aboutsummaryrefslogtreecommitdiffstats
path: root/docs/julia.rst
diff options
context:
space:
mode:
Diffstat (limited to 'docs/julia.rst')
-rw-r--r--docs/julia.rst556
1 files changed, 556 insertions, 0 deletions
diff --git a/docs/julia.rst b/docs/julia.rst
new file mode 100644
index 00000000..cf798363
--- /dev/null
+++ b/docs/julia.rst
@@ -0,0 +1,556 @@
+#################################################
+Joyfully Universal Language for (Inline) Assembly
+#################################################
+
+.. _julia:
+
+.. index:: ! assembly, ! asm, ! evmasm, ! julia
+
+JULIA is an intermediate language that can compile to various different backends
+(EVM 1.0, EVM 1.5 and eWASM are planned).
+Because of that, it is designed to be a usable common denominator of all three
+platforms.
+It can already be used for "inline assembly" inside Solidity and
+future versions of the Solidity compiler will even use JULIA as intermediate
+language. It should also be easy to build high-level optimizer stages for JULIA.
+
+The core components of JULIA are functions, blocks, variables, literals,
+for-loops, switch-statements, expressions and assignments to variables.
+
+JULIA is typed, both variables and literals must specify the type with postfix
+notation. The supported types are ``bool``, ``u8``, ``s8``, ``u32``, ``s32``,
+``u64``, ``s64``, ``u128``, ``s128``, ``u256`` and ``s256``.
+
+JULIA in itself does not even provide operators. If the EVM is targeted,
+opcodes will be available as built-in functions, but they can be reimplemented
+if the backend changes. For a list of mandatory built-in functions, see the section below.
+
+The following example program assumes that the EVM opcodes ``mul``, ``div``
+and ``mod`` are available either natively or as functions and computes exponentiation.
+
+.. code::
+
+ {
+ function power(base:u256, exponent:u256) -> result:u256
+ {
+ switch exponent
+ case 0:u256 { result := 1:u256 }
+ case 1:u256 { result := base }
+ default:
+ {
+ result := power(mul(base, base), div(exponent, 2:u256))
+ switch mod(exponent, 2:u256)
+ case 1:u256 { result := mul(base, result) }
+ }
+ }
+ }
+
+It is also possible to implement the same function using a for-loop
+instead of with recursion. Here, we need the EVM opcodes ``lt`` (less-than)
+and ``add`` to be available.
+
+.. code::
+
+ {
+ function power(base:u256, exponent:u256) -> result:u256
+ {
+ result := 1:u256
+ for { let i := 0:u256 } lt(i, exponent) { i := add(i, 1:u256) }
+ {
+ result := mul(result, base)
+ }
+ }
+ }
+
+Specification of JULIA
+======================
+
+JULIA code is described in this chapter. JULIA code is usually placed into a JULIA object, which is described in the following chapter.
+
+Grammar::
+
+ Block = '{' Statement* '}'
+ Statement =
+ Block |
+ FunctionDefinition |
+ VariableDeclaration |
+ Assignment |
+ Expression |
+ Switch |
+ ForLoop |
+ BreakContinue
+ FunctionDefinition =
+ 'function' Identifier '(' TypedIdentifierList? ')'
+ ( '->' TypedIdentifierList )? Block
+ VariableDeclaration =
+ 'let' TypedIdentifierList ( ':=' Expression )?
+ Assignment =
+ IdentifierList ':=' Expression
+ Expression =
+ FunctionCall | Identifier | Literal
+ Switch =
+ 'switch' Expression Case* ( 'default' Block )?
+ Case =
+ 'case' Literal Block
+ ForLoop =
+ 'for' Block Expression Block Block
+ BreakContinue =
+ 'break' | 'continue'
+ FunctionCall =
+ Identifier '(' ( Expression ( ',' Expression )* )? ')'
+ Identifier = [a-zA-Z_$] [a-zA-Z_0-9]*
+ IdentifierList = Identifier ( ',' Identifier)*
+ TypeName = Identifier | BuiltinTypeName
+ BuiltinTypeName = 'bool' | [us] ( '8' | '32' | '64' | '128' | '256' )
+ TypedIdentifierList = Identifier ':' TypeName ( ',' Identifier ':' TypeName )*
+ Literal =
+ (NumberLiteral | StringLiteral | HexLiteral | TrueLiteral | FalseLiteral) ':' TypeName
+ NumberLiteral = HexNumber | DecimalNumber
+ HexLiteral = 'hex' ('"' ([0-9a-fA-F]{2})* '"' | '\'' ([0-9a-fA-F]{2})* '\'')
+ StringLiteral = '"' ([^"\r\n\\] | '\\' .)* '"'
+ TrueLiteral = 'true'
+ FalseLiteral = 'false'
+ HexNumber = '0x' [0-9a-fA-F]+
+ DecimalNumber = [0-9]+
+
+Restrictions on the Grammar
+---------------------------
+
+Switches must have at least one case (including the default case).
