/*
This file is part of solidity.
solidity is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
solidity is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with solidity. If not, see <http://www.gnu.org/licenses/>.
*/
/**
* @file CommonSubexpressionEliminator.cpp
* @author Christian <c@ethdev.com>
* @date 2015
* Optimizer step for common subexpression elimination and stack reorganisation.
*/
#include <functional>
#include <boost/range/adaptor/reversed.hpp>
#include <libdevcore/SHA3.h>
#include <libevmasm/CommonSubexpressionEliminator.h>
#include <libevmasm/AssemblyItem.h>
using namespace std;
using namespace dev;
using namespace dev::eth;
vector<AssemblyItem> CommonSubexpressionEliminator::getOptimizedItems()
{
optimizeBreakingItem();
KnownState nextInitialState = m_state;
if (m_breakingItem)
nextInitialState.feedItem(*m_breakingItem);
KnownState nextState = nextInitialState;
ScopeGuard reset([&]()
{
m_breakingItem = nullptr;
m_storeOperations.clear();
m_initialState = move(nextInitialState);
m_state = move(nextState);
});
map<int, Id> initialStackContents;
map<int, Id> targetStackContents;
int minHeight = m_state.stackHeight() + 1;
if (!m_state.stackElements().empty())
minHeight = min(minHeight, m_state.stackElements().begin()->first);
for (int height = minHeight; height <= m_initialState.stackHeight(); ++height)
initialStackContents[height] = m_initialState.stackElement(height, SourceLocation());
for (int height = minHeight; height <= m_state.stackHeight(); ++height)
targetStackContents[height] = m_state.stackElement(height, SourceLocation());
AssemblyItems items = CSECodeGenerator(m_state.expressionClasses(), m_storeOperations).generateCode(
m_initialState.sequenceNumber(),
m_initialState.stackHeight(),
initialStackContents,
targetStackContents
);
if (m_breakingItem)
items.push_back(*m_breakingItem);
return items;
}
void CommonSubexpressionEliminator::feedItem(AssemblyItem const& _item, bool _copyItem)
{
StoreOperation op = m_state.feedItem(_item, _copyItem);
if (op.isValid())
m_storeOperations.push_back(op);
}
void CommonSubexpressionEliminator::optimizeBreakingItem()
{
if (!m_breakingItem)
return;
ExpressionClasses& classes = m_state.expressionClasses();
SourceLocation const& itemLocation = m_breakingItem->location();
if (*m_breakingItem == AssemblyItem(Instruction::JUMPI))
{
AssemblyItem::JumpType jumpType = m_breakingItem->getJumpType();
Id condition = m_state.stackElement(m_state.stackHeight() - 1, itemLocation);
if (classes.knownNonZero(condition))
{
feedItem(AssemblyItem(Instruction::SWAP1, itemLocation), true);
feedItem(AssemblyItem(Instruction::POP, itemLocation), true);
AssemblyItem item(Instruction::JUMP, itemLocation);
item.setJumpType(jumpType);
m_breakingItem = classes.storeItem(item);
}
else if (classes.knownZero(condition))
{
AssemblyItem it(Instruction::POP, itemLocation);
feedItem(it, true);
feedItem(it, true);
m_breakingItem = nullptr;
}
}
else if (*m_breakingItem == AssemblyItem(Instruction::RETURN))
{
Id size = m_state.stackElement(m_state.stackHeight() - 1, itemLocation);
if (classes.knownZero(size))
{
feedItem(AssemblyItem(Instruction::POP, itemLocation), true);
feedItem(AssemblyItem(Instruction::POP, itemLocation), true);
AssemblyItem item(Instruction::STOP, itemLocation);
m_breakingItem = classes.storeItem(item);
}
}
}
CSECodeGenerator::CSECodeGenerator(
ExpressionClasses& _expressionClasses,
vector<CSECodeGenerator::StoreOperation> const& _storeOperations
):
m_expressionClasses(_expressionClasses)
{
for (auto const& store: _storeOperations)
m_storeOperations[make_pair(store.target, store.slot)].push_back(store);
}
AssemblyItems CSECodeGenerator::generateCode(
unsigned _initialSequenceNumber,
int _initialStackHeight,
map<int, Id> const& _initialStack,
map<int, Id> const& _targetStackContents
)
{
m_stackHeight = _initialStackHeight;
m_stack = _initialStack;
m_targetStack = _targetStackContents;
for (auto const& item: m_stack)
m_classPositions[item.second].insert(item.first);
// generate the dependency graph starting from final storage and memory writes and target stack contents
for (auto const& p: m_storeOperations)
addDependencies(p.second.back().expression);
for (auto const& targetItem: m_targetStack)
{
m_finalClasses.insert(targetItem.second);
addDependencies(targetItem.second);
}
// store all needed sequenced expressions
set<pair<unsigned, Id>> sequencedExpressions;
for (auto const& p: m_neededBy)
for (auto id: {p.first, p.second})
if (unsigned seqNr = m_expressionClasses.representative(id).sequenceNumber)
{
if (seqNr < _initialSequenceNumber)
// Invalid sequenced operation.
