt.Println(err.Error())
        t.FailNow()
    }

    if dumpEnc {
        ioutil.WriteFile("test.out", out, 0644)
    }

    prv2, err := UnmarshalPrivate(out)
    if err != nil {
        fmt.Println(err.Error())
        t.FailNow()
    }

    if !cmpPrivate(prv, prv2) {
        fmt.Println("ecdh: private key import failed")
        t.FailNow()
    }
}

// Ensure that a private key can be successfully encoded to PEM format, and
// the resulting key is properly parsed back in.
func TestPrivatePEM(t *testing.T) {
    prv, err := GenerateKey(rand.Reader, DefaultCurve, nil)
    if err != nil {
        fmt.Println(err.Error())
        t.FailNow()
    }

    out, err := ExportPrivatePEM(prv)
    if err != nil {
        fmt.Println(err.Error())
        t.FailNow()
    }

    if dumpEnc {
        ioutil.WriteFile("test.key", out, 0644)
    }

    prv2, err := ImportPrivatePEM(out)
    if err != nil {
        fmt.Println(err.Error())
        t.FailNow()
    } else if !cmpPrivate(prv, prv2) {
        fmt.Println("ecdh: import from PEM failed")
        t.FailNow()
    }
}

// Ensure that a public key can be successfully encoded to PEM format, and
// the resulting key is properly parsed back in.
func TestPublicPEM(t *testing.T) {
    prv, err := GenerateKey(rand.Reader, DefaultCurve, nil)
    if err != nil {
        fmt.Println(err.Error())
        t.FailNow()
    }

    out, err := ExportPublicPEM(&prv.PublicKey)
    if err != nil {
        fmt.Println(err.Error())
        t.FailNow()
    }

    if dumpEnc {
        ioutil.WriteFile("test.pem", out, 0644)
    }

    pub2, err := ImportPublicPEM(out)
    if err != nil {
        fmt.Println(err.Error())
        t.FailNow()
    } else if !cmpPublic(prv.PublicKey, *pub2) {
        fmt.Println("ecdh: import from PEM failed")
        t.FailNow()
    }
}

// Benchmark the generation of P256 keys.
func BenchmarkGenerateKeyP256(b *testing.B) {
    for i := 0; i < b.N; i++ {
        if _, err := GenerateKey(rand.Reader, elliptic.P256(), nil); err != nil {
            fmt.Println(err.Error())
            b.FailNow()
        }
    }
}

// Benchmark the generation of P256 shared keys.
func BenchmarkGenSharedKeyP256(b *testing.B) {
    prv, err := GenerateKey(rand.Reader, elliptic.P256(), nil)
    if err != nil {
        fmt.Println(err.Error())
        b.FailNow()
    }
    b.ResetTimer()
    for i := 0; i < b.N; i++ {
        _, err := prv.GenerateShared(&prv.PublicKey, 16, 16)
        if err != nil {
            fmt.Println(err.Error())
            b.FailNow()
        }
    }
}

// Benchmark the generation of S256 shared keys.
func BenchmarkGenSharedKeyS256(b *testing.B) {
    prv, err := GenerateKey(rand.Reader, secp256k1.S256(), nil)
    if err != nil {
        fmt.Println(err.Error())
        b.FailNow()
    }
    b.ResetTimer()
    for i := 0; i < b.N; i++ {
        _, err := prv.GenerateShared(&prv.PublicKey, 16, 16)
        if err != nil {
            fmt.Println(err.Error())
            b.FailNow()
        }
    }
}

// Verify that an encrypted message can be successfully decrypted.
func TestEncryptDecrypt(t *testing.T) {
    prv1, err := GenerateKey(rand.Reader, DefaultCurve, nil)
    if err != nil {
        fmt.Println(err.Error())
        t.FailNow()
    }

    prv2, err := GenerateKey(rand.Reader, DefaultCurve, nil)
    if err != nil {
        fmt.Println(err.Error())
        t.FailNow()
    }

    message := []byte("Hello, world.")
    ct, err := Encrypt(rand.Reader, &prv2.PublicKey, message, nil, nil)
    if err != nil {
        fmt.Println(err.Error())
        t.FailNow()
    }

    pt, err := prv2.Decrypt(rand.Reader, ct, nil, nil)
    if err != nil {
        fmt.Println(err.Error())
        t.FailNow()
    }

    if !bytes.Equal(pt, message) {
        fmt.Println("ecies: plaintext doesn't match message")
        t.FailNow()
    }

