import { BlockchainLifecycle } from '@0xproject/dev-utils';
import { assetProxyUtils, generatePseudoRandomSalt } from '@0xproject/order-utils';
import { BigNumber } from '@0xproject/utils';
import BN = require('bn.js');
import * as chai from 'chai';
import ethUtil = require('ethereumjs-util');
import * as _ from 'lodash';
import { TestLibBytesContract } from '../../src/generated_contract_wrappers/test_lib_bytes';
import { artifacts } from '../../src/utils/artifacts';
import { expectRevertOrOtherErrorAsync } from '../../src/utils/assertions';
import { chaiSetup } from '../../src/utils/chai_setup';
import { constants } from '../../src/utils/constants';
import { provider, txDefaults, web3Wrapper } from '../../src/utils/web3_wrapper';
chaiSetup.configure();
const expect = chai.expect;
const blockchainLifecycle = new BlockchainLifecycle(web3Wrapper);
// BUG: Ideally we would use Buffer.from(memory).toString('hex')
// https://github.com/Microsoft/TypeScript/issues/23155
const toHex = (buf: Uint8Array): string => buf.reduce((a, v) => a + ('00' + v.toString(16)).slice(-2), '0x');
const fromHex = (str: string): Uint8Array => Uint8Array.from(Buffer.from(str.slice(2), 'hex'));
describe('LibBytes', () => {
let libBytes: TestLibBytesContract;
const byteArrayShorterThan32Bytes = '0x012345';
const byteArrayShorterThan20Bytes = byteArrayShorterThan32Bytes;
const byteArrayLongerThan32Bytes =
'0x0123456789abcdef0123456789abcdef0123456789abcdef0123456789abcdef0123456789abcdef';
const byteArrayLongerThan32BytesFirstBytesSwapped =
'0x2301456789abcdef0123456789abcdef0123456789abcdef0123456789abcdef0123456789abcdef';
const byteArrayLongerThan32BytesLastBytesSwapped =
'0x0123456789abcdef0123456789abcdef0123456789abcdef0123456789abcdef0123456789abefcd';
let testAddress: string;
let testAddressB: string;
const testBytes32 = '0x102030405060708090a0b0c0d0e0f0102030405060708090a0b0c0d0e0f01020';
const testBytes32B = '0x534877abd8443578526845cdfef020047528759477fedef87346527659aced32';
const testUint256 = new BigNumber(testBytes32, 16);
const testUint256B = new BigNumber(testBytes32B, 16);
let shortData: string;
let shortTestBytes: string;
let shortTestBytesAsBuffer: Buffer;
let wordOfData: string;
let wordOfTestBytes: string;
let wordOfTestBytesAsBuffer: Buffer;
let longData: string;
let longTestBytes: string;
let longTestBytesAsBuffer: Buffer;
before(async () => {
await blockchainLifecycle.startAsync();
});
after(async () => {
await blockchainLifecycle.revertAsync();
});
before(async () => {
// Setup accounts & addresses
const accounts = await web3Wrapper.getAvailableAddressesAsync();
testAddress = accounts[1];
testAddressB = accounts[2];
// Deploy LibBytes
libBytes = await TestLibBytesContract.deployFrom0xArtifactAsync(artifacts.TestLibBytes, provider, txDefaults);
// Verify lengths of test data
const byteArrayShorterThan32BytesLength = ethUtil.toBuffer(byteArrayShorterThan32Bytes).byteLength;
expect(byteArrayShorterThan32BytesLength).to.be.lessThan(32);
const byteArrayLongerThan32BytesLength = ethUtil.toBuffer(byteArrayLongerThan32Bytes).byteLength;
expect(byteArrayLongerThan32BytesLength).to.be.greaterThan(32);
const testBytes32Length = ethUtil.toBuffer(testBytes32).byteLength;
expect(testBytes32Length).to.be.equal(32);
// Create short test bytes
shortData = '0xffffaa';
const encodedShortData = ethUtil.toBuffer(shortData);
const shortDataLength = new BigNumber(encodedShortData.byteLength);
const encodedShortDataLength = assetProxyUtils.encodeUint256(shortDataLength);