// @todo quick fix for now. Proper fix needs to choose representative with higher
// sequence number during dependency analyis.
BOOST_THROW_EXCEPTION(StackTooDeepException());
sequencedExpressions.insert(make_pair(seqNr, id));
}
// Perform all operations on storage and memory in order, if they are needed.
for (auto const& seqAndId: sequencedExpressions)
if (!m_classPositions.count(seqAndId.second))
generateClassElement(seqAndId.second, true);
// generate the target stack elements
for (auto const& targetItem: m_targetStack)
{
if (m_stack.count(targetItem.first) && m_stack.at(targetItem.first) == targetItem.second)
continue; // already there
generateClassElement(targetItem.second);
assertThrow(!m_classPositions[targetItem.second].empty(), OptimizerException, "");
if (m_classPositions[targetItem.second].count(targetItem.first))
continue;
SourceLocation sourceLocation;
if (m_expressionClasses.representative(targetItem.second).item)
sourceLocation = m_expressionClasses.representative(targetItem.second).item->location();
int position = classElementPosition(targetItem.second);
if (position < targetItem.first)
// it is already at its target, we need another copy
appendDup(position, sourceLocation);
else
appendOrRemoveSwap(position, sourceLocation);
appendOrRemoveSwap(targetItem.first, sourceLocation);
}
// remove surplus elements
while (removeStackTopIfPossible())
{
// no-op
}
// check validity
int finalHeight = 0;
if (!m_targetStack.empty())
// have target stack, so its height should be the final height
finalHeight = (--m_targetStack.end())->first;
else if (!_initialStack.empty())
// no target stack, only erase the initial stack
finalHeight = _initialStack.begin()->first - 1;
else
// neither initial no target stack, no change in height
finalHeight = _initialStackHeight;
assertThrow(finalHeight == m_stackHeight, OptimizerException, "Incorrect final stack height.");
return m_generatedItems;
}
void CSECodeGenerator::addDependencies(Id _c)
{
if (m_classPositions.count(_c))
return; // it is already on the stack
if (m_neededBy.count(_c))
return; // we already computed the dependencies for _c
ExpressionClasses::Expression expr = m_expressionClasses.representative(_c);
if (expr.item->type() == UndefinedItem)
BOOST_THROW_EXCEPTION(
// If this exception happens, we need to find a different way to generate the
// compound expression.
ItemNotAvailableException() << errinfo_comment("Undefined item requested but not available.")
);
for (Id argument: expr.arguments)
{
addDependencies(argument);
m_neededBy.insert(make_pair(argument, _c));
}
if (expr.item && expr.item->type() == Operation && (
expr.item->instruction() == Instruction::SLOAD ||
expr.item->instruction() == Instruction::MLOAD ||
expr.item->instruction() == Instruction::SHA3
))
{
// this loads an unknown value from storage or memory and thus, in addition to its
// arguments, depends on all store operations to addresses where we do not know that
// they are different that occur before this load
StoreOperation::Target target = expr.item->instruction() == Instruction::SLOAD ?
StoreOperation::Storage : StoreOperation::Memory;
Id slotToLoadFrom = expr.arguments.at(0);
for (auto const& p: m_storeOperations)
{
if (p.first.first != target)
continue;
Id slot = p.first.second;
StoreOperations const& storeOps = p.second;
if (storeOps.front().sequenceNumber > expr.sequenceNumber)
continue;
bool knownToBeIndependent = false;
switch (expr.item->instruction())
{
case Instruction::SLOAD:
knownToBeIndependent = m_expressionClasses.knownToBeDifferent(slot, slotToLoadFrom);
break;
case Instruction::MLOAD:
knownToBeIndependent = m_expressionClasses.knownToBeDifferentBy32(slot, slotToLoadFrom);
break;
case Instruction::SHA3:
{
Id length = expr.arguments.at(1);
AssemblyItem offsetInstr(Instruction::SUB, expr.item->location());
Id offsetToStart = m_expressionClasses.find(offsetInstr, {slot, slotToLoadFrom});
u256 const* o = m_expressionClasses.knownConstant(offsetToStart);
u256 const* l = m_expressionClasses.knownConstant(length);
if (l && *l == 0)
knownToBeIndependent = true;
else if (o)
{
// We could get problems here if both *o and *l are larger than 2**254
// but it is probably ok for the optimizer to produce wrong code for such cases
// which cannot be executed anyway because of the non-payable price.
