aboutsummaryrefslogtreecommitdiffstats
path: root/Compiler.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'Compiler.cpp')
-rw-r--r--Compiler.cpp408
1 files changed, 408 insertions, 0 deletions
diff --git a/Compiler.cpp b/Compiler.cpp
new file mode 100644
index 00000000..319f9b1c
--- /dev/null
+++ b/Compiler.cpp
@@ -0,0 +1,408 @@
+/*
+ This file is part of cpp-ethereum.
+
+ cpp-ethereum is free software: you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation, either version 3 of the License, or
+ (at your option) any later version.
+
+ cpp-ethereum is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with cpp-ethereum. If not, see <http://www.gnu.org/licenses/>.
+*/
+/**
+ * @author Christian <c@ethdev.com>
+ * @date 2014
+ * Solidity AST to EVM bytecode compiler.
+ */
+
+#include <boost/assert.hpp>
+#include <utility>
+#include <libsolidity/AST.h>
+#include <libsolidity/Compiler.h>
+
+
+namespace dev {
+namespace solidity {
+
+
+void CompilerContext::setLabelPosition(uint32_t _label, uint32_t _position)
+{
+ BOOST_ASSERT(m_labelPositions.find(_label) == m_labelPositions.end());
+ m_labelPositions[_label] = _position;
+}
+
+uint32_t CompilerContext::getLabelPosition(uint32_t _label) const
+{
+ auto iter = m_labelPositions.find(_label);
+ BOOST_ASSERT(iter != m_labelPositions.end());
+ return iter->second;
+}
+
+void ExpressionCompiler::compile(Expression& _expression)
+{
+ m_assemblyItems.clear();
+ _expression.accept(*this);
+}
+
+bytes ExpressionCompiler::getAssembledBytecode() const
+{
+ bytes assembled;
+ assembled.reserve(m_assemblyItems.size());
+
+ // resolve label references
+ for (uint32_t pos = 0; pos < m_assemblyItems.size(); ++pos)
+ {
+ AssemblyItem const& item = m_assemblyItems[pos];
+ if (item.getType() == AssemblyItem::Type::LABEL)
+ m_context.setLabelPosition(item.getLabel(), pos + 1);
+ }
+
+ for (AssemblyItem const& item: m_assemblyItems)
+ {
+ if (item.getType() == AssemblyItem::Type::LABELREF)
+ assembled.push_back(m_context.getLabelPosition(item.getLabel()));
+ else
+ assembled.push_back(item.getData());
+ }
+
+ return assembled;
+}
+
+AssemblyItems ExpressionCompiler::compileExpression(CompilerContext& _context,
+ Expression& _expression)
+{
+ ExpressionCompiler compiler(_context);
+ compiler.compile(_expression);
+ return compiler.getAssemblyItems();
+}
+
+void ExpressionCompiler::endVisit(Assignment& _assignment)
+{
+ Expression& rightHandSide = _assignment.getRightHandSide();
+ Token::Value op = _assignment.getAssignmentOperator();
+ if (op != Token::ASSIGN)
+ {
+ // compound assignment
+ // @todo retrieve lvalue value
+ rightHandSide.accept(*this);
+ Type const& resultType = *_assignment.getType();
+ cleanHigherOrderBitsIfNeeded(*rightHandSide.getType(), resultType);
+ appendOrdinaryBinaryOperatorCode(Token::AssignmentToBinaryOp(op), resultType);
+ }
+ else
+ rightHandSide.accept(*this);
+ // @todo store value
+}
+
+void ExpressionCompiler::endVisit(UnaryOperation& _unaryOperation)
+{
+ //@todo type checking and creating code for an operator should be in the same place:
+ // the operator should know how to convert itself and to which types it applies, so
+ // put this code together with "Type::acceptsBinary/UnaryOperator" into a class that
+ // represents the operator
+ switch (_unaryOperation.getOperator())
+ {
+ case Token::NOT: // !
+ append(eth::Instruction::NOT);
+ break;
+ case Token::BIT_NOT: // ~
+ // ~a modeled as "a xor (0 - 1)" for now
+ append(eth::Instruction::PUSH1);
+ append(1);
+ append(eth::Instruction::PUSH1);
+ append(0);
+ append(eth::Instruction::SUB);
+ append(eth::Instruction::XOR);
+ break;
+ case Token::DELETE: // delete
+ // a -> a xor a (= 0).