shortTestBytesAsBuffer = Buffer.concat([encodedShortDataLength, encodedShortData]);
shortTestBytes = ethUtil.bufferToHex(shortTestBytesAsBuffer);
// Create test bytes one word in length
wordOfData = ethUtil.bufferToHex(assetProxyUtils.encodeUint256(generatePseudoRandomSalt()));
const encodedWordOfData = ethUtil.toBuffer(wordOfData);
const wordOfDataLength = new BigNumber(encodedWordOfData.byteLength);
const encodedWordOfDataLength = assetProxyUtils.encodeUint256(wordOfDataLength);
wordOfTestBytesAsBuffer = Buffer.concat([encodedWordOfDataLength, encodedWordOfData]);
wordOfTestBytes = ethUtil.bufferToHex(wordOfTestBytesAsBuffer);
// Create long test bytes (combines short test bytes with word of test bytes)
longData = ethUtil.bufferToHex(Buffer.concat([encodedShortData, encodedWordOfData]));
const longDataLength = new BigNumber(encodedShortData.byteLength + encodedWordOfData.byteLength);
const encodedLongDataLength = assetProxyUtils.encodeUint256(longDataLength);
longTestBytesAsBuffer = Buffer.concat([encodedLongDataLength, encodedShortData, encodedWordOfData]);
longTestBytes = ethUtil.bufferToHex(longTestBytesAsBuffer);
});
beforeEach(async () => {
await blockchainLifecycle.startAsync();
});
afterEach(async () => {
await blockchainLifecycle.revertAsync();
});
describe('popLastByte', () => {
it('should revert if length is 0', async () => {
return expectRevertOrOtherErrorAsync(
libBytes.publicPopLastByte.callAsync(constants.NULL_BYTES),
constants.LIB_BYTES_GREATER_THAN_ZERO_LENGTH_REQUIRED,
);
});
it('should pop the last byte from the input and return it', async () => {
const [newBytes, poppedByte] = await libBytes.publicPopLastByte.callAsync(byteArrayLongerThan32Bytes);
const expectedNewBytes = byteArrayLongerThan32Bytes.slice(0, -2);
const expectedPoppedByte = `0x${byteArrayLongerThan32Bytes.slice(-2)}`;
expect(newBytes).to.equal(expectedNewBytes);
expect(poppedByte).to.equal(expectedPoppedByte);
});
});
describe('popLast20Bytes', () => {
it('should revert if length is less than 20', async () => {
return expectRevertOrOtherErrorAsync(
libBytes.publicPopLast20Bytes.callAsync(byteArrayShorterThan20Bytes),
constants.LIB_BYTES_GREATER_OR_EQUAL_TO_20_LENGTH_REQUIRED,
);
});
it('should pop the last 20 bytes from the input and return it', async () => {
const [newBytes, poppedAddress] = await libBytes.publicPopLast20Bytes.callAsync(byteArrayLongerThan32Bytes);
const expectedNewBytes = byteArrayLongerThan32Bytes.slice(0, -40);
const expectedPoppedAddress = `0x${byteArrayLongerThan32Bytes.slice(-40)}`;
expect(newBytes).to.equal(expectedNewBytes);
expect(poppedAddress).to.equal(expectedPoppedAddress);
});
});
describe('equals', () => {
it('should return true if byte arrays are equal (both arrays < 32 bytes)', async () => {
const equals = await libBytes.publicEquals.callAsync(
byteArrayShorterThan32Bytes,
byteArrayShorterThan32Bytes,
);
return expect(equals).to.be.true();
});
it('should return true if byte arrays are equal (both arrays > 32 bytes)', async () => {
const equals = await libBytes.publicEquals.callAsync(
byteArrayLongerThan32Bytes,
byteArrayLongerThan32Bytes,
);
return expect(equals).to.be.true();
});
it('should return false if byte arrays are not equal (first array < 32 bytes, second array > 32 bytes)', async () => {
const equals = await libBytes.publicEquals.callAsync(
byteArrayShorterThan32Bytes,
byteArrayLongerThan32Bytes,
);
return expect(equals).to.be.false();
});
