aboutsummaryrefslogblamecommitdiffstats
path: root/CommonSubexpressionEliminator.cpp
blob: 4b85eba403c6598b7b324c2fac53352663fbadf9 (plain) (tree)






































                                                                                


                                                                                   

                                                                                                     

                                                                                             



                                                                  
                                                                                                            
                                             







                                                 

                                                                                       


                                                               









                                                                                   


                                                                                 





                                                                           
                                                                             

                       

                                                                                                 







                                                            










                                                                                        
                                



                                                
                                            






































































































































































































































































































































                                                                                                                                
/*
    This file is part of cpp-ethereum.

    cpp-ethereum is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    cpp-ethereum is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with cpp-ethereum.  If not, see <http://www.gnu.org/licenses/>.
*/
/**
 * @file CommonSubexpressionEliminator.cpp
 * @author Christian <c@ethdev.com>
 * @date 2015
 * Optimizer step for common subexpression elimination and stack reorganisation.
 */

#include <functional>
#include <boost/range/adaptor/reversed.hpp>
#include <libdevcrypto/SHA3.h>
#include <libevmasm/CommonSubexpressionEliminator.h>
#include <libevmasm/AssemblyItem.h>

using namespace std;
using namespace dev;
using namespace dev::eth;

vector<AssemblyItem> CommonSubexpressionEliminator::getOptimizedItems()
{
    optimizeBreakingItem();

    map<int, Id> initialStackContents;
    map<int, Id> targetStackContents;
    int minHeight = m_state.stackHeight() + 1;
    if (!m_state.stackElements().empty())
        minHeight = min(minHeight, m_state.stackElements().begin()->first);
    for (int height = minHeight; height <= m_initialState.stackHeight(); ++height)
        initialStackContents[height] = m_initialState.stackElement(height, SourceLocation());
    for (int height = minHeight; height <= m_state.stackHeight(); ++height)
        targetStackContents[height] = m_state.stackElement(height, SourceLocation());

    // Debug info:
    //stream(cout, initialStackContents, targetStackContents);

    AssemblyItems items = CSECodeGenerator(m_state.expressionClasses(), m_storeOperations).generateCode(
        m_initialState.stackHeight(),
        initialStackContents,
        targetStackContents
    );
    if (m_breakingItem)
        items.push_back(*m_breakingItem);
    return items;
}

void CommonSubexpressionEliminator::feedItem(AssemblyItem const& _item, bool _copyItem)
{
    StoreOperation op = m_state.feedItem(_item, _copyItem);
    if (op.isValid())
        m_storeOperations.push_back(op);
}

void CommonSubexpressionEliminator::optimizeBreakingItem()
{
    if (!m_breakingItem || *m_breakingItem != AssemblyItem(Instruction::JUMPI))
        return;

    SourceLocation const& location = m_breakingItem->getLocation();
    AssemblyItem::JumpType jumpType = m_breakingItem->getJumpType();

    Id condition = m_state.stackElement(m_state.stackHeight() - 1, location);
    Id zero = m_state.expressionClasses().find(u256(0));
    if (m_state.expressionClasses().knownToBeDifferent(condition, zero))
    {
        feedItem(AssemblyItem(Instruction::SWAP1, location), true);
        feedItem(AssemblyItem(Instruction::POP, location), true);

        AssemblyItem item(Instruction::JUMP, location);
        item.setJumpType(jumpType);
        m_breakingItem = m_state.expressionClasses().storeItem(item);
        return;
    }
    Id negatedCondition = m_state.expressionClasses().find(Instruction::ISZERO, {condition});
    if (m_state.expressionClasses().knownToBeDifferent(negatedCondition, zero))
    {
        AssemblyItem it(Instruction::POP, location);
        feedItem(it, true);
        feedItem(it, true);
        m_breakingItem = nullptr;
    }
}

CSECodeGenerator::CSECodeGenerator(
    ExpressionClasses& _expressionClasses,
    vector<CSECodeGenerator::StoreOperation> const& _storeOperations
):
    m_expressionClasses(_expressionClasses)
{
    for (auto const& store: _storeOperations)
        m_storeOperations[make_pair(store.target, store.slot)].push_back(store);
}

