1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
|
/*
This file is part of solidity.
solidity is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
solidity is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with solidity. If not, see <http://www.gnu.org/licenses/>.
*/
/**
* @date 2017
* Unit tests for the iulia function inliner.
*/
#include <test/libjulia/Common.h>
#include <libjulia/optimiser/InlinableFunctionFilter.h>
#include <libjulia/optimiser/FunctionalInliner.h>
#include <libsolidity/inlineasm/AsmPrinter.h>
#include <boost/test/unit_test.hpp>
#include <boost/range/adaptors.hpp>
#include <boost/algorithm/string/join.hpp>
using namespace std;
using namespace dev;
using namespace dev::julia;
using namespace dev::julia::test;
using namespace dev::solidity;
namespace
{
string inlinableFunctions(string const& _source)
{
auto ast = disambiguate(_source);
InlinableFunctionFilter filter;
filter(ast);
return boost::algorithm::join(
filter.inlinableFunctions() | boost::adaptors::map_keys,
","
);
}
string inlineFunctions(string const& _source, bool _julia = true)
{
auto ast = disambiguate(_source, _julia);
FunctionalInliner(ast).run();
return assembly::AsmPrinter(_julia)(ast);
}
}
BOOST_AUTO_TEST_SUITE(IuliaInlinableFunctionFilter)
BOOST_AUTO_TEST_CASE(smoke_test)
{
BOOST_CHECK_EQUAL(inlinableFunctions("{ }"), "");
}
BOOST_AUTO_TEST_CASE(simple)
{
BOOST_CHECK_EQUAL(inlinableFunctions("{ function f() -> x:u256 { x := 2:u256 } }"), "f");
BOOST_CHECK_EQUAL(inlinableFunctions(R"({
function g(a:u256) -> b:u256 { b := a }
function f() -> x:u256 { x := g(2:u256) }
})"), "f,g");
}
BOOST_AUTO_TEST_CASE(simple_inside_structures)
{
BOOST_CHECK_EQUAL(inlinableFunctions(R"({
switch 2:u256
case 2:u256 {
function g(a:u256) -> b:u256 { b := a }
function f() -> x:u256 { x := g(2:u256) }
}
})"), "f,g");
BOOST_CHECK_EQUAL(inlinableFunctions(R"({
for {
function g(a:u256) -> b:u256 { b := a }
} 1:u256 {
function f() -> x:u256 { x := g(2:u256) }
}
{
function h() -> y:u256 { y := 2:u256 }
}
})"), "f,g,h");
}
BOOST_AUTO_TEST_CASE(negative)
{
BOOST_CHECK_EQUAL(inlinableFunctions("{ function f() -> x:u256 { } }"), "");
BOOST_CHECK_EQUAL(inlinableFunctions("{ function f() -> x:u256 { x := 2:u256 {} } }"), "");
BOOST_CHECK_EQUAL(inlinableFunctions("{ function f() -> x:u256 { x := f() } }"), "");
BOOST_CHECK_EQUAL(inlinableFunctions("{ function f() -> x:u256 { x := x } }"), "");
BOOST_CHECK_EQUAL(inlinableFunctions("{ function f() -> x:u256, y:u256 { x := 2:u256 } }"), "");
}
BOOST_AUTO_TEST_SUITE_END()
BOOST_AUTO_TEST_SUITE(IuliaFunctionInliner)
BOOST_AUTO_TEST_CASE(simple)
{
BOOST_CHECK_EQUAL(
inlineFunctions("{ function f() -> x:u256 { x := 2:u256 } let y:u256 := f() }"),
format("{ function f() -> x:u256 { x := 2:u256 } let y:u256 := 2:u256 }")
);
}
BOOST_AUTO_TEST_CASE(with_args)
{
BOOST_CHECK_EQUAL(
inlineFunctions("{ function f(a:u256) -> x:u256 { x := a } let y:u256 := f(7:u256) }"),
format("{ function f(a:u256) -> x:u256 { x := a } let y:u256 := 7:u256 }")
);
}
BOOST_AUTO_TEST_CASE(no_inline_with_mload)
{
// Does not inline because mload could be moved out of sequence
BOOST_CHECK_EQUAL(
inlineFunctions("{ function f(a) -> x { x := a } let y := f(mload(2)) }", false),
format("{ function f(a) -> x { x := a } let y := f(mload(2)) }", false)
);
}
BOOST_AUTO_TEST_CASE(no_move_with_side_effects)
{
// The calls to g and h cannot be moved because g and h are not movable. Therefore, the call
// to f is not inlined.
BOOST_CHECK_EQUAL(
inlineFunctions(R"({
function f(a, b) -> x { x := add(b, a) }
function g() -> y { y := mload(0) mstore(0, 4) }
function h() -> z { mstore(0, 4) z := mload(0) }
let r := f(g(), h())
})", false),
format(R"({
function f(a, b) -> x { x := add(b, a) }
function g() -> y { y := mload(0) mstore(0, 4) }
function h() -> z { mstore(0, 4) z := mload(0) }
let r := f(g(), h())
})", false)
);
}
BOOST_AUTO_TEST_CASE(complex_with_evm)
{
BOOST_CHECK_EQUAL(
inlineFunctions("{ function f(a) -> x { x := add(a, a) } let y := f(calldatasize()) }", false),
format("{ function f(a) -> x { x := add(a, a) } let y := add(calldatasize(), calldatasize()) }", false)
);
}
BOOST_AUTO_TEST_CASE(double_calls)
{
BOOST_CHECK_EQUAL(
inlineFunctions(R"({
function f(a) -> x { x := add(a, a) }
function g(b, c) -> y { y := mul(mload(c), f(b)) }
let y := g(calldatasize(), 7)
})", false),
format(R"({
function f(a) -> x { x := add(a, a) }
function g(b, c) -> y { y := mul(mload(c), add(b, b)) }
let y_1 := mul(mload(7), add(calldatasize(), calldatasize()))
})", false)
);
}
// TODO test double recursive calls
BOOST_AUTO_TEST_SUITE_END()
|