it('should return false if byte arrays are not equal (first array > 32 bytes, second array < 32 bytes)', async () => {
const equals = await libBytes.publicEquals.callAsync(
byteArrayLongerThan32Bytes,
byteArrayShorterThan32Bytes,
);
return expect(equals).to.be.false();
});
it('should return false if byte arrays are not equal (same length, but a byte in first word differs)', async () => {
const equals = await libBytes.publicEquals.callAsync(
byteArrayLongerThan32BytesFirstBytesSwapped,
byteArrayLongerThan32Bytes,
);
return expect(equals).to.be.false();
});
it('should return false if byte arrays are not equal (same length, but a byte in last word differs)', async () => {
const equals = await libBytes.publicEquals.callAsync(
byteArrayLongerThan32BytesLastBytesSwapped,
byteArrayLongerThan32Bytes,
);
return expect(equals).to.be.false();
});
describe('should ignore trailing data', () => {
it('should return true when both < 32 bytes', async () => {
const equals = await libBytes.publicEqualsPop1.callAsync(
'0x0102',
'0x0103',
);
return expect(equals).to.be.true();
});
});
});
describe('deepCopyBytes', () => {
it('should revert if dest is shorter than source', async () => {
return expectRevertOrOtherErrorAsync(
libBytes.publicDeepCopyBytes.callAsync(byteArrayShorterThan32Bytes, byteArrayLongerThan32Bytes),
constants.LIB_BYTES_GREATER_OR_EQUAL_TO_SOURCE_BYTES_LENGTH_REQUIRED,
);
});
it('should overwrite dest with source if source and dest have equal length', async () => {
const zeroedByteArrayLongerThan32Bytes = `0x${_.repeat('0', byteArrayLongerThan32Bytes.length - 2)}`;
const zeroedBytesAfterCopy = await libBytes.publicDeepCopyBytes.callAsync(
zeroedByteArrayLongerThan32Bytes,
byteArrayLongerThan32Bytes,
);
return expect(zeroedBytesAfterCopy).to.be.equal(byteArrayLongerThan32Bytes);
});
it('should overwrite the leftmost len(source) bytes of dest if dest is larger than source', async () => {
const zeroedByteArrayLongerThan32Bytes = `0x${_.repeat('0', byteArrayLongerThan32Bytes.length * 2)}`;
const zeroedBytesAfterCopy = await libBytes.publicDeepCopyBytes.callAsync(
zeroedByteArrayLongerThan32Bytes,
byteArrayLongerThan32Bytes,
);
const copiedBytes = zeroedBytesAfterCopy.slice(0, byteArrayLongerThan32Bytes.length);
return expect(copiedBytes).to.be.equal(byteArrayLongerThan32Bytes);
});
it('should not overwrite the rightmost bytes of dest if dest is larger than source', async () => {
const zeroedByteArrayLongerThan32Bytes = `0x${_.repeat('0', byteArrayLongerThan32Bytes.length * 2)}`;
const zeroedBytesAfterCopy = await libBytes.publicDeepCopyBytes.callAsync(
zeroedByteArrayLongerThan32Bytes,
byteArrayLongerThan32Bytes,
);
const expectedNotCopiedBytes = zeroedByteArrayLongerThan32Bytes.slice(byteArrayLongerThan32Bytes.length);
const notCopiedBytes = zeroedBytesAfterCopy.slice(byteArrayLongerThan32Bytes.length);
return expect(notCopiedBytes).to.be.equal(expectedNotCopiedBytes);
});
});
describe('readAddress', () => {
it('should successfully read address when the address takes up the whole array', async () => {
const byteArray = ethUtil.addHexPrefix(testAddress);
const testAddressOffset = new BigNumber(0);
const address = await libBytes.publicReadAddress.callAsync(byteArray, testAddressOffset);
return expect(address).to.be.equal(testAddress);
});
it('should successfully read address when it is offset in the array', async () => {
const addressByteArrayBuffer = ethUtil.toBuffer(testAddress);
const prefixByteArrayBuffer = ethUtil.toBuffer('0xabcdef');
const combinedByteArrayBuffer = Buffer.concat([prefixByteArrayBuffer, addressByteArrayBuffer]);
