diff options
author | chriseth <c@ethdev.com> | 2016-11-05 23:58:06 +0800 |
---|---|---|
committer | chriseth <c@ethdev.com> | 2017-01-03 21:13:49 +0800 |
commit | 0bd8c204f04f679b4371199d876bc6160d913782 (patch) | |
tree | aa03f691bfa97fe76dc016fb7ea82c105be4aed5 /docs | |
parent | c8ba7f5278c2d11454cc05089014bb525b46ee60 (diff) | |
download | dexon-solidity-0bd8c204f04f679b4371199d876bc6160d913782.tar dexon-solidity-0bd8c204f04f679b4371199d876bc6160d913782.tar.gz dexon-solidity-0bd8c204f04f679b4371199d876bc6160d913782.tar.bz2 dexon-solidity-0bd8c204f04f679b4371199d876bc6160d913782.tar.lz dexon-solidity-0bd8c204f04f679b4371199d876bc6160d913782.tar.xz dexon-solidity-0bd8c204f04f679b4371199d876bc6160d913782.tar.zst dexon-solidity-0bd8c204f04f679b4371199d876bc6160d913782.zip |
Assembly definition.
Diffstat (limited to 'docs')
-rw-r--r-- | docs/assembly.rst | 510 | ||||
-rw-r--r-- | docs/solidity-in-depth.rst | 1 |
2 files changed, 511 insertions, 0 deletions
diff --git a/docs/assembly.rst b/docs/assembly.rst new file mode 100644 index 00000000..71fe4027 --- /dev/null +++ b/docs/assembly.rst @@ -0,0 +1,510 @@ +################# +Solidity Assembly +################# + +.. index:: ! assembly, ! asm, ! evmasm + +Solidity defines an assembly language that can also be used without Solidity. +This assembly language can also be used as "inline assembly" inside Solidity +source code. We start with describing how to use inline assembly and how it +differs from standalone assembly and then specify assembly itself. + +TODO: Write about how scoping rules of inline assembly are a bit different +and the complications that arise when for example using internal functions +of libraries. Furhermore, write about the symbols defined by the compiler. + +Inline Assembly +=============== + +For more fine-grained control especially in order to enhance the language by writing libraries, +it is possible to interleave Solidity statements with inline assembly in a language close +to the one of the virtual machine. Due to the fact that the EVM is a stack machine, it is +often hard to address the correct stack slot and provide arguments to opcodes at the correct +point on the stack. Solidity's inline assembly tries to facilitate that and other issues +arising when writing manual assembly by the following features: + +* functional-style opcodes: ``mul(1, add(2, 3))`` instead of ``push1 3 push1 2 add push1 1 mul`` +* assembly-local variables: ``let x := add(2, 3) let y := mload(0x40) x := add(x, y)`` +* access to external variables: ``function f(uint x) { assembly { x := sub(x, 1) } }`` +* labels: ``let x := 10 repeat: x := sub(x, 1) jumpi(repeat, eq(x, 0))`` + +We now want to describe the inline assembly language in detail. + +.. warning:: + Inline assembly is still a relatively new feature and might change if it does not prove useful, + so please try to keep up to date. + +Example +------- + +The following example provides library code to access the code of another contract and +load it into a ``bytes`` variable. This is not possible at all with "plain Solidity" and the +idea is that assembly libraries will be used to enhance the language in such ways. + +.. code:: + + library GetCode { + function at(address _addr) returns (bytes o_code) { + assembly { + // retrieve the size of the code, this needs assembly + let size := extcodesize(_addr) + // allocate output byte array - this could also be done without assembly + // by using o_code = new bytes(size) + o_code := mload(0x40) + // new "memory end" including padding + mstore(0x40, add(o_code, and(add(add(size, 0x20), 0x1f), not(0x1f)))) + // store length in memory + mstore(o_code, size) + // actually retrieve the code, this needs assembly + extcodecopy(_addr, add(o_code, 0x20), 0, size) + } + } + } + +Inline assembly could also be beneficial in cases where the optimizer fails to produce +efficient code. Please be aware that assembly is much more difficult to write because +the compiler does not perform checks, so you should use it for complex things only if +you really know what you are doing. + +.. code:: + + library VectorSum { + // This function is less efficient because the optimizer currently fails to + // remove the bounds checks in array access. + function sumSolidity(uint[] _data) returns (uint o_sum) { + for (uint i = 0; i < _data.length; ++i) + o_sum += _data[i]; + } + + // We know that we only access the array in bounds, so we can avoid the check. + // 0x20 needs to be added to an array because the first slot contains the + // array length. + function sumAsm(uint[] _data) returns (uint o_sum) { + for (uint i = 0; i < _data.length; ++i) { + assembly { + o_sum := mload(add(add(_data, 0x20), i)) + } + } + } + } + +Standalone Assembly +=================== + +Grammar +------- + +The assembly lexer follows the one defined by Solidity itself. + +Whitespace is used to delimit tokens and it consists of the characters +Space, Tab and Linefeed. Comments as defined below, are interpreted in the +same way as Whitespace. +Furthermore, the following tokens exist: + +TODO: escapes inside strings, decimal literals, hex literals, hex string literals + +``OneLineComment := "//" [^\n]*` +``MultiLineComment := "/*" .