    _, err = prv1.Decrypt(rand.Reader, ct, nil, nil)
    if err == nil {
        fmt.Println("ecies: encryption should not have succeeded")
        t.FailNow()
    }
}

func TestDecryptShared2(t *testing.T) {
    prv, err := GenerateKey(rand.Reader, DefaultCurve, nil)
    if err != nil {
        t.Fatal(err)
    }
    message := []byte("Hello, world.")
    shared2 := []byte("shared data 2")
    ct, err := Encrypt(rand.Reader, &prv.PublicKey, message, nil, shared2)
    if err != nil {
        t.Fatal(err)
    }

    // Check that decrypting with correct shared data works.
    pt, err := prv.Decrypt(rand.Reader, ct, nil, shared2)
    if err != nil {
        t.Fatal(err)
    }
    if !bytes.Equal(pt, message) {
        t.Fatal("ecies: plaintext doesn't match message")
    }

    // Decrypting without shared data or incorrect shared data fails.
    if _, err = prv.Decrypt(rand.Reader, ct, nil, nil); err == nil {
        t.Fatal("ecies: decrypting without shared data didn't fail")
    }
    if _, err = prv.Decrypt(rand.Reader, ct, nil, []byte("garbage")); err == nil {
        t.Fatal("ecies: decrypting with incorrect shared data didn't fail")
    }
}

// TestMarshalEncryption validates the encode/decode produces a valid
// ECIES encryption key.
func TestMarshalEncryption(t *testing.T) {
    prv1, err := GenerateKey(rand.Reader, DefaultCurve, nil)
    if err != nil {
        fmt.Println(err.Error())
        t.FailNow()
    }

    out, err := MarshalPrivate(prv1)
    if err != nil {
        fmt.Println(err.Error())
        t.FailNow()
    }

    prv2, err := UnmarshalPrivate(out)
    if err != nil {
        fmt.Println(err.Error())
        t.FailNow()
    }

    message := []byte("Hello, world.")
    ct, err := Encrypt(rand.Reader, &prv2.PublicKey, message, nil, nil)
    if err != nil {
        fmt.Println(err.Error())
        t.FailNow()
    }

    pt, err := prv2.Decrypt(rand.Reader, ct, nil, nil)
    if err != nil {
        fmt.Println(err.Error())
        t.FailNow()
    }

    if !bytes.Equal(pt, message) {
        fmt.Println("ecies: plaintext doesn't match message")
        t.FailNow()
    }

    _, err = prv1.Decrypt(rand.Reader, ct, nil, nil)
    if err != nil {
        fmt.Println(err.Error())
        t.FailNow()
    }

}

type testCase struct {
    Curve    elliptic.Curve
    Name     string
    Expected bool
}

var testCases = []testCase{
    testCase{
        Curve:    elliptic.P256(),
        Name:     "P256",
        Expected: true,
    },
    testCase{
        Curve:    elliptic.P384(),
        Name:     "P384",
        Expected: true,
    },
    testCase{
        Curve:    elliptic.P521(),
        Name:     "P521",
        Expected: true,
    },
}