const combinedByteArray = ethUtil.bufferToHex(combinedByteArrayBuffer);
const testAddressOffset = new BigNumber(prefixByteArrayBuffer.byteLength);
const address = await libBytes.publicReadAddress.callAsync(combinedByteArray, testAddressOffset);
return expect(address).to.be.equal(testAddress);
});
it('should fail if the byte array is too short to hold an address', async () => {
const shortByteArray = '0xabcdef';
const offset = new BigNumber(0);
return expectRevertOrOtherErrorAsync(
libBytes.publicReadAddress.callAsync(shortByteArray, offset),
constants.LIB_BYTES_GREATER_OR_EQUAL_TO_20_LENGTH_REQUIRED,
);
});
it('should fail if the length between the offset and end of the byte array is too short to hold an address', async () => {
const byteArray = testAddress;
const badOffset = new BigNumber(ethUtil.toBuffer(byteArray).byteLength);
return expectRevertOrOtherErrorAsync(
libBytes.publicReadAddress.callAsync(byteArray, badOffset),
constants.LIB_BYTES_GREATER_OR_EQUAL_TO_20_LENGTH_REQUIRED,
);
});
});
describe('writeAddress', () => {
it('should successfully write address when the address takes up the whole array', async () => {
const byteArray = testAddress;
const testAddressOffset = new BigNumber(0);
const newByteArray = await libBytes.publicWriteAddress.callAsync(
byteArray,
testAddressOffset,
testAddressB,
);
return expect(newByteArray).to.be.equal(testAddressB);
});
it('should successfully write address when it is offset in the array', async () => {
const addressByteArrayBuffer = ethUtil.toBuffer(testAddress);
const prefixByteArrayBuffer = ethUtil.toBuffer('0xabcdef');
const combinedByteArrayBuffer = Buffer.concat([prefixByteArrayBuffer, addressByteArrayBuffer]);
const combinedByteArray = ethUtil.bufferToHex(combinedByteArrayBuffer);
const testAddressOffset = new BigNumber(prefixByteArrayBuffer.byteLength);
const newByteArray = await libBytes.publicWriteAddress.callAsync(
combinedByteArray,
testAddressOffset,
testAddressB,
);
const newByteArrayBuffer = ethUtil.toBuffer(newByteArray);
const addressFromOffsetBuffer = newByteArrayBuffer.slice(prefixByteArrayBuffer.byteLength);
const addressFromOffset = ethUtil.addHexPrefix(ethUtil.bufferToHex(addressFromOffsetBuffer));
return expect(addressFromOffset).to.be.equal(testAddressB);
});
it('should fail if the byte array is too short to hold an address', async () => {
const offset = new BigNumber(0);
return expectRevertOrOtherErrorAsync(
libBytes.publicWriteAddress.callAsync(byteArrayShorterThan20Bytes, offset, testAddress),
constants.LIB_BYTES_GREATER_OR_EQUAL_TO_20_LENGTH_REQUIRED,
);
});
it('should fail if the length between the offset and end of the byte array is too short to hold an address', async () => {
const byteArray = byteArrayLongerThan32Bytes;
const badOffset = new BigNumber(ethUtil.toBuffer(byteArray).byteLength);
return expectRevertOrOtherErrorAsync(
libBytes.publicWriteAddress.callAsync(byteArray, badOffset, testAddress),
constants.LIB_BYTES_GREATER_OR_EQUAL_TO_20_LENGTH_REQUIRED,
);
});
});
describe('readBytes32', () => {
it('should successfully read bytes32 when the bytes32 takes up the whole array', async () => {
const testBytes32Offset = new BigNumber(0);
const bytes32 = await libBytes.publicReadBytes32.callAsync(testBytes32, testBytes32Offset);
return expect(bytes32).to.be.equal(testBytes32);
});
it('should successfully read bytes32 when it is offset in the array)', async () => {
const bytes32ByteArrayBuffer = ethUtil.toBuffer(testBytes32);