+If all possible values of the expression is covered, the default case should
+not be allowed (i.e. a switch with a ``bool`` expression and having both a
+true and false case should not allow a default case).
+
+Every expression evaluates to zero or more values. Identifiers and Literals
+evaluate to exactly
+one value and function calls evaluate to a number of values equal to the
+number of return values of the function called.
+
+In variable declarations and assignments, the right-hand-side expression
+(if present) has to evaluate to a number of values equal to the number of
+variables on the left-hand-side.
+This is the only situation where an expression evaluating
+to more than one value is allowed.
+
+Expressions that are also statements (i.e. at the block level) have to
+evaluate to zero values.
+
+In all other situations, expressions have to evaluate to exactly one value.
+
+The ``continue`` and ``break`` statements can only be used inside loop bodies
+and have to be in the same function as the loop (or both have to be at the
+top level).
+The condition part of the for-loop has to evaluate to exactly one value.
+
+Literals cannot be larger than the their type. The largest type defined is 256-bit wide.
+
+Scoping Rules
+-------------
+
+Scopes in JULIA are tied to Blocks (exceptions are functions and the for loop
+as explained below) and all declarations
+(``FunctionDefinition``, ``VariableDeclaration``)
+introduce new identifiers into these scopes.
+
+Identifiers are visible in
+the block they are defined in (including all sub-nodes and sub-blocks).
+As an exception, identifiers defined in the "init" part of the for-loop
+(the first block) are visible in all other parts of the for-loop
+(but not outside of the loop).
+Identifiers declared in the other parts of the for loop respect the regular
+syntatical scoping rules.
+The parameters and return parameters of functions are visible in the
+function body and their names cannot overlap.
+
+Variables can only be referenced after their declaration. In particular,
+variables cannot be referenced in the right hand side of their own variable
+declaration.
+Functions can be referenced already before their declaration (if they are visible).
+
+Shadowing is disallowed, i.e. you cannot declare an identifier at a point
+where another identifier with the same name is also visible, even if it is
+not accessible.
+
+Inside functions, it is not possible to access a variable that was declared
+outside of that function.
+
+Formal Specification
+--------------------
+
+We formally specify JULIA by providing an evaluation function E overloaded
+on the various nodes of the AST. Any functions can have side effects, so
+E takes two state objects and the AST node and returns two new
+state objects and a variable number of other values.
+The two state objects are the global state object
+(which in the context of the EVM is the memory, storage and state of the
+blockchain) and the local state object (the state of local variables, i.e. a
+segment of the stack in the EVM).
+If the AST node is a statement, E returns the two state objects and a "mode",
+which is used for the ``break`` and ``continue`` statements.
+If the AST node is an expression, E returns the two state objects and
+as many values as the expression evaluates to.
+
+
+The exact nature of the global state is unspecified for this high level
+description. The local state ``L`` is a mapping of identifiers ``i`` to values ``v``,
+denoted as ``L[i] = v``.
+
+For an identifier ``v``, let ``$v`` be the name of the identifier.
+
+We will use a destructuring notation for the AST nodes.