+ // @todo this should also be an assignment
+ // @todo semantics change for complex types
+ append(eth::Instruction::DUP1);
+ append(eth::Instruction::XOR);
+ break;
+ case Token::INC: // ++ (pre- or postfix)
+ // @todo this should also be an assignment
+ if (_unaryOperation.isPrefixOperation())
+ {
+ append(eth::Instruction::PUSH1);
+ append(1);
+ append(eth::Instruction::ADD);
+ }
+ break;
+ case Token::DEC: // -- (pre- or postfix)
+ // @todo this should also be an assignment
+ if (_unaryOperation.isPrefixOperation())
+ {
+ append(eth::Instruction::PUSH1);
+ append(1);
+ append(eth::Instruction::SWAP1); //@todo avoid this
+ append(eth::Instruction::SUB);
+ }
+ break;
+ case Token::ADD: // +
+ // unary add, so basically no-op
+ break;
+ case Token::SUB: // -
+ append(eth::Instruction::NEG);
+ break;
+ default:
+ BOOST_ASSERT(false); // invalid operation
+ }
+}
+
+bool ExpressionCompiler::visit(BinaryOperation& _binaryOperation)
+{
+ Expression& leftExpression = _binaryOperation.getLeftExpression();
+ Expression& rightExpression = _binaryOperation.getRightExpression();
+ Type const& resultType = *_binaryOperation.getType();
+ Token::Value const op = _binaryOperation.getOperator();
+
+ if (op == Token::AND || op == Token::OR)
+ {
+ // special case: short-circuiting
+ appendAndOrOperatorCode(_binaryOperation);
+ }
+ else if (Token::isCompareOp(op))
+ {
+ leftExpression.accept(*this);
+ rightExpression.accept(*this);
+
+ // the types to compare have to be the same, but the resulting type is always bool
+ BOOST_ASSERT(*leftExpression.getType() == *rightExpression.getType());
+ appendCompareOperatorCode(op, *leftExpression.getType());
+ }
+ else
+ {
+ leftExpression.accept(*this);
+ cleanHigherOrderBitsIfNeeded(*leftExpression.getType(), resultType);
+ rightExpression.accept(*this);
+ cleanHigherOrderBitsIfNeeded(*rightExpression.getType(), resultType);
+ appendOrdinaryBinaryOperatorCode(op, resultType);
+ }
+
+ // do not visit the child nodes, we already did that explicitly
+ return false;
+}
+
+void ExpressionCompiler::endVisit(FunctionCall& _functionCall)
+{
+ if (_functionCall.isTypeConversion())
+ {
+ //@todo binary representation for all supported types (bool and int) is the same, so no-op
+ // here for now.
+ }
+ else
+ {
+ //@todo
+ }
+}
+
+void ExpressionCompiler::endVisit(MemberAccess& _memberAccess)
+{
+
+}
+
+void ExpressionCompiler::endVisit(IndexAccess& _indexAccess)
+{
+
+}
+
+void ExpressionCompiler::endVisit(Identifier& _identifier)
+{
+
+}
+
+void ExpressionCompiler::endVisit(Literal& _literal)
+{
+ switch (_literal.getType()->getCategory())
+ {
+ case Type::Category::INTEGER:
+ case Type::Category::BOOL:
+ {
+ bytes value = _literal.getType()->literalToBigEndian(_literal);
+ BOOST_ASSERT(value.size() <= 32);
+ BOOST_ASSERT(!value.empty());
+ append(static_cast<byte>(eth::Instruction::PUSH1) + static_cast<byte>(value.size() - 1));
+ append(value);
+ break;
+ }
+ default:
+ BOOST_ASSERT(false); // @todo
+ }
+}
+
+void ExpressionCompiler::cleanHigherOrderBitsIfNeeded(const Type& _typeOnStack, const Type& _targetType)
+{
+ // If the type of one of the operands is extended, we need to remove all
+ // higher-order bits that we might have ignored in previous operations.
+ // @todo: store in the AST whether the operand might have "dirty" higher
+ // order bits
+
+ if (_typeOnStack == _targetType)
+ return;
+ if (_typeOnStack.getCategory() == Type::Category::INTEGER &&
+ _targetType.getCategory() == Type::Category::INTEGER)
+ {
+ //@todo
+ }
+ else
+ {
+ // If we get here, there is either an implementation missing to clean higher oder bits
+ // for non-integer types that are explicitly convertible or we got here in error.
+ BOOST_ASSERT(!_typeOnStack.isExplicitlyConvertibleTo(_targetType));
+ BOOST_ASSERT(false); // these types should not be convertible.
