aboutsummaryrefslogtreecommitdiffstats
path: root/test/compilationTests/gnosis/Utils/Math.sol
blob: 47edcba4f783b4953a8189221aa57e03632e904d (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
pragma solidity ^0.4.11;


/// @title Math library - Allows calculation of logarithmic and exponential functions
/// @author Alan Lu - <alan.lu@gnosis.pm>
/// @author Stefan George - <stefan@gnosis.pm>
library Math {

    /*
     *  Constants
     */
    // This is equal to 1 in our calculations
    uint public constant ONE =  0x10000000000000000;
    uint public constant LN2 = 0xb17217f7d1cf79ac;
    uint public constant LOG2_E = 0x171547652b82fe177;

    /*
     *  Public functions
     */
    /// @dev Returns natural exponential function value of given x
    /// @param x x
    /// @return e**x
    function exp(int x)
        public
        pure
        returns (uint)
    {
        // revert if x is > MAX_POWER, where
        // MAX_POWER = int(mp.floor(mp.log(mpf(2**256 - 1) / ONE) * ONE))
        require(x <= 2454971259878909886679);
        // return 0 if exp(x) is tiny, using
        // MIN_POWER = int(mp.floor(mp.log(mpf(1) / ONE) * ONE))
        if (x < -818323753292969962227)
            return 0;
        // Transform so that e^x -> 2^x
        x = x * int(ONE) / int(LN2);
        // 2^x = 2^whole(x) * 2^frac(x)
        //       ^^^^^^^^^^ is a bit shift
        // so Taylor expand on z = frac(x)
        int shift;
        uint z;
        if (x >= 0) {
            shift = x / int(ONE);
            z = uint(x % int(ONE));
        }
        else {
            shift = x / int(ONE) - 1;
            z = ONE - uint(-x % int(ONE));
        }
        // 2^x = 1 + (ln 2) x + (ln 2)^2/2! x^2 + ...
        //
        // Can generate the z coefficients using mpmath and the following lines
        // >>> from mpmath import mp
        // >>> mp.dps = 100
        // >>> ONE =  0x10000000000000000
        // >>> print('\n'.join(hex(int(mp.log(2)**i / mp.factorial(i) * ONE)) for i in range(1, 7)))
        // 0xb17217f7d1cf79ab
        // 0x3d7f7bff058b1d50
        // 0xe35846b82505fc5
        // 0x276556df749cee5
        // 0x5761ff9e299cc4
        // 0xa184897c363c3
        uint zpow = z;
        uint result = ONE;
        result += 0xb17217f7d1cf79ab * zpow / ONE;
        zpow = zpow * z / ONE;
        result += 0x3d7f7bff058b1d50 * zpow / ONE;
        zpow = zpow * z / ONE;
        result += 0xe35846b82505fc5 * zpow / ONE;
        zpow = zpow * z / ONE;
        result += 0x276556df749cee5 * zpow / ONE;
        zpow = zpow * z / ONE;
        result += 0x5761ff9e299cc4 * zpow / ONE;
        zpow = zpow * z / ONE;
        result += 0xa184897c363c3 * zpow / ONE;
        zpow = zpow * z / ONE;
        result += 0xffe5fe2c4586 * zpow / ONE;
        zpow = zpow * z / ONE;
        result += 0x162c0223a5c8 * zpow / ONE;
        zpow = zpow * z / ONE;
        result += 0x1b5253d395e * zpow / ONE;
        zpow = zpow * z / ONE;
        result += 0x1e4cf5158b * zpow / ONE;
        zpow = zpow * z / ONE;
        result += 0x1e8cac735 * zpow / ONE;
        zpow = zpow * z / ONE;
        result += 0x1c3bd650 * zpow / ONE;
        zpow = zpow * z / ONE;
        result += 0x1816193 * zpow / ONE;
        zpow = zpow * z / ONE;
        result += 0x131496 * zpow / ONE;
        zpow = zpow * z / ONE;
        result += 0xe1b7 * zpow / ONE;
        zpow = zpow * z / ONE;
        result += 0x9c7 * zpow / ONE;
        if (shift >= 0) {
            if (result >> (256-shift) > 0)
                return (2**256-1);
            return result << shift;
        }
        else
            return result >> (-shift);
    }

    /// @dev Returns natural logarithm value of given x
    /// @param x x
    /// @return ln(x)
    function ln(uint x)
        public
        pure
        returns (int)
    {
        require(x > 0);
        // binary search for floor(log2(x))
        int ilog2 = floorLog2(x);
        int z;
        if (ilog2 < 0)
            z = int(x << uint(-ilog2));
        else
            z = int(x >> uint(ilog2));
        // z = x * 2^-⌊log₂x⌋
        // so 1 <= z < 2
        // and ln z = ln x - ⌊log₂x⌋/log₂e
        // so just compute ln z using artanh series
        // and calculate ln x from that
        int term = (z - int(ONE)) * int(ONE) / (z + int(ONE));
        int halflnz = term;
        int termpow = term * term / int(ONE) * term / int(ONE);
        halflnz += termpow / 3;
        termpow = termpow * term / int(ONE) * term / int(ONE);
        halflnz += termpow / 5;
        termpow = termpow * term / int(ONE) * term / int(ONE);
        halflnz += termpow / 7;
        termpow = termpow * term / int(ONE) * term / int(ONE);
        halflnz += termpow / 9;
        termpow = termpow * term / int(ONE) * term / int(ONE);
        halflnz += termpow / 11;
        termpow = termpow * term / int(ONE) * term / int(ONE);
        halflnz += termpow / 13;
        termpow = termpow * term / int(ONE) * term / int(ONE);
        halflnz += termpow / 15;
        termpow = termpow * term / int(ONE) * term / int(ONE);
        halflnz += termpow / 17;
        termpow = termpow * term / int(ONE) * term / int(ONE);
        halflnz += termpow / 19;
        termpow = termpow * term / int(ONE) * term / int(ONE);
        halflnz += termpow / 21;
        termpow = termpow * term / int(ONE) * term / int(ONE);
        halflnz += termpow / 23;
        termpow = termpow * term / int(ONE) * term / int(ONE);
        halflnz += termpow / 25;
        return (ilog2 * int(ONE)) * int(ONE) / int(LOG2_E) + 2 * halflnz;
    }

