aboutsummaryrefslogtreecommitdiffstats
path: root/ExpressionCompiler.cpp
blob: 05bbb0916af655bcf66e7a4afd207b5b5f1ce06e (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
/*
    This file is part of cpp-ethereum.

    cpp-ethereum is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    cpp-ethereum is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with cpp-ethereum.  If not, see <http://www.gnu.org/licenses/>.
*/
/**
 * @author Christian <c@ethdev.com>
 * @date 2014
 * Solidity AST to EVM bytecode compiler for expressions.
 */

#include <utility>
#include <numeric>
#include <libsolidity/AST.h>
#include <libsolidity/ExpressionCompiler.h>
#include <libsolidity/CompilerContext.h>

using namespace std;

namespace dev {
namespace solidity {

void ExpressionCompiler::compileExpression(CompilerContext& _context, Expression& _expression)
{
    ExpressionCompiler compiler(_context);
    _expression.accept(compiler);
}

void ExpressionCompiler::appendTypeConversion(CompilerContext& _context,
                                              Type const& _typeOnStack, Type const& _targetType)
{
    ExpressionCompiler compiler(_context);
    compiler.appendTypeConversion(_typeOnStack, _targetType);
}

bool ExpressionCompiler::visit(Assignment& _assignment)
{
    _assignment.getRightHandSide().accept(*this);
    appendTypeConversion(*_assignment.getRightHandSide().getType(), *_assignment.getType());
    m_currentLValue.reset();
    _assignment.getLeftHandSide().accept(*this);

    Token::Value op = _assignment.getAssignmentOperator();
    if (op != Token::ASSIGN) // compound assignment
        appendOrdinaryBinaryOperatorCode(Token::AssignmentToBinaryOp(op), *_assignment.getType());
    else
        m_context << eth::Instruction::POP;

    storeInLValue(_assignment);
    return false;
}

void ExpressionCompiler::endVisit(UnaryOperation& _unaryOperation)
{
    //@todo type checking and creating code for an operator should be in the same place:
    // the operator should know how to convert itself and to which types it applies, so
    // put this code together with "Type::acceptsBinary/UnaryOperator" into a class that
    // represents the operator
    switch (_unaryOperation.getOperator())
    {
    case Token::NOT: // !
        m_context << eth::Instruction::ISZERO;
        break;
    case Token::BIT_NOT: // ~
        m_context << eth::Instruction::NOT;
        break;
    case Token::DELETE: // delete
    {
        // a -> a xor a (= 0).
        // @todo semantics change for complex types
        m_context << eth::Instruction::DUP1 << eth::Instruction::XOR;
        storeInLValue(_unaryOperation);
        break;
    }
    case Token::INC: // ++ (pre- or postfix)
    case Token::DEC: // -- (pre- or postfix)
        if (!_unaryOperation.isPrefixOperation())
            m_context << eth::Instruction::DUP1;
        m_context << u256(1);
        if (_unaryOperation.getOperator() == Token::INC)
            m_context << eth::Instruction::ADD;
        else
            m_context << eth::Instruction::SWAP1 << eth::Instruction::SUB; // @todo avoid the swap
        storeInLValue(_unaryOperation, !_unaryOperation.isPrefixOperation());
        break;
    case Token::ADD: // +
        // unary add, so basically no-op
        break;
    case Token::SUB: // -
        m_context << u256(0) << eth::Instruction::SUB;
        break;
    default:
        BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_comment("Invalid unary operator: " +
                                                                         string(Token::toString(_unaryOperation.getOperator()))));
    }
}

bool ExpressionCompiler::visit(BinaryOperation& _binaryOperation)
{
    Expression& leftExpression = _binaryOperation.getLeftExpression();
    Expression& rightExpression = _binaryOperation.getRightExpression();
    Type const& commonType = _binaryOperation.getCommonType();
    Token::Value const op = _binaryOperation.getOperator();

    if (op == Token::AND || op == Token::OR) // special case: short-circuiting
        appendAndOrOperatorCode(_binaryOperation);
    else
    {
        bool cleanupNeeded = false;
        if (commonType.getCategory() == Type::Category::INTEGER)
            if (Token::isCompareOp(op) || op == Token::DIV || op == Token::MOD)
                cleanupNeeded = true;

        rightExpression.accept(*this);
        appendTypeConversion(*rightExpression.getType(), commonType, cleanupNeeded);
        leftExpression.accept(*this);
        appendTypeConversion(*leftExpression.getType(), commonType, cleanupNeeded);
        if (Token::isCompareOp(op))
            appendCompareOperatorCode(op, commonType);
        else
            appendOrdinaryBinaryOperatorCode(op, commonType);
    }