+
+.. code::
+
+ E(G, L, <{St1, ..., Stn}>: Block) =
+ let G1, L1, mode = E(G, L, St1, ..., Stn)
+ let L2 be a restriction of L1 to the identifiers of L
+ G1, L2, mode
+ E(G, L, St1, ..., Stn: Statement) =
+ if n is zero:
+ G, L, regular
+ else:
+ let G1, L1, mode = E(G, L, St1)
+ if mode is regular then
+ E(G1, L1, St2, ..., Stn)
+ otherwise
+ G1, L1, mode
+ E(G, L, FunctionDefinition) =
+ G, L, regular
+ E(G, L, <let var1, ..., varn := rhs>: VariableDeclaration) =
+ E(G, L, <var1, ..., varn := rhs>: Assignment)
+ E(G, L, <let var1, ..., varn>: VariableDeclaration) =
+ let L1 be a copy of L where L1[$vari] = 0 for i = 1, ..., n
+ G, L1, regular
+ E(G, L, <var1, ..., varn := rhs>: Assignment) =
+ let G1, L1, v1, ..., vn = E(G, L, rhs)
+ let L2 be a copy of L1 where L2[$vari] = vi for i = 1, ..., n
+ G, L2, regular
+ E(G, L, <for { i1, ..., in } condition post body>: ForLoop) =
+ if n >= 1:
+ let G1, L1, mode = E(G, L, i1, ..., in)
+ // mode has to be regular due to the syntactic restrictions
+ let G2, L2, mode = E(G1, L1, for {} condition post body)
+ // mode has to be regular due to the syntactic restrictions
+ let L3 be the restriction of L2 to only variables of L
+ G2, L3, regular
+ else:
+ let G1, L1, v = E(G, L, condition)
+ if v is false:
+ G1, L1, regular
+ else:
+ let G2, L2, mode = E(G1, L, body)
+ if mode is break:
+ G2, L2, regular
+ else:
+ G3, L3, mode = E(G2, L2, post)
+ E(G3, L3, for {} condition post body)
+ E(G, L, break: BreakContinue) =
+ G, L, break
+ E(G, L, continue: BreakContinue) =
+ G, L, continue
+ E(G, L, <switch condition case l1:t1 st1 ... case ln:tn stn>: Switch) =
+ E(G, L, switch condition case l1:t1 st1 ... case ln:tn stn default {}) =
+ E(G, L, <switch condition case l1:t1 st1 ... case ln:tn stn default st'>: Switch) =
+ let G0, L0, v = E(G, L, condition)
+ // i = 1 .. n
+ // Evaluate literals, context doesn't matter
+ let _, _, v1 = E(G0, L0, l1)
+ ...
+ let _, _, vn = E(G0, L0, ln)
+ if there exists smallest i such that vi = v:
+ E(G0, L0, sti)
+ else:
+ E(G0, L0, st')
+
+ E(G, L, <name>: Identifier) =
+ G, L, L[$name]
+ E(G, L, <fname(arg1, ..., argn)>: FunctionCall) =
+ G1, L1, vn = E(G, L, argn)
+ ...
+ G(n-1), L(n-1), v2 = E(G(n-2), L(n-2), arg2)
+ Gn, Ln, v1 = E(G(n-1), L(n-1), arg1)
+ Let <function fname (param1, ..., paramn) -> ret1, ..., retm block>
+ be the function of name $fname visible at the point of the call.
+ Let L' be a new local state such that
+ L'[$parami] = vi and L'[$reti] = 0 for all i.
+ Let G'', L'', mode = E(Gn, L', block)
+ G'', Ln, L''[$ret1], ..., L''[$retm]
+ E(G, L, l: HexLiteral) = G, L, hexString(l),
+ where hexString decodes l from hex and left-aligns it into 32 bytes
+ E(G, L, l: StringLiteral) = G, L, utf8EncodeLeftAligned(l),
+ where utf8EncodeLeftAligned performs a utf8 encoding of l
+ and aligns it left into 32 bytes
+ E(G, L, n: HexNumber) = G, L, hex(n)
+ where hex is the hexadecimal decoding function
+ E(G, L, n: DecimalNumber) = G, L, dec(n),
+ where dec is the decimal decoding function
+
+Type Conversion Functions
+-------------------------
+
+JULIA has no support for implicit type conversion and therefore functions exists to provide explicit conversion.
+When converting a larger type to a shorter type a runtime exception can occur in case of an overflow.