if (u2s(*o) <= -32)
knownToBeIndependent = true;
else if (l && u2s(*o) >= 0 && *o >= *l)
knownToBeIndependent = true;
}
break;
}
default:
break;
}
if (knownToBeIndependent)
continue;
// note that store and load never have the same sequence number
Id latestStore = storeOps.front().expression;
for (auto it = ++storeOps.begin(); it != storeOps.end(); ++it)
if (it->sequenceNumber < expr.sequenceNumber)
latestStore = it->expression;
addDependencies(latestStore);
m_neededBy.insert(make_pair(latestStore, _c));
}
}
}
void CSECodeGenerator::generateClassElement(Id _c, bool _allowSequenced)
{
for (auto it: m_classPositions)
for (auto p: it.second)
if (p > m_stackHeight)
assertThrow(false, OptimizerException, "");
// do some cleanup
removeStackTopIfPossible();
if (m_classPositions.count(_c))
{
assertThrow(
!m_classPositions[_c].empty(),
OptimizerException,
"Element already removed but still needed."
);
return;
}
ExpressionClasses::Expression const& expr = m_expressionClasses.representative(_c);
assertThrow(
_allowSequenced || expr.sequenceNumber == 0,
OptimizerException,
"Sequence constrained operation requested out of sequence."
);
assertThrow(expr.item, OptimizerException, "Non-generated expression without item.");
assertThrow(
expr.item->type() != UndefinedItem,
OptimizerException,
"Undefined item requested but not available."
);
vector<Id> const& arguments = expr.arguments;
for (Id arg: boost::adaptors::reverse(arguments))
generateClassElement(arg);
SourceLocation const& itemLocation = expr.item->location();
// The arguments are somewhere on the stack now, so it remains to move them at the correct place.
// This is quite difficult as sometimes, the values also have to removed in this process
// (if canBeRemoved() returns true) and the two arguments can be equal. For now, this is
// implemented for every single case for combinations of up to two arguments manually.
if (arguments.size() == 1)
{
if (canBeRemoved(arguments[0], _c))
appendOrRemoveSwap(classElementPosition(arguments[0]), itemLocation);
else
appendDup(classElementPosition(arguments[0]), itemLocation);
}
else if (arguments.size() == 2)
{
if (canBeRemoved(arguments[1], _c))
{
appendOrRemoveSwap(classElementPosition(arguments[1]), itemLocation);
if (arguments[0] == arguments[1])
appendDup(m_stackHeight, itemLocation);
else if (canBeRemoved(arguments[0], _c))
{
appendOrRemoveSwap(m_stackHeight - 1, itemLocation);
appendOrRemoveSwap(classElementPosition(arguments[0]), itemLocation);
}
else
appendDup(classElementPosition(arguments[0]), itemLocation);
}
else
{
if (arguments[0] == arguments[1])
{
appendDup(classElementPosition(arguments[0]), itemLocation);
appendDup(m_stackHeight, itemLocation);
}
else if (canBeRemoved(arguments[0], _c))
{
appendOrRemoveSwap(classElementPosition(arguments[0]), itemLocation);
appendDup(classElementPosition(arguments[1]), itemLocation);
appendOrRemoveSwap(m_stackHeight - 1, itemLocation);
}
else
{
appendDup(classElementPosition(arguments[1]), itemLocation);
appendDup(classElementPosition(arguments[0]), itemLocation);
}
}
}
else
assertThrow(
arguments.size() <= 2,
OptimizerException,
"Opcodes with more than two arguments not implemented yet."