+ }
+}
+
+void ExpressionCompiler::appendAndOrOperatorCode(BinaryOperation& _binaryOperation)
+{
+ Token::Value const op = _binaryOperation.getOperator();
+ BOOST_ASSERT(op == Token::OR || op == Token::AND);
+
+ _binaryOperation.getLeftExpression().accept(*this);
+ append(eth::Instruction::DUP1);
+ if (op == Token::AND)
+ append(eth::Instruction::NOT);
+ uint32_t endLabel = appendConditionalJump();
+ _binaryOperation.getRightExpression().accept(*this);
+ appendLabel(endLabel);
+}
+
+void ExpressionCompiler::appendCompareOperatorCode(Token::Value _operator, Type const& _type)
+{
+ if (_operator == Token::EQ || _operator == Token::NE)
+ {
+ append(eth::Instruction::EQ);
+ if (_operator == Token::NE)
+ append(eth::Instruction::NOT);
+ }
+ else
+ {
+ IntegerType const* type = dynamic_cast<IntegerType const*>(&_type);
+ BOOST_ASSERT(type != nullptr);
+ bool const isSigned = type->isSigned();
+
+ // note that EVM opcodes compare like "stack[0] < stack[1]",
+ // but our left value is at stack[1], so everyhing is reversed.
+ switch (_operator)
+ {
+ case Token::GTE:
+ append(isSigned ? eth::Instruction::SGT : eth::Instruction::GT);
+ append(eth::Instruction::NOT);
+ break;
+ case Token::LTE:
+ append(isSigned ? eth::Instruction::SLT : eth::Instruction::LT);
+ append(eth::Instruction::NOT);
+ break;
+ case Token::GT:
+ append(isSigned ? eth::Instruction::SLT : eth::Instruction::LT);
+ break;
+ case Token::LT:
+ append(isSigned ? eth::Instruction::SGT : eth::Instruction::GT);
+ break;
+ default:
+ BOOST_ASSERT(false);
+ }
+ }
+}
+
+void ExpressionCompiler::appendOrdinaryBinaryOperatorCode(Token::Value _operator, Type const& _type)
+{
+ if (Token::isArithmeticOp(_operator))
+ appendArithmeticOperatorCode(_operator, _type);
+ else if (Token::isBitOp(_operator))
+ appendBitOperatorCode(_operator);
+ else if (Token::isShiftOp(_operator))
+ appendShiftOperatorCode(_operator);
+ else
+ BOOST_ASSERT(false); // unknown binary operator
+}
+
+void ExpressionCompiler::appendArithmeticOperatorCode(Token::Value _operator, Type const& _type)
+{
+ IntegerType const* type = dynamic_cast<IntegerType const*>(&_type);
+ BOOST_ASSERT(type != nullptr);
+ bool const isSigned = type->isSigned();
+
+ switch (_operator)
+ {
+ case Token::ADD:
+ append(eth::Instruction::ADD);
+ break;
+ case Token::SUB:
+ append(eth::Instruction::SWAP1);
+ append(eth::Instruction::SUB);
+ break;
+ case Token::MUL:
+ append(eth::Instruction::MUL);
+ break;
+ case Token::DIV:
+ append(isSigned ? eth::Instruction::SDIV : eth::Instruction::DIV);
+ break;
+ case Token::MOD:
+ append(isSigned ? eth::Instruction::SMOD : eth::Instruction::MOD);
+ break;
+ default:
+ BOOST_ASSERT(false);
+ }
+}
+
+void ExpressionCompiler::appendBitOperatorCode(Token::Value _operator)
+{
+ switch (_operator)
+ {
+ case Token::BIT_OR:
+ append(eth::Instruction::OR);
+ break;
+ case Token::BIT_AND:
+ append(eth::Instruction::AND);
+ break;
+ case Token::BIT_XOR:
+ append(eth::Instruction::XOR);
+ break;
+ default:
+ BOOST_ASSERT(false);
+ }
+}
+
+void ExpressionCompiler::appendShiftOperatorCode(Token::Value _operator)
+{
+ switch (_operator)
+ {
+ case Token::SHL:
+ BOOST_ASSERT(false); //@todo
+ break;
+ case Token::SAR:
+ BOOST_ASSERT(false); //@todo
+ break;
+ default:
+ BOOST_ASSERT(false);
+ }
+}
+
+uint32_t ExpressionCompiler::appendConditionalJump()
+{
+ uint32_t label = m_context.dispenseNewLabel();
+ append(eth::Instruction::PUSH1);
+ appendLabelref(label);
+ append(eth::Instruction::JUMPI);
+ return label;
+}
+
+void ExpressionCompiler::append(bytes const& _data)
+{
+ m_assemblyItems.reserve(m_assemblyItems.size() + _data.size());
+ for (byte b: _data)
+ append(b);
+}
+
+
+
+}
+}