AssemblyItems CSECodeGenerator::generateCode(
    int _initialStackHeight,
    map<int, Id> const& _initialStack,
    map<int, Id> const& _targetStackContents
)
{
    m_stackHeight = _initialStackHeight;
    m_stack = _initialStack;
    for (auto const& item: m_stack)
        if (!m_classPositions.count(item.second))
            m_classPositions[item.second] = item.first;

    // @todo: provide information about the positions of copies of class elements

    // generate the dependency graph starting from final storage and memory writes and target stack contents
    for (auto const& p: m_storeOperations)
        addDependencies(p.second.back().expression);
    for (auto const& targetItem: _targetStackContents)
    {
        m_finalClasses.insert(targetItem.second);
        addDependencies(targetItem.second);
    }

    // store all needed sequenced expressions
    set<pair<unsigned, Id>> sequencedExpressions;
    for (auto const& p: m_neededBy)
        for (auto id: {p.first, p.second})
            if (unsigned seqNr = m_expressionClasses.representative(id).sequenceNumber)
                sequencedExpressions.insert(make_pair(seqNr, id));

    // Perform all operations on storage and memory in order, if they are needed.
    for (auto const& seqAndId: sequencedExpressions)
        if (!m_classPositions.count(seqAndId.second))
            generateClassElement(seqAndId.second, true);

    // generate the target stack elements
    for (auto const& targetItem: _targetStackContents)
    {
        int position = generateClassElement(targetItem.second);
        assertThrow(position != c_invalidPosition, OptimizerException, "");
        if (position == targetItem.first)
            continue;
        SourceLocation const& location = m_expressionClasses.representative(targetItem.second).item->getLocation();
        if (position < targetItem.first)
            // it is already at its target, we need another copy
            appendDup(position, location);
        else
            appendOrRemoveSwap(position, location);
        appendOrRemoveSwap(targetItem.first, location);
    }

    // remove surplus elements
    while (removeStackTopIfPossible())
    {
        // no-op
    }

    // check validity
    int finalHeight = 0;
    if (!_targetStackContents.empty())
        // have target stack, so its height should be the final height
        finalHeight = (--_targetStackContents.end())->first;
    else if (!_initialStack.empty())
        // no target stack, only erase the initial stack
        finalHeight = _initialStack.begin()->first - 1;
    else
        // neither initial no target stack, no change in height
        finalHeight = 0;
    assertThrow(finalHeight == m_stackHeight, OptimizerException, "Incorrect final stack height.");
    return m_generatedItems;
}

void CSECodeGenerator::addDependencies(Id _c)
{
    if (m_neededBy.count(_c))
        return; // we already computed the dependencies for _c
    ExpressionClasses::Expression expr = m_expressionClasses.representative(_c);
    for (Id argument: expr.arguments)
    {
        addDependencies(argument);
        m_neededBy.insert(make_pair(argument, _c));
    }
    if (expr.item->type() == Operation && (
        expr.item->instruction() == Instruction::SLOAD ||
        expr.item->instruction() == Instruction::MLOAD ||
        expr.item->instruction() == Instruction::SHA3
    ))
    {
        // this loads an unknown value from storage or memory and thus, in addition to its
        // arguments, depends on all store operations to addresses where we do not know that
        // they are different that occur before this load
        StoreOperation::Target target = expr.item->instruction() == Instruction::SLOAD ?
            StoreOperation::Storage : StoreOperation::Memory;
        Id slotToLoadFrom = expr.arguments.at(0);
        for (auto const& p: m_storeOperations)
        {
            if (p.first.first != target)
                continue;
            Id slot = p.first.second;
            StoreOperations const& storeOps = p.second;
            if (storeOps.front().sequenceNumber > expr.sequenceNumber)
                continue;
            bool knownToBeIndependent = false;
            switch (expr.item->instruction())
            {
            case Instruction::SLOAD:
                knownToBeIndependent = m_expressionClasses.knownToBeDifferent(slot, slotToLoadFrom);
                break;
            case Instruction::MLOAD:
                knownToBeIndependent = m_expressionClasses.knownToBeDifferentBy32(slot, slotToLoadFrom);
                break;
            case Instruction::SHA3:
            {
                Id length = expr.arguments.at(1);
                AssemblyItem offsetInstr(Instruction::SUB, expr.item->getLocation());
                Id offsetToStart = m_expressionClasses.find(offsetInstr, {slot, slotToLoadFrom});
                u256 const* o = m_expressionClasses.knownConstant(offsetToStart);
                u256 const* l = m_expressionClasses.knownConstant(length);
                if (l && *l == 0)
                    knownToBeIndependent = true;
                else if (o)
                {
                    // We could get problems here if both *o and *l are larger than 2**254
                    // but it is probably ok for the optimizer to produce wrong code for such cases
                    // which cannot be executed anyway because of the non-payable price.
                    if (u2s(*o) <= -32)
                        knownToBeIndependent = true;
                    else if (l && u2s(*o) >= 0 && *o >= *l)
                        knownToBeIndependent = true;
                }
                break;
            }
            default:
                break;
            }
            if (knownToBeIndependent)
                continue;