);
for (size_t i = 0; i < arguments.size(); ++i)
assertThrow(m_stack[m_stackHeight - i] == arguments[i], OptimizerException, "Expected arguments not present." );
while (SemanticInformation::isCommutativeOperation(*expr.item) &&
!m_generatedItems.empty() &&
m_generatedItems.back() == AssemblyItem(Instruction::SWAP1))
// this will not append a swap but remove the one that is already there
appendOrRemoveSwap(m_stackHeight - 1, itemLocation);
for (size_t i = 0; i < arguments.size(); ++i)
{
m_classPositions[m_stack[m_stackHeight - i]].erase(m_stackHeight - i);
m_stack.erase(m_stackHeight - i);
}
appendItem(*expr.item);
if (expr.item->type() != Operation || instructionInfo(expr.item->instruction()).ret == 1)
{
m_stack[m_stackHeight] = _c;
m_classPositions[_c].insert(m_stackHeight);
}
else
{
assertThrow(
instructionInfo(expr.item->instruction()).ret == 0,
OptimizerException,
"Invalid number of return values."
);
m_classPositions[_c]; // ensure it is created to mark the expression as generated
}
}
int CSECodeGenerator::classElementPosition(Id _id) const
{
assertThrow(
m_classPositions.count(_id) && !m_classPositions.at(_id).empty(),
OptimizerException,
"Element requested but is not present."
);
return *max_element(m_classPositions.at(_id).begin(), m_classPositions.at(_id).end());
}
bool CSECodeGenerator::canBeRemoved(Id _element, Id _result, int _fromPosition)
{
// Default for _fromPosition is the canonical position of the element.
if (_fromPosition == c_invalidPosition)
_fromPosition = classElementPosition(_element);
bool haveCopy = m_classPositions.at(_element).size() > 1;
if (m_finalClasses.count(_element))
// It is part of the target stack. It can be removed if it is a copy that is not in the target position.
return haveCopy && (!m_targetStack.count(_fromPosition) || m_targetStack[_fromPosition] != _element);
else if (!haveCopy)
{
// Can be removed unless it is needed by a class that has not been computed yet.
// Note that m_classPositions also includes classes that were deleted in the meantime.
auto range = m_neededBy.equal_range(_element);
for (auto it = range.first; it != range.second; ++it)
if (it->second != _result && !m_classPositions.count(it->second))
return false;
}
return true;
}
bool CSECodeGenerator::removeStackTopIfPossible()
{
if (m_stack.empty())
return false;
assertThrow(m_stack.count(m_stackHeight) > 0, OptimizerException, "");
Id top = m_stack[m_stackHeight];
if (!canBeRemoved(top, Id(-1), m_stackHeight))
return false;
m_classPositions[m_stack[m_stackHeight]].erase(m_stackHeight);
m_stack.erase(m_stackHeight);
appendItem(AssemblyItem(Instruction::POP));
return true;
}
void CSECodeGenerator::appendDup(int _fromPosition, SourceLocation const& _location)
{
assertThrow(_fromPosition != c_invalidPosition, OptimizerException, "");
int instructionNum = 1 + m_stackHeight - _fromPosition;
assertThrow(instructionNum <= 16, StackTooDeepException, "Stack too deep, try removing local variables.");
assertThrow(1 <= instructionNum, OptimizerException, "Invalid stack access.");
appendItem(AssemblyItem(dupInstruction(instructionNum), _location));
m_stack[m_stackHeight] = m_stack[_fromPosition];
m_classPositions[m_stack[m_stackHeight]].insert(m_stackHeight);
}
void CSECodeGenerator::appendOrRemoveSwap(int _fromPosition, SourceLocation const& _location)
{
assertThrow(_fromPosition != c_invalidPosition, OptimizerException, "");
if (_fromPosition == m_stackHeight)
return;
int instructionNum = m_stackHeight - _fromPosition;
assertThrow(instructionNum <= 16, StackTooDeepException, "Stack too deep, try removing local variables.");
assertThrow(1 <= instructionNum, OptimizerException, "Invalid stack access.");
appendItem(AssemblyItem(swapInstruction(instructionNum), _location));
if (m_stack[m_stackHeight] != m_stack[_fromPosition])
{
m_classPositions[m_stack[m_stackHeight]].erase(m_stackHeight);
m_classPositions[m_stack[m_stackHeight]].insert(_fromPosition);
m_classPositions[m_stack[_fromPosition]].erase(_fromPosition);
m_classPositions[m_stack[_fromPosition]].insert(m_stackHeight);
swap(m_stack[m_stackHeight], m_stack[_fromPosition]);
}
if (m_generatedItems.size() >= 2 &&
SemanticInformation::isSwapInstruction(m_generatedItems.back()) &&
*(m_generatedItems.end() - 2) == m_generatedItems.back())
{
m_generatedItems.pop_back();
m_generatedItems.pop_back();
}
}
void CSECodeGenerator::appendItem(AssemblyItem const& _item)
{
m_generatedItems.push_back(_item);
m_stackHeight += _item.deposit();
}