*? "*/"`` + +``String := '"' [^"]* '"' | "'" [^']* "'"`` +``Identifier := [_$a-zA-Z][_$a-zA-Z0-9]*`` +``Opcodes := +"add" | "addmod" | "address" | "and" | "balance" | "blockhash" | "byte" | "call" | +"callcode" | "calldatacopy" | "calldataload" | "calldatasize" | "caller" | "callvalue" | +"codecopy" | "codesize" | "coinbase" | "create" | "delegatecall" | "difficulty" | +"div" | "dup1" | "dup2" | "dup3" | "dup4" | "dup5" | "dup6" | "dup7" | "dup8" | "dup9" | +"dup10" | "dup11" | "dup12" | "dup13" | "dup14" | "dup15" | "dup16" | "eq" | "exp" | +"extcodecopy" | "extcodesize" | "gas" | "gaslimit" | "gasprice" | "gt" | "iszero" | +"jump" | "jumpi" | "log0" | "log1" | "log2" | "log3" | "log4" | "lt" | "mload" | "mod" | +"msize" | "mstore" | "mstore8" | "mul" | "mulmod" | "not" | "number" | "or" | "origin" | +"pc" | "pop" | "return" | "sdiv" | "selfdestruct" | "sgt" | "sha3" | "signextend" | +"sload" | "slt" | "smod" | "sstore" | "stop" | "sub" | "swap1" | "swap2" | "swap3" | +"swap4" | "swap5" | "swap6" | "swap7" | "swap8" | "swap9" | "swap10" | "swap11" | +"swap12" | "swap13" | "swap14" | "swap15" | "swap16" | "timestamp" | "xor"`` + +TODO: Define functional instruction, label, assignment, functional assignment, +variable declaration, ... + + +Syntax +------ + +Inline assembly parses comments, literals and identifiers exactly as Solidity, so you can use the +usual ``//`` and ``/* */`` comments. Inline assembly is initiated by ``assembly { ... }`` and inside +these curly braces, the following can be used (see the later sections for more details) + + - literals, i.e. ``0x123``, ``42`` or ``"abc"`` (strings up to 32 characters) + - opcodes (in "instruction style"), e.g. ``mload sload dup1 sstore``, for a list see below + - opcode in functional style, e.g. ``add(1, mlod(0))`` + - labels, e.g. ``name:`` + - variable declarations, e.g. ``let x := 7`` or ``let x := add(y, 3)`` + - identifiers (externals, labels or assembly-local variables), e.g. ``jump(name)``, ``3 x add`` + - assignments (in "instruction style"), e.g. ``3 =: x`` + - assignments in functional style, e.g. ``x := add(y, 3)`` + - blocks where local variables are scoped inside, e.g. ``{ let x := 3 { let y := add(x, 1) } }`` + +Opcodes +------- + +This document does not want to be a full description of the Ethereum virtual machine, but the +following list can be used as a reference of its opcodes. + +If an opcode takes arguments (always from the top of the stack), they are given in parentheses. +Note that the order of arguments can be seed to be reversed in non-functional style (explained below). +Opcodes marked with ``-`` do not push an item onto the stack, those marked with ``*`` are +special and all others push exactly one item onte the stack. + +In the following, ``mem[a...b)`` signifies the bytes of memory starting at position ``a`` up to +(excluding) position ``b`` and ``storage[p]`` signifies the storage contents at position ``p``. + +The opcodes ``pushi`` and ``jumpdest`` cannot be used directly. + ++-------------------------+------+-----------------------------------------------------------------+ +| stop + `-` | stop execution, identical to return(0,0) | ++-------------------------+------+-----------------------------------------------------------------+ +| add(x, y) | | x + y | ++-------------------------+------+-----------------------------------------------------------------+ +| sub(x, y) | | x - y | ++-------------------------+------+-----------------------------------------------------------------+ +| mul(x, y) | | x * y | ++-------------------------+------+-----------------------------------------------------------------+ +| div(x, y) | | x / y | ++-------------------------+------+-----------------------------------------------------------------+ +| sdiv(x, y) | | x / y, for signed numbers in two's complement | ++-------------------------+------+-----------------------------------------------------------------+ +| mod(x, y) | | x % y | ++-------------------------+------+-----------------------------------------------------------------+ +| smod(x, y) | | x % y, for signed numbers in two's complement | ++-------------------------+------+-----------------------------------------------------------------+ +| exp(x, y) | | x to the power of y | ++-------------------------+------+-----------------------------------------------------------------+ +| not(x) | | ~x, every bit of x is negated | ++-------------------------+------+-----------------------------------------------------------------+ +| lt(x, y) | | 1 if x < y, 0 otherwise | ++-------------------------+------+-----------------------------------------------------------------+ +| gt(x, y) | | 1 if x > y, 0 otherwise | ++-------------------------+------+-----------------------------------------------------------------+ +| slt(x, y) | | 1 if x < y, 0 otherwise, for signed numbers in two's complement | ++-------------------------+------+-----------------------------------------------------------------+ +| sgt(x, y) | | 1 if x > y, 0 otherwise, for signed numbers in two's complement | ++-------------------------+------+-----------------------------------------------------------------+ +| eq(x, y) | | 1 if x == y, 0 otherwise | ++-------------------------+------+-----------------------------------------------------------------+ +| iszero(x) | | 1 if x == 0, 0 otherwise | ++-------------------------+------+-----------------------------------------------------------------+ +| and(x, y) | | bitwise and of x and y | ++-------------------------+------+-----------------------------------------------------------------+ +| or(x, y) | | bitwise or of x and y | ++-------------------------+------+-----------------------------------------------------------------+ +| xor(x, y) | | bitwise xor of x and y | ++-------------------------+------+-----------------------------------------------------------------+ +| byte(n, x) | | nth byte of x, where the most significant byte is the 0th byte | ++-------------------------+------+-----------------------------------------------------------------+ +| addmod(x, y, m) | | (x + y) % m with arbitrary precision arithmetics | ++-------------------------+------+-----------------------------------------------------------------+ +| mulmod(x, y, m) | | (x * y) % m with arbitrary precision arithmetics | ++-------------------------+------+-----------------------------------------------------------------+ +| signextend(i, x) | | sign extend from (i*8+7)th bit counting from least significant | ++-------------------------+------+-----------------------------------------------------------------+ +| sha3(p, n) | | keccak(mem[p...(p+n))) | ++-------------------------+------+-----------------------------------------------------------------+ +| jump(label) | `-` | jump to label / code position | ++-------------------------+------+-----------------------------------------------------------------+ +| jumpi(label, cond) | `-` | jump to label if cond is nonzero | ++-------------------------+------+-----------------------------------------------------------------+ +| pc | | current position in code | ++-------------------------+------+-----------------------------------------------------------------+ +| pop | `*` | remove topmost stack slot | ++-------------------------+------+-----------------------------------------------------------------+ +| dup1 ... dup16 | | copy ith stack slot to the top (counting from top) | ++-------------------------+------+-----------------------------------------------------------------+ +| swap1 ... swap16 | `*` | swap topmost and ith stack slot below it | ++-------------------------+------+-----------------------------------------------------------------+ +| mload(p) | | mem[p..(p+32)) | ++-------------------------+------+-----------------------------------------------------------------+ +| mstore(p, v) | `-` | mem[p..