            // note that store and load never have the same sequence number
            Id latestStore = storeOps.front().expression;
            for (auto it = ++storeOps.begin(); it != storeOps.end(); ++it)
                if (it->sequenceNumber < expr.sequenceNumber)
                    latestStore = it->expression;
            addDependencies(latestStore);
            m_neededBy.insert(make_pair(latestStore, _c));
        }
    }
}

int CSECodeGenerator::generateClassElement(Id _c, bool _allowSequenced)
{
    // do some cleanup
    removeStackTopIfPossible();

    if (m_classPositions.count(_c))
    {
        assertThrow(
            m_classPositions[_c] != c_invalidPosition,
            OptimizerException,
            "Element already removed but still needed."
        );
        return m_classPositions[_c];
    }
    ExpressionClasses::Expression const& expr = m_expressionClasses.representative(_c);
    assertThrow(
        _allowSequenced || expr.sequenceNumber == 0,
        OptimizerException,
        "Sequence constrained operation requested out of sequence."
    );
    vector<Id> const& arguments = expr.arguments;
    for (Id arg: boost::adaptors::reverse(arguments))
        generateClassElement(arg);

    SourceLocation const& location = expr.item->getLocation();
    // The arguments are somewhere on the stack now, so it remains to move them at the correct place.
    // This is quite difficult as sometimes, the values also have to removed in this process
    // (if canBeRemoved() returns true) and the two arguments can be equal. For now, this is
    // implemented for every single case for combinations of up to two arguments manually.
    if (arguments.size() == 1)
    {
        if (canBeRemoved(arguments[0], _c))
            appendOrRemoveSwap(classElementPosition(arguments[0]), location);
        else
            appendDup(classElementPosition(arguments[0]), location);
    }
    else if (arguments.size() == 2)
    {
        if (canBeRemoved(arguments[1], _c))
        {
            appendOrRemoveSwap(classElementPosition(arguments[1]), location);
            if (arguments[0] == arguments[1])
                appendDup(m_stackHeight, location);
            else if (canBeRemoved(arguments[0], _c))
            {
                appendOrRemoveSwap(m_stackHeight - 1, location);
                appendOrRemoveSwap(classElementPosition(arguments[0]), location);
            }
            else
                appendDup(classElementPosition(arguments[0]), location);
        }
        else
        {
            if (arguments[0] == arguments[1])
            {
                appendDup(classElementPosition(arguments[0]), location);
                appendDup(m_stackHeight, location);
            }
            else if (canBeRemoved(arguments[0], _c))
            {
                appendOrRemoveSwap(classElementPosition(arguments[0]), location);
                appendDup(classElementPosition(arguments[1]), location);
                appendOrRemoveSwap(m_stackHeight - 1, location);
            }
            else
            {
                appendDup(classElementPosition(arguments[1]), location);
                appendDup(classElementPosition(arguments[0]), location);
            }
        }
    }
    else
        assertThrow(
            arguments.size() <= 2,
            OptimizerException,
            "Opcodes with more than two arguments not implemented yet."
        );
    for (size_t i = 0; i < arguments.size(); ++i)
        assertThrow(m_stack[m_stackHeight - i] == arguments[i], OptimizerException, "Expected arguments not present." );