+
+The following type conversion functions must be available:
+- ``u32tobool(x:u32) -> y:bool``
+- ``booltou32(x:bool) -> y:u32``
+- ``u32tou64(x:u32) -> y:u64``
+- ``u64tou32(x:u64) -> y:u32``
+- etc. (TBD)
+
+Low-level Functions
+-------------------
+
+The following functions must be available:
+
++---------------------------------------------------------------------------------------------------------------+
+| *Arithmetics* |
++---------------------------------------------------------------------------------------------------------------+
+| addu256(x:u256, y:u256) -> z:u256 | x + y |
++---------------------------------------------------------------------------------------------------------------+
+| subu256(x:u256, y:u256) -> z:u256 | x - y |
++---------------------------------------------------------------------------------------------------------------+
+| mulu256(x:u256, y:u256) -> z:u256 | x * y |
++---------------------------------------------------------------------------------------------------------------+
+| divu256(x:u256, y:u256) -> z:u256 | x / y |
++---------------------------------------------------------------------------------------------------------------+
+| divs256(x:s256, y:s256) -> z:s256 | x / y, for signed numbers in two's complement |
++---------------------------------------------------------------------------------------------------------------+
+| modu256(x:u256, y:u256) -> z:u256 | x % y |
++---------------------------------------------------------------------------------------------------------------+
+| mods256(x:s256, y:s256) -> z:s256 | x % y, for signed numbers in two's complement |
++---------------------------------------------------------------------------------------------------------------+
+| signextendu256(i:u256, x:u256) -> z:u256 | sign extend from (i*8+7)th bit counting from least significant |
++---------------------------------------------------------------------------------------------------------------+
+| expu256(x:u256, y:u256) -> z:u256 | x to the power of y |
++---------------------------------------------------------------------------------------------------------------+
+| addmodu256(x:u256, y:u256, m:u256) -> z:u256| (x + y) % m with arbitrary precision arithmetics |
++---------------------------------------------------------------------------------------------------------------+
+| mulmodu256(x:u256, y:u256, m:u256) -> z:u256| (x * y) % m with arbitrary precision arithmetics |
++---------------------------------------------------------------------------------------------------------------+
+| ltu256(x:u256, y:u256) -> z:bool | 1 if x < y, 0 otherwise |
++---------------------------------------------------------------------------------------------------------------+
+| gtu256(x:u256, y:u256) -> z:bool | 1 if x > y, 0 otherwise |
++---------------------------------------------------------------------------------------------------------------+
+| sltu256(x:s256, y:s256) -> z:bool | 1 if x < y, 0 otherwise, for signed numbers in two's complement |
++---------------------------------------------------------------------------------------------------------------+
+| sgtu256(x:s256, y:s256) -> z:bool | 1 if x > y, 0 otherwise, for signed numbers in two's complement |
++---------------------------------------------------------------------------------------------------------------+
+| equ256(x:u256, y:u256) -> z:bool | 1 if x == y, 0 otherwise |
++---------------------------------------------------------------------------------------------------------------+
+| notu256(x:u256) -> z:u256 | ~x, every bit of x is negated |
++---------------------------------------------------------------------------------------------------------------+
+| andu256(x:u256, y:u256) -> z:u256 | bitwise and of x and y |
++---------------------------------------------------------------------------------------------------------------+
+| oru256(x:u256, y:u256) -> z:u256 | bitwise or of x and y |
++---------------------------------------------------------------------------------------------------------------+
+| xoru256(x:u256, y:u256) -> z:u256 | bitwise xor of x and y |
++---------------------------------------------------------------------------------------------------------------+
+| shlu256(x:u256, y:u256) -> z:u256 | logical left shift of x by y |
++---------------------------------------------------------------------------------------------------------------+
+| shru256(x:u256, y:u256) -> z:u256 | logical right shift of x by y |
++---------------------------------------------------------------------------------------------------------------+
+| saru256(x:u256, y:u256) -> z:u256 | arithmetic right shift of x by y |
++---------------------------------------------------------------------------------------------------------------+
+| byte(n:u256, x:u256) -> v:u256 | nth byte of x, where the most significant byte is the 0th byte |
+| Cannot this be just replaced by and256(shr256(n, x), 0xff) and let it be optimised out by the EVM backend? |
++---------------------------------------------------------------------------------------------------------------+
+| *Memory and storage* |
++---------------------------------------------------------------------------------------------------------------+
+| mload(p:u256) -> v:u256 | mem[p..(p+32)) |
++---------------------------------------------------------------------------------------------------------------+
+| mstore(p:u256, v:u256) | mem[p..(p+32)) := v |
++---------------------------------------------------------------------------------------------------------------+
+| mstore8(p:u256, v:u256) | mem[p] := v & 0xff - only modifies a single byte |