(p+32)) := v | ++-------------------------+------+-----------------------------------------------------------------+ +| mstore8(p, v) | `-` | mem[p] := v & 0xff - only modifies a single byte | ++-------------------------+------+-----------------------------------------------------------------+ +| sload(p) | | storage[p] | ++-------------------------+------+-----------------------------------------------------------------+ +| sstore(p, v) | `-` | storage[p] := v | ++-------------------------+------+-----------------------------------------------------------------+ +| msize | | size of memory, i.e. largest accessed memory index | ++-------------------------+------+-----------------------------------------------------------------+ +| gas | | gas still available to execution | ++-------------------------+------+-----------------------------------------------------------------+ +| address | | address of the current contract / execution context | ++-------------------------+------+-----------------------------------------------------------------+ +| balance(a) | | wei balance at address a | ++-------------------------+------+-----------------------------------------------------------------+ +| caller | | call sender (excluding delegatecall) | ++-------------------------+------+-----------------------------------------------------------------+ +| callvalue | | wei sent together with the current call | ++-------------------------+------+-----------------------------------------------------------------+ +| calldataload(p) | | call data starting from position p (32 bytes) | ++-------------------------+------+-----------------------------------------------------------------+ +| calldatasize | | size of call data in bytes | ++-------------------------+------+-----------------------------------------------------------------+ +| calldatacopy(t, f, s) | `-` | copy s bytes from calldata at position f to mem at position t | ++-------------------------+------+-----------------------------------------------------------------+ +| codesize | | size of the code of the current contract / execution context | ++-------------------------+------+-----------------------------------------------------------------+ +| codecopy(t, f, s) | `-` | copy s bytes from code at position f to mem at position t | ++-------------------------+------+-----------------------------------------------------------------+ +| extcodesize(a) | | size of the code at address a | ++-------------------------+------+-----------------------------------------------------------------+ +| extcodecopy(a, t, f, s) | `-` | like codecopy(t, f, s) but take code at address a | ++-------------------------+------+-----------------------------------------------------------------+ +| create(v, p, s) | | create new contract with code mem[p..(p+s)) and send v wei | +| | | and return the new address | ++-------------------------+------+-----------------------------------------------------------------+ +| call(g, a, v, in, | | call contract at address a with input mem[in..(in+insize)] | +| insize, out, outsize) | | providing g gas and v wei and output area | +| | | mem[out..(out+outsize)] returting 1 on error (out of gas) | ++-------------------------+------+-----------------------------------------------------------------+ +| callcode(g, a, v, in, | | identical to call but only use the code from a and stay | +| insize, out, outsize) | | in the context of the current contract otherwise | ++-------------------------+------+-----------------------------------------------------------------+ +| delegatecall(g, a, in, | | identical to callcode but also keep ``caller`` | +| insize, out, outsize) | | and ``callvalue`` | ++-------------------------+------+-----------------------------------------------------------------+ +| return(p, s) | `*` | end execution, return data mem[p..(p+s)) | ++-------------------------+------+-----------------------------------------------------------------+ +| selfdestruct(a) | `*` | end execution, destroy current contract and send funds to a | ++-------------------------+------+-----------------------------------------------------------------+ +| log0(p, s) | `-` | log without topics and data mem[p..(p+s)) | ++-------------------------+------+-----------------------------------------------------------------+ +| log1(p, s, t1) | `-` | log with topic t1 and data mem[p..(p+s)) | ++-------------------------+------+-----------------------------------------------------------------+ +| log2(p, s, t1, t2) | `-` | log with topics t1, t2 and data mem[p..(p+s)) | ++-------------------------+------+-----------------------------------------------------------------+ +| log3(p, s, t1, t2, t3) | `-` | log with topics t1, t2, t3 and data mem[p..(p+s)) | ++-------------------------+------+-----------------------------------------------------------------+ +| log4(p, s, t1, t2, t3, | `-` | log with topics t1, t2, t3, t4 and data mem[p..