    while (SemanticInformation::isCommutativeOperation(*expr.item) &&
            !m_generatedItems.empty() &&
            m_generatedItems.back() == AssemblyItem(Instruction::SWAP1))
        // this will not append a swap but remove the one that is already there
        appendOrRemoveSwap(m_stackHeight - 1, location);
    for (auto arg: arguments)
        if (canBeRemoved(arg, _c))
            m_classPositions[arg] = c_invalidPosition;
    for (size_t i = 0; i < arguments.size(); ++i)
        m_stack.erase(m_stackHeight - i);
    appendItem(*expr.item);
    if (expr.item->type() != Operation || instructionInfo(expr.item->instruction()).ret == 1)
    {
        m_stack[m_stackHeight] = _c;
        return m_classPositions[_c] = m_stackHeight;
    }
    else
    {
        assertThrow(
            instructionInfo(expr.item->instruction()).ret == 0,
            OptimizerException,
            "Invalid number of return values."
        );
        return m_classPositions[_c] = c_invalidPosition;
    }
}

int CSECodeGenerator::classElementPosition(Id _id) const
{
    assertThrow(
        m_classPositions.count(_id) && m_classPositions.at(_id) != c_invalidPosition,
        OptimizerException,
        "Element requested but is not present."
    );
    return m_classPositions.at(_id);
}

bool CSECodeGenerator::canBeRemoved(Id _element, Id _result)
{
    // Returns false if _element is finally needed or is needed by a class that has not been
    // computed yet. Note that m_classPositions also includes classes that were deleted in the meantime.
    if (m_finalClasses.count(_element))
        return false;

    auto range = m_neededBy.equal_range(_element);
    for (auto it = range.first; it != range.second; ++it)
        if (it->second != _result && !m_classPositions.count(it->second))
            return false;
    return true;
}

bool CSECodeGenerator::removeStackTopIfPossible()
{
    if (m_stack.empty())
        return false;
    assertThrow(m_stack.count(m_stackHeight) > 0, OptimizerException, "");
    Id top = m_stack[m_stackHeight];
    if (!canBeRemoved(top))
        return false;
    m_generatedItems.push_back(AssemblyItem(Instruction::POP));
    m_stack.erase(m_stackHeight);
    m_stackHeight--;
    return true;
}

void CSECodeGenerator::appendDup(int _fromPosition, SourceLocation const& _location)
{
    assertThrow(_fromPosition != c_invalidPosition, OptimizerException, "");
    int instructionNum = 1 + m_stackHeight - _fromPosition;
    assertThrow(instructionNum <= 16, StackTooDeepException, "Stack too deep.");
    assertThrow(1 <= instructionNum, OptimizerException, "Invalid stack access.");
    appendItem(AssemblyItem(dupInstruction(instructionNum), _location));
    m_stack[m_stackHeight] = m_stack[_fromPosition];
}

void CSECodeGenerator::appendOrRemoveSwap(int _fromPosition, SourceLocation const& _location)
{
    assertThrow(_fromPosition != c_invalidPosition, OptimizerException, "");
    if (_fromPosition == m_stackHeight)
        return;
    int instructionNum = m_stackHeight - _fromPosition;
    assertThrow(instructionNum <= 16, StackTooDeepException, "Stack too deep.");
    assertThrow(1 <= instructionNum, OptimizerException, "Invalid stack access.");
    appendItem(AssemblyItem(swapInstruction(instructionNum), _location));
    // The value of a class can be present in multiple locations on the stack. We only update the
    // "canonical" one that is tracked by m_classPositions
    if (m_classPositions[m_stack[m_stackHeight]] == m_stackHeight)
        m_classPositions[m_stack[m_stackHeight]] = _fromPosition;
    if (m_classPositions[m_stack[_fromPosition]] == _fromPosition)
        m_classPositions[m_stack[_fromPosition]] = m_stackHeight;
    swap(m_stack[m_stackHeight], m_stack[_fromPosition]);
    if (m_generatedItems.size() >= 2 &&
        SemanticInformation::isSwapInstruction(m_generatedItems.back()) &&
        *(m_generatedItems.end() - 2) == m_generatedItems.back())
    {
        m_generatedItems.pop_back();
        m_generatedItems.pop_back();
    }
}

void CSECodeGenerator::appendItem(AssemblyItem const& _item)
{
    m_generatedItems.push_back(_item);
    m_stackHeight += _item.deposit();
}