    // do not visit the child nodes, we already did that explicitly
    return false;
}

bool ExpressionCompiler::visit(FunctionCall& _functionCall)
{
    if (_functionCall.isTypeConversion())
    {
        //@todo we only have integers and bools for now which cannot be explicitly converted
        if (asserts(_functionCall.getArguments().size() == 1))
            BOOST_THROW_EXCEPTION(InternalCompilerError());
        Expression& firstArgument = *_functionCall.getArguments().front();
        firstArgument.accept(*this);
        appendTypeConversion(*firstArgument.getType(), *_functionCall.getType());
    }
    else
    {
        // Calling convention: Caller pushes return address and arguments
        // Callee removes them and pushes return values
        m_currentLValue.reset();
        _functionCall.getExpression().accept(*this);
        if (asserts(m_currentLValue.isInCode()))
            BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_comment("Code reference expected."));
        eth::AssemblyItem functionTag(eth::PushTag, m_currentLValue.location);

        FunctionDefinition const& function = dynamic_cast<FunctionType const&>(*_functionCall.getExpression().getType()).getFunction();

        eth::AssemblyItem returnLabel = m_context.pushNewTag();
        std::vector<ASTPointer<Expression>> const& arguments = _functionCall.getArguments();
        if (asserts(arguments.size() == function.getParameters().size()))
            BOOST_THROW_EXCEPTION(InternalCompilerError());
        for (unsigned i = 0; i < arguments.size(); ++i)
        {
            arguments[i]->accept(*this);
            appendTypeConversion(*arguments[i]->getType(), *function.getParameters()[i]->getType());
        }

        m_context.appendJumpTo(functionTag);
        m_context << returnLabel;

        // callee adds return parameters, but removes arguments and return label
        m_context.adjustStackOffset(function.getReturnParameters().size() - arguments.size() - 1);

        // @todo for now, the return value of a function is its first return value, so remove
        // all others
        for (unsigned i = 1; i < function.getReturnParameters().size(); ++i)
            m_context << eth::Instruction::POP;
    }
    return false;
}

void ExpressionCompiler::endVisit(MemberAccess&)
{

}

void ExpressionCompiler::endVisit(IndexAccess&)
{

}

void ExpressionCompiler::endVisit(Identifier& _identifier)
{
    Declaration const* declaration = _identifier.getReferencedDeclaration();
    if (m_context.isLocalVariable(declaration))
        m_currentLValue = LValueLocation(LValueLocation::STACK,
                                         m_context.getBaseStackOffsetOfVariable(*declaration));
    else if (m_context.isStateVariable(declaration))
        m_currentLValue = LValueLocation(LValueLocation::STORAGE,
                                         m_context.getStorageLocationOfVariable(*declaration));
    else if (m_context.isFunctionDefinition(declaration))
        m_currentLValue = LValueLocation(LValueLocation::CODE,
                                         m_context.getFunctionEntryLabel(dynamic_cast<FunctionDefinition const&>(*declaration)).data());
    else
        BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_comment("Identifier type not supported or identifier not found."));

    retrieveLValueValue(_identifier);
}

void ExpressionCompiler::endVisit(Literal& _literal)
{
    switch (_literal.getType()->getCategory())
    {
    case Type::Category::INTEGER:
    case Type::Category::BOOL:
        m_context << _literal.getType()->literalValue(_literal);
        break;
    default:
        BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_comment("Only integer and boolean literals implemented for now."));
    }
}

void ExpressionCompiler::appendAndOrOperatorCode(BinaryOperation& _binaryOperation)
{
    Token::Value const op = _binaryOperation.getOperator();
    if (asserts(op == Token::OR || op == Token::AND))
        BOOST_THROW_EXCEPTION(InternalCompilerError());

    _binaryOperation.getLeftExpression().accept(*this);
    m_context << eth::Instruction::DUP1;
    if (op == Token::AND)
        m_context << eth::Instruction::ISZERO;
    eth::AssemblyItem endLabel = m_context.appendConditionalJump();
    m_context << eth::Instruction::POP;
    _binaryOperation.getRightExpression().accept(*this);
    m_context << endLabel;
}

void ExpressionCompiler::appendCompareOperatorCode(Token::Value _operator, Type const& _type)
{
    if (_operator == Token::EQ || _operator == Token::NE)
    {
        m_context << eth::Instruction::EQ;
        if (_operator == Token::NE)
            m_context << eth::Instruction::ISZERO;
    }
    else
    {
        IntegerType const& type = dynamic_cast<IntegerType const&>(_type);
        bool const isSigned = type.isSigned();

        switch (_operator)
        {
        case Token::GTE:
            m_context << (isSigned ? eth::Instruction::SLT : eth::Instruction::LT)
                      << eth::Instruction::ISZERO;
            break;
        case Token::LTE:
            m_context << (isSigned ? eth::Instruction::SGT : eth::Instruction::GT)
                      << eth::Instruction::ISZERO;
            break;
        case Token::GT:
            m_context << (isSigned ? eth::Instruction::SGT : eth::Instruction::GT);
            break;
        case Token::LT:
            m_context << (isSigned ? eth::Instruction::SLT : eth::Instruction::LT);
            break;
        default:
            BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_comment("Unknown comparison operator."));
        }
    }
}

void ExpressionCompiler::appendOrdinaryBinaryOperatorCode(Token::Value _operator, Type const& _type)
{
    if (Token::isArithmeticOp(_operator))
        appendArithmeticOperatorCode(_operator, _type);
    else if (Token::isBitOp(_operator))
        appendBitOperatorCode(_operator);
    else if (Token::isShiftOp(_operator))
        appendShiftOperatorCode(_operator);
    else
        BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_comment("Unknown binary operator."));
}