(p+s)) | +| t4) | | | ++-------------------------+------+-----------------------------------------------------------------+ +| origin | | transaction sender | ++-------------------------+------+-----------------------------------------------------------------+ +| gasprice | | gas price of the transaction | ++-------------------------+------+-----------------------------------------------------------------+ +| blockhash(b) | | hash of block nr b - only for last 256 blocks excluding current | ++-------------------------+------+-----------------------------------------------------------------+ +| coinbase | | current mining beneficiary | ++-------------------------+------+-----------------------------------------------------------------+ +| timestamp | | timestamp of the current block in seconds since the epoch | ++-------------------------+------+-----------------------------------------------------------------+ +| number | | current block number | ++-------------------------+------+-----------------------------------------------------------------+ +| difficulty | | difficulty of the current block | ++-------------------------+------+-----------------------------------------------------------------+ +| gaslimit | | block gas limit of the current block | ++-------------------------+------+-----------------------------------------------------------------+ + +Literals +-------- + +You can use integer constants by typing them in decimal or hexadecimal notation and an +appropriate ``PUSHi`` instruction will automatically be generated. The following creates code +to add 2 and 3 resulting in 5 and then computes the bitwise and with the string "abc". +Strings are stored left-aligned and cannot be longer than 32 bytes. + +.. code:: + + assembly { 2 3 add "abc" and } + +Functional Style +----------------- + +You can type opcode after opcode in the same way they will end up in bytecode. For example +adding ``3`` to the contents in memory at position ``0x80`` would be + +.. code:: + + 3 0x80 mload add 0x80 mstore + +As it is often hard to see what the actual arguments for certain opcodes are, +Solidity inline assembly also provides a "functional style" notation where the same code +would be written as follows + +.. code:: + + mstore(0x80, add(mload(0x80), 3)) + +Functional style and instructional style can be mixed, but any opcode inside a +functional style expression has to return exactly one stack slot (most of the opcodes do). + +Note that the order of arguments is reversed in functional-style as opposed to the instruction-style +way. If you use functional-style, the first argument will end up on the stack top. + + +Access to External Variables and Functions +------------------------------------------ + +Solidity variables and other identifiers can be accessed by simply using their name. +For storage and memory variables, this will push the address and not the value onto the +stack. Also note that non-struct and non-array storage variable addresses occupy two slots +on the stack: One for the address and one for the byte offset inside the storage slot. +In assignments (see below), we can even use local Solidity variables to assign to. + +Functions external to inline assembly can also be accessed: The assembly will +push their entry label (with virtual function resolution applied). The calling semantics +in solidity are: + + - the caller pushes return label, arg1, arg2, ..., argn + - the call returns with ret1, ret2, ..., retn + +This feature is still a bit cumbersome to use, because the stack offset essentially +changes during the call, and thus references to local variables will be wrong. +It is planned that the stack height changes can be specified in inline assembly. + +.. code:: + + contract C { + uint b; + function f(uint x) returns (uint r) { + assembly { + b pop // remove the offset, we know it is zero + sload + x + mul + =: r // assign to return variable r + } + } + } + +Labels +------ + +Another problem in EVM assembly is that ``jump`` and ``jumpi`` use absolute addresses +which can change easily. Solidity inline assembly provides labels to make the use of +jumps easier. The following code computes an element in the Fibonacci series. + +.. code:: + + { + let n := calldataload(4) + let a := 1 + let b := a + loop: + jumpi(loopend, eq(n, 0)) + a add swap1 + n := sub(n, 1) + jump(loop) + loopend: + mstore(0, a) + return(0, 0x20) + } + +Please note that automatically accessing stack variables can only work if the +assembler knows the current stack height. This fails to work if the jump source +and target have different stack heights. It is still fine to use such jumps, +you should just not access any stack variables (even assembly