++---------------------------------------------------------------------------------------------------------------+
+| sload(p:u256) -> v:u256 | storage[p] |
++---------------------------------------------------------------------------------------------------------------+
+| sstore(p:u256, v:u256) | storage[p] := v |
++---------------------------------------------------------------------------------------------------------------+
+| msize() -> size:u256 | size of memory, i.e. largest accessed memory index, albeit due |
+| | due to the memory extension function, which extends by words, |
+| | this will always be a multiple of 32 bytes |
++---------------------------------------------------------------------------------------------------------------+
+| *Execution control* |
++---------------------------------------------------------------------------------------------------------------+
+| create(v:u256, p:u256, s:u256) | create new contract with code mem[p..(p+s)) and send v wei |
+| | and return the new address |
++---------------------------------------------------------------------------------------------------------------+
+| call(g:u256, a:u256, v:u256, in:u256, | call contract at address a with input mem[in..(in+insize)) |
+| insize:u256, out:u256, | providing g gas and v wei and output area |
+| outsize:u256) | mem[out..(out+outsize)) returning 0 on error (eg. out of gas) |
+| -> r:u256 | and 1 on success |
++---------------------------------------------------------------------------------------------------------------+
+| callcode(g:u256, a:u256, v:u256, in:u256, | identical to ``call`` but only use the code from a |
+| insize:u256, out:u256, | and stay in the context of the |
+| outsize:u256) -> r:u256 | current contract otherwise |
++---------------------------------------------------------------------------------------------------------------+
+| delegatecall(g:u256, a:u256, in:u256, | identical to ``callcode``, |
+| insize:u256, out:u256, | but also keep ``caller`` |
+| outsize:u256) -> r:u256 | and ``callvalue`` |
++---------------------------------------------------------------------------------------------------------------+
+| stop() | stop execution, identical to return(0,0) |
+| Perhaps it would make sense retiring this as it equals to return(0,0). It can be an optimisation by the EVM |
+| backend. |
++---------------------------------------------------------------------------------------------------------------+
+| abort() | abort (equals to invalid instruction on EVM) |
++---------------------------------------------------------------------------------------------------------------+
+| return(p:u256, s:u256) | end execution, return data mem[p..(p+s)) |
++---------------------------------------------------------------------------------------------------------------+
+| revert(p:u256, s:u256) | end execution, revert state changes, return data mem[p..(p+s)) |
++---------------------------------------------------------------------------------------------------------------+
+| selfdestruct(a:u256) | end execution, destroy current contract and send funds to a |
++---------------------------------------------------------------------------------------------------------------+
+| log0(p:u256, s:u256) | log without topics and data mem[p..(p+s)) |
++---------------------------------------------------------------------------------------------------------------+
+| log1(p:u256, s:u256, t1:u256) | log with topic t1 and data mem[p..(p+s)) |
++---------------------------------------------------------------------------------------------------------------+
+| log2(p:u256, s:u256, t1:u256, t2:u256) | log with topics t1, t2 and data mem[p..(p+s)) |
++---------------------------------------------------------------------------------------------------------------+
+| log3(p:u256, s:u256, t1:u256, t2:u256, | log with topics t, t2, t3 and data mem[p..(p+s)) |
+| t3:u256) | |
++---------------------------------------------------------------------------------------------------------------+
+| log4(p:u256, s:u256, t1:u256, t2:u256, | log with topics t1, t2, t3, t4 and data mem[p..(p+s)) |
+| t3:u256, t4:u256) | |
++---------------------------------------------------------------------------------------------------------------+
+| *State queries* |
++---------------------------------------------------------------------------------------------------------------+
+| blockcoinbase() -> address:u256 | current mining beneficiary |
++---------------------------------------------------------------------------------------------------------------+
+| blockdifficulty() -> difficulty:u256 | difficulty of the current block |
++---------------------------------------------------------------------------------------------------------------+
+| blockgaslimit() -> limit:u256 | block gas limit of the current block |
++---------------------------------------------------------------------------------------------------------------+
+| blockhash(b:u256) -> hash:u256 | hash of block nr b - only for last 256 blocks excluding current |
++---------------------------------------------------------------------------------------------------------------+
+| blocknumber() -> block:u256 | current block number |
++---------------------------------------------------------------------------------------------------------------+
+| blocktimestamp() -> timestamp:u256 | timestamp of the current block in seconds since the epoch |
++---------------------------------------------------------------------------------------------------------------+
+| txorigin() -> address:u256 | transaction sender |
++---------------------------------------------------------------------------------------------------------------+