// Test parameter selection for each curve, and that P224 fails automatic
// parameter selection (see README for a discussion of P224). Ensures that
// selecting a set of parameters automatically for the given curve works.
func TestParamSelection(t *testing.T) {
    for _, c := range testCases {
        testParamSelection(t, c)
    }
}

func testParamSelection(t *testing.T, c testCase) {
    params := ParamsFromCurve(c.Curve)
    if params == nil && c.Expected {
        fmt.Printf("%s (%s)\n", ErrInvalidParams.Error(), c.Name)
        t.FailNow()
    } else if params != nil && !c.Expected {
        fmt.Printf("ecies: parameters should be invalid (%s)\n",
            c.Name)
        t.FailNow()
    }

    prv1, err := GenerateKey(rand.Reader, DefaultCurve, nil)
    if err != nil {
        fmt.Printf("%s (%s)\n", err.Error(), c.Name)
        t.FailNow()
    }

    prv2, err := GenerateKey(rand.Reader, DefaultCurve, nil)
    if err != nil {
        fmt.Printf("%s (%s)\n", err.Error(), c.Name)
        t.FailNow()
    }

    message := []byte("Hello, world.")
    ct, err := Encrypt(rand.Reader, &prv2.PublicKey, message, nil, nil)
    if err != nil {
        fmt.Printf("%s (%s)\n", err.Error(), c.Name)
        t.FailNow()
    }

    pt, err := prv2.Decrypt(rand.Reader, ct, nil, nil)
    if err != nil {
        fmt.Printf("%s (%s)\n", err.Error(), c.Name)
        t.FailNow()
    }

    if !bytes.Equal(pt, message) {
        fmt.Printf("ecies: plaintext doesn't match message (%s)\n",
            c.Name)
        t.FailNow()
    }

    _, err = prv1.Decrypt(rand.Reader, ct, nil, nil)
    if err == nil {
        fmt.Printf("ecies: encryption should not have succeeded (%s)\n",
            c.Name)
        t.FailNow()
    }

}

// Ensure that the basic public key validation in the decryption operation
// works.
func TestBasicKeyValidation(t *testing.T) {
    badBytes := []byte{0, 1, 5, 6, 7, 8, 9}

    prv, err := GenerateKey(rand.Reader, DefaultCurve, nil)
    if err != nil {
        fmt.Println(err.Error())
        t.FailNow()
    }

    message := []byte("Hello, world.")
    ct, err := Encrypt(rand.Reader, &prv.PublicKey, message, nil, nil)
    if err != nil {
        fmt.Println(err.Error())
        t.FailNow()
    }

    for _, b := range badBytes {
        ct[0] = b
        _, err := prv.Decrypt(rand.Reader, ct, nil, nil)
        if err != ErrInvalidPublicKey {
            fmt.Println("ecies: validated an invalid key")
            t.FailNow()
        }
    }
}

// Verify GenerateShared against static values - useful when
// debugging changes in underlying libs
func TestSharedKeyStatic(t *testing.T) {
    prv1 := hexKey("7ebbc6a8358bc76dd73ebc557056702c8cfc34e5cfcd90eb83af0347575fd2ad")
    prv2 := hexKey("6a3d6396903245bba5837752b9e0348874e72db0c4e11e9c485a81b4ea4353b9")

    skLen := MaxSharedKeyLength(&prv1.PublicKey) / 2

    sk1, err := prv1.GenerateShared(&prv2.PublicKey, skLen, skLen)
    if err != nil {
        fmt.Println(err.Error())
        t.FailNow()
    }

    sk2, err := prv2.GenerateShared(&prv1.PublicKey, skLen, skLen)
    if err != nil {
        fmt.Println(err.Error())
        t.FailNow()
    }

    if !bytes.Equal(sk1, sk2) {
        fmt.Println(ErrBadSharedKeys.Error())
        t.FailNow()
    }

    sk, _ := hex.DecodeString("167ccc13ac5e8a26b131c3446030c60fbfac6aa8e31149d0869f93626a4cdf62")
    if !bytes.Equal(sk1, sk) {
        t.Fatalf("shared secret mismatch: want: %x have: %x", sk, sk1)
    }
}

// TODO: remove after refactoring packages crypto and crypto/ecies
func hexKey(prv string) *PrivateKey {
    priv := new(ecdsa.PrivateKey)
    priv.PublicKey.Curve = secp256k1.S256()
    priv.D, _ = new(big.Int).SetString(prv, 16)
    priv.PublicKey.X, priv.PublicKey.Y = secp256k1.S256().ScalarBaseMult(priv.D.Bytes())
    return ImportECDSA(priv)
}