variables) in that case. + +Furthermore, the stack height analyser goes through the code opcode by opcode +(and not according to control flow), so in the following case, the assembler +will have a wrong impression about the stack height at label ``two``: + +.. code:: + + { + jump(two) + one: + // Here the stack height is 1 (because we pushed 7), + // but the assembler thinks it is 0 because it reads + // from top to bottom. + // Accessing stack variables here will lead to errors. + jump(three) + two: + 7 // push something onto the stack + jump(one) + three: + } + + +Declaring Assembly-Local Variables +---------------------------------- + +You can use the ``let`` keyword to declare variables that are only visible in +inline assembly and actually only in the current ``{...}``-block. What happens +is that the ``let`` instruction will create a new stack slot that is reserved +for the variable and automatically removed again when the end of the block +is reached. You need to provide an initial value for the variable which can +be just ``0``, but it can also be a complex functional-style expression. + +.. code:: + + contract C { + function f(uint x) returns (uint b) { + assembly { + let v := add(x, 1) + mstore(0x80, v) + { + let y := add(sload(v), 1) + b := y + } // y is "deallocated" here + b := add(b, v) + } // v is "deallocated" here + } + } + + +Assignments +----------- + +Assignments are possible to assembly-local variables and to function-local +variables. Take care that when you assign to variables that point to +memory or storage, you will only change the pointer and not the data. + +There are two kinds of assignments: Functional-style and instruction-style. +For functional-style assignments (``variable := value``), you need to provide a value in a +functional-style expression that results in exactly one stack value +and for instruction-style (``=: variable``), the value is just taken from the stack top. +For both ways, the colon points to the name of the variable. + +.. code:: + + assembly { + let v := 0 // functional-style assignment as part of variable declaration + let g := add(v, 2) + sload(10) + =: v // instruction style assignment, puts the result of sload(10) into v + } + + +Things to Avoid +--------------- + +Inline assembly might have a quite high-level look, but it actually is extremely +low-level. The only thing the assembler does for you is re-arranging +functional-style opcodes, managing jump labels, counting stack height for +variable access and removing stack slots for assembly-local variables when the end +of their block is reached. Especially for those two last cases, it is important +to know that the assembler only counts stack height from top to bottom, not +necessarily following control flow. Furthermore, operations like swap will only +swap the contents of the stack but not the location of variables. + +Conventions in Solidity +----------------------- + +In contrast to EVM assembly, Solidity knows types which are narrower than 256 bits, +e.g. ``uint24``. In order to make them more efficient, most arithmetic operations just +treat them as 256 bit numbers and the higher-order bits are only cleaned at the +point where it is necessary, i.e. just shortly before they are written to memory +or before comparisons are performed. This means that if you access such a variable +from within inline assembly, you might have to manually clean the higher order bits +first. + +Solidity manages memory in a very simple way: There is a "free memory pointer" +at position ``0x40`` in memory. If you want to allocate memory, just use the memory +from that point on and update the pointer accordingly. + +Elements in memory arrays in Solidity always occupy multiples of 32 bytes (yes, this is +even true for ``byte[]``, but not for ``bytes`` and ``string``). Multi-dimensional memory +arrays are pointers to memory arrays. The length of a dynamic array is stored at the +first slot of the array and then only the array elements follow. + +.. warning:: + Statically-sized memory arrays do not have a length field, but it will be added soon + to allow better convertibility between statically- and dynamically-sized arrays, so + please do not rely on that. diff --git a/docs/solidity-in-depth.rst b/docs/solidity-in-depth.rst index 40704698..b6217b47 100644 --- a/docs/solidity-in-depth.rst +++ b/docs/solidity-in-depth.rst @@ -16,4 +16,5 @@ If something is missing here, please contact us on units-and-global-variables.rst control-structures.rst contracts.rst + assembly.rst miscellaneous.rst |