+| txgasprice() -> price:u256 | gas price of the transaction |
++---------------------------------------------------------------------------------------------------------------+
+| gasleft() -> gas:u256 | gas still available to execution |
++---------------------------------------------------------------------------------------------------------------+
+| balance(a:u256) -> v:u256 | wei balance at address a |
++---------------------------------------------------------------------------------------------------------------+
+| this() -> address:u256 | address of the current contract / execution context |
++---------------------------------------------------------------------------------------------------------------+
+| caller() -> address:u256 | call sender (excluding delegatecall) |
++---------------------------------------------------------------------------------------------------------------+
+| callvalue() -> v:u256 | wei sent together with the current call |
++---------------------------------------------------------------------------------------------------------------+
+| calldataload(p:u256) -> v:u256 | call data starting from position p (32 bytes) |
++---------------------------------------------------------------------------------------------------------------+
+| calldatasize() -> v:u256 | size of call data in bytes |
++---------------------------------------------------------------------------------------------------------------+
+| calldatacopy(t:u256, f:u256, s:u256) | copy s bytes from calldata at position f to mem at position t |
++---------------------------------------------------------------------------------------------------------------+
+| codesize() -> size:u256 | size of the code of the current contract / execution context |
++---------------------------------------------------------------------------------------------------------------+
+| codecopy(t:u256, f:u256, s:u256) | copy s bytes from code at position f to mem at position t |
++---------------------------------------------------------------------------------------------------------------+
+| extcodesize(a:u256) -> size:u256 | size of the code at address a |
++---------------------------------------------------------------------------------------------------------------+
+| extcodecopy(a:u256, t:u256, f:u256, s:u256) | like codecopy(t, f, s) but take code at address a |
++---------------------------------------------------------------------------------------------------------------+
+| *Others* |
++---------------------------------------------------------------------------------------------------------------+
+| discardu256(unused:u256) | discard value |
++---------------------------------------------------------------------------------------------------------------+
+| splitu256tou64(x:u256) -> (x1:u64, x2:u64, | split u256 to four u64's |
+| x3:u64, x4:u64) | |
++---------------------------------------------------------------------------------------------------------------+
+| combineu64tou256(x1:u64, x2:u64, x3:u64, | combine four u64's into a single u256 |
+| x4:u64) -> (x:u256) | |
++---------------------------------------------------------------------------------------------------------------+
+| sha3(p:u256, s:u256) -> v:u256 | keccak(mem[p...(p+s))) |
++---------------------------------------------------------------------------------------------------------------+
+
+Backends
+--------
+
+Backends or targets are the translators from JULIA to a specific bytecode. Each of the backends can expose functions
+prefixed with the name of the backend. We reserve ``evm_`` and ``ewasm_`` prefixes for the two proposed backends.
+
+Backend: EVM
+------------
+
+The EVM target will have all the underlying EVM opcodes exposed with the `evm_` prefix.
+
+Backend: "EVM 1.5"
+------------------
+
+TBD
+
+Backend: eWASM
+--------------
+
+TBD
+
+Specification of JULIA Object
+=============================
+
+Grammar::
+
+ TopLevelObject = 'object' '{' Code? ( Object | Data )* '}'
+ Object = 'object' StringLiteral '{' Code? ( Object | Data )* '}'
+ Code = 'code' Block
+ Data = 'data' StringLiteral HexLiteral
+ HexLiteral = 'hex' ('"' ([0-9a-fA-F]{2})* '"' | '\'' ([0-9a-fA-F]{2})* '\'')
+ StringLiteral = '"' ([^"\r\n\\] | '\\' .)* '"'
+
+Above, ``Block`` refers to ``Block`` in the JULIA code grammar explained in the previous chapter.
+
+An example JULIA Object is shown below:
+
+..code::
+
+ // Code consists of a single object. A single "code" node is the code of the object.
+ // Every (other) named object or data section is serialized and
+ // made accessible to the special built-in functions datacopy / dataoffset / datasize
+ object {
+ code {
+ let size = datasize("runtime")
+ let offset = allocate(size)
+ // This will turn into a memory->memory copy for eWASM and
+ // a codecopy for EVM
+ datacopy(dataoffset("runtime"), offset, size)
+ // this is a constructor and the runtime code is returned
+ return(offset, size)
+ }
+
+ data "Table2" hex"4123"
+
+ object "runtime" {
+ code {
+ // runtime code
+
+ let size = datasize("Contract2")
+ let offset = allocate(size)
+ // This will turn into a memory->memory copy for eWASM and
+ // a codecopy for EVM
+ datacopy(dataoffset("Contract2"), offset, size)
+ // constructor parameter is a single number 0x1234
+ mstore(add(offset, size), 0x1234)
+ create(offset, add(size, 32))
+ }
+
+ // Embedded object. Use case is that the outside is a factory contract,
+ // and Contract2 is the code to be created by the factory
+ object "Contract2" {
+ code {
+ // code here ...
+ }
+
+ object "runtime" {
+ code {
+ // code here ...
+ }
+ }
+
+ data "Table1" hex"4123"
+ }
+ }
+ }