void ExpressionCompiler::appendArithmeticOperatorCode(Token::Value _operator, Type const& _type)
{
    IntegerType const& type = dynamic_cast<IntegerType const&>(_type);
    bool const isSigned = type.isSigned();

    switch (_operator)
    {
    case Token::ADD:
        m_context << eth::Instruction::ADD;
        break;
    case Token::SUB:
        m_context << eth::Instruction::SUB;
        break;
    case Token::MUL:
        m_context << eth::Instruction::MUL;
        break;
    case Token::DIV:
        m_context  << (isSigned ? eth::Instruction::SDIV : eth::Instruction::DIV);
        break;
    case Token::MOD:
        m_context << (isSigned ? eth::Instruction::SMOD : eth::Instruction::MOD);
        break;
    default:
        BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_comment("Unknown arithmetic operator."));
    }
}

void ExpressionCompiler::appendBitOperatorCode(Token::Value _operator)
{
    switch (_operator)
    {
    case Token::BIT_OR:
        m_context << eth::Instruction::OR;
        break;
    case Token::BIT_AND:
        m_context << eth::Instruction::AND;
        break;
    case Token::BIT_XOR:
        m_context << eth::Instruction::XOR;
        break;
    default:
        BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_comment("Unknown bit operator."));
    }
}

void ExpressionCompiler::appendShiftOperatorCode(Token::Value _operator)
{
    BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_comment("Shift operators not yet implemented."));
    switch (_operator)
    {
    case Token::SHL:
        break;
    case Token::SAR:
        break;
    default:
        BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_comment("Unknown shift operator."));
    }
}

void ExpressionCompiler::appendTypeConversion(Type const& _typeOnStack, Type const& _targetType, bool _cleanupNeeded)
{
    // For a type extension, we need to remove all higher-order bits that we might have ignored in
    // previous operations.
    // @todo: store in the AST whether the operand might have "dirty" higher order bits

    if (_typeOnStack == _targetType && !_cleanupNeeded)
        return;
    if (_typeOnStack.getCategory() == Type::Category::INTEGER)
        appendHighBitsCleanup(dynamic_cast<IntegerType const&>(_typeOnStack));
    else if (_typeOnStack != _targetType)
        // All other types should not be convertible to non-equal types.
        BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_comment("Invalid type conversion requested."));
}

void ExpressionCompiler::appendHighBitsCleanup(IntegerType const& _typeOnStack)
{
    if (_typeOnStack.getNumBits() == 256)
        return;
    else if (_typeOnStack.isSigned())
        m_context << u256(_typeOnStack.getNumBits() / 8 - 1) << eth::Instruction::SIGNEXTEND;
    else
        m_context << ((u256(1) << _typeOnStack.getNumBits()) - 1) << eth::Instruction::AND;
}

void ExpressionCompiler::retrieveLValueValue(Expression const& _expression)
{
    switch (m_currentLValue.locationType)
    {
    case LValueLocation::CODE:
        // not stored on the stack
        break;
    case LValueLocation::STACK:
    {
        unsigned stackPos = m_context.baseToCurrentStackOffset(unsigned(m_currentLValue.location));
        if (stackPos >= 15) //@todo correct this by fetching earlier or moving to memory
            BOOST_THROW_EXCEPTION(CompilerError() << errinfo_sourceLocation(_expression.getLocation())
                                                  << errinfo_comment("Stack too deep."));
        m_context << eth::dupInstruction(stackPos + 1);
        break;
    }
    case LValueLocation::STORAGE:
        m_context << m_currentLValue.location << eth::Instruction::SLOAD;
        break;
    case LValueLocation::MEMORY:
        BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_comment("Location type not yet implemented."));
        break;
    default:
        BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_comment("Unsupported location type."));
        break;
    }
}

void ExpressionCompiler::storeInLValue(Expression const& _expression, bool _move)
{
    switch (m_currentLValue.locationType)
    {
    case LValueLocation::STACK:
    {
        unsigned stackPos = m_context.baseToCurrentStackOffset(unsigned(m_currentLValue.location));
        if (stackPos > 16)
            BOOST_THROW_EXCEPTION(CompilerError() << errinfo_sourceLocation(_expression.getLocation())
                                                  << errinfo_comment("Stack too deep."));
        else if (stackPos > 0)
            m_context << eth::swapInstruction(stackPos) << eth::Instruction::POP;
        if (!_move)
            retrieveLValueValue(_expression);
        break;
    }
    case LValueLocation::STORAGE:
        if (!_move)
            m_context << eth::Instruction::DUP1;
        m_context << m_currentLValue.location << eth::Instruction::SSTORE;
        break;
    case LValueLocation::CODE:
        BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_comment("Location type does not support assignment."));
        break;
    case LValueLocation::MEMORY:
        BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_comment("Location type not yet implemented."));
        break;
    default:
        BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_comment("Unsupported location type."));
        break;
    }
}

}
}