    /// @dev Returns base 2 logarithm value of given x
    /// @param x x
    /// @return logarithmic value
    function floorLog2(uint x)
        public
        pure
        returns (int lo)
    {
        lo = -64;
        int hi = 193;
        // I use a shift here instead of / 2 because it floors instead of rounding towards 0
        int mid = (hi + lo) >> 1;
        while((lo + 1) < hi) {
            if (mid < 0 && x << uint(-mid) < ONE || mid >= 0 && x >> uint(mid) < ONE)
                hi = mid;
            else
                lo = mid;
            mid = (hi + lo) >> 1;
        }
    }

    /// @dev Returns maximum of an array
    /// @param nums Numbers to look through
    /// @return Maximum number
    function max(int[] memory nums)
        public
        pure
        returns (int max)
    {
        require(nums.length > 0);
        max = -2**255;
        for (uint i = 0; i < nums.length; i++)
            if (nums[i] > max)
                max = nums[i];
    }

    /// @dev Returns whether an add operation causes an overflow
    /// @param a First addend
    /// @param b Second addend
    /// @return Did no overflow occur?
    function safeToAdd(uint a, uint b)
        public
        pure
        returns (bool)
    {
        return a + b >= a;
    }

    /// @dev Returns whether a subtraction operation causes an underflow
    /// @param a Minuend
    /// @param b Subtrahend
    /// @return Did no underflow occur?
    function safeToSub(uint a, uint b)
        public
        pure
        returns (bool)
    {
        return a >= b;
    }

    /// @dev Returns whether a multiply operation causes an overflow
    /// @param a First factor
    /// @param b Second factor
    /// @return Did no overflow occur?
    function safeToMul(uint a, uint b)
        public
        pure
        returns (bool)
    {
        return b == 0 || a * b / b == a;
    }

    /// @dev Returns sum if no overflow occurred
    /// @param a First addend
    /// @param b Second addend
    /// @return Sum
    function add(uint a, uint b)
        public
        pure
        returns (uint)
    {
        require(safeToAdd(a, b));
        return a + b;
    }

    /// @dev Returns difference if no overflow occurred
    /// @param a Minuend
    /// @param b Subtrahend
    /// @return Difference
    function sub(uint a, uint b)
        public
        pure
        returns (uint)
    {
        require(safeToSub(a, b));
        return a - b;
    }

    /// @dev Returns product if no overflow occurred
    /// @param a First factor
    /// @param b Second factor
    /// @return Product
    function mul(uint a, uint b)
        public
        pure
        returns (uint)
    {
        require(safeToMul(a, b));
        return a * b;
    }

    /// @dev Returns whether an add operation causes an overflow
    /// @param a First addend
    /// @param b Second addend
    /// @return Did no overflow occur?
    function safeToAdd(int a, int b)
        public
        pure
        returns (bool)
    {
        return (b >= 0 && a + b >= a) || (b < 0 && a + b < a);
    }

    /// @dev Returns whether a subtraction operation causes an underflow
    /// @param a Minuend
    /// @param b Subtrahend
    /// @return Did no underflow occur?
    function safeToSub(int a, int b)
        public
        pure
        returns (bool)
    {
        return (b >= 0 && a - b <= a) || (b < 0 && a - b > a);
    }

    /// @dev Returns whether a multiply operation causes an overflow
    /// @param a First factor
    /// @param b Second factor
    /// @return Did no overflow occur?
    function safeToMul(int a, int b)
        public
        pure
        returns (bool)
    {
        return (b == 0) || (a * b / b == a);
    }

    /// @dev Returns sum if no overflow occurred
    /// @param a First addend
    /// @param b Second addend
    /// @return Sum
    function add(int a, int b)
        public
        pure
        returns (int)
    {
        require(safeToAdd(a, b));
        return a + b;
    }

    /// @dev Returns difference if no overflow occurred
    /// @param a Minuend
    /// @param b Subtrahend
    /// @return Difference
    function sub(int a, int b)
        public
        pure
        returns (int)
    {
        require(safeToSub(a, b));
        return a - b;
    }

    /// @dev Returns product if no overflow occurred
    /// @param a First factor
    /// @param b Second factor
    /// @return Product
    function mul(int a, int b)
        public
        pure
        returns (int)
    {
        require(safeToMul(a, b));
        return a * b;
    }
}