const prefixByteArrayBuffer = ethUtil.toBuffer('0xabcdef');
const combinedByteArrayBuffer = Buffer.concat([prefixByteArrayBuffer, bytes32ByteArrayBuffer]);
const combinedByteArray = ethUtil.bufferToHex(combinedByteArrayBuffer);
const testBytes32Offset = new BigNumber(prefixByteArrayBuffer.byteLength);
const bytes32 = await libBytes.publicReadBytes32.callAsync(combinedByteArray, testBytes32Offset);
return expect(bytes32).to.be.equal(testBytes32);
});
it('should fail if the byte array is too short to hold a bytes32', async () => {
const offset = new BigNumber(0);
return expectRevertOrOtherErrorAsync(
libBytes.publicReadBytes32.callAsync(byteArrayShorterThan32Bytes, offset),
constants.LIB_BYTES_GREATER_OR_EQUAL_TO_32_LENGTH_REQUIRED,
);
});
it('should fail if the length between the offset and end of the byte array is too short to hold a bytes32', async () => {
const badOffset = new BigNumber(ethUtil.toBuffer(testBytes32).byteLength);
return expectRevertOrOtherErrorAsync(
libBytes.publicReadBytes32.callAsync(testBytes32, badOffset),
constants.LIB_BYTES_GREATER_OR_EQUAL_TO_32_LENGTH_REQUIRED,
);
});
});
describe('writeBytes32', () => {
it('should successfully write bytes32 when the address takes up the whole array', async () => {
const byteArray = testBytes32;
const testBytes32Offset = new BigNumber(0);
const newByteArray = await libBytes.publicWriteBytes32.callAsync(
byteArray,
testBytes32Offset,
testBytes32B,
);
return expect(newByteArray).to.be.equal(testBytes32B);
});
it('should successfully write bytes32 when it is offset in the array', async () => {
const bytes32ByteArrayBuffer = ethUtil.toBuffer(testBytes32);
const prefixByteArrayBuffer = ethUtil.toBuffer('0xabcdef');
const combinedByteArrayBuffer = Buffer.concat([prefixByteArrayBuffer, bytes32ByteArrayBuffer]);
const combinedByteArray = ethUtil.bufferToHex(combinedByteArrayBuffer);
const testBytes32Offset = new BigNumber(prefixByteArrayBuffer.byteLength);
const newByteArray = await libBytes.publicWriteBytes32.callAsync(
combinedByteArray,
testBytes32Offset,
testBytes32B,
);
const newByteArrayBuffer = ethUtil.toBuffer(newByteArray);
const bytes32FromOffsetBuffer = newByteArrayBuffer.slice(prefixByteArrayBuffer.byteLength);
const bytes32FromOffset = ethUtil.addHexPrefix(ethUtil.bufferToHex(bytes32FromOffsetBuffer));
return expect(bytes32FromOffset).to.be.equal(testBytes32B);
});
it('should fail if the byte array is too short to hold a bytes32', async () => {
const offset = new BigNumber(0);
return expectRevertOrOtherErrorAsync(
libBytes.publicWriteBytes32.callAsync(byteArrayShorterThan32Bytes, offset, testBytes32),
constants.LIB_BYTES_GREATER_OR_EQUAL_TO_32_LENGTH_REQUIRED,
);
});
it('should fail if the length between the offset and end of the byte array is too short to hold a bytes32', async () => {
const byteArray = byteArrayLongerThan32Bytes;
const badOffset = new BigNumber(ethUtil.toBuffer(byteArray).byteLength);
return expectRevertOrOtherErrorAsync(
libBytes.publicWriteBytes32.callAsync(byteArray, badOffset, testBytes32),
constants.LIB_BYTES_GREATER_OR_EQUAL_TO_32_LENGTH_REQUIRED,
);
});
});
describe('readUint256', () => {
it('should successfully read uint256 when the uint256 takes up the whole array', async () => {
const formattedTestUint256 = new BN(testUint256.toString(10));
const testUint256AsBuffer = ethUtil.toBuffer(formattedTestUint256);
const byteArray = ethUtil.bufferToHex(testUint256AsBuffer);
const testUint256Offset = new BigNumber(0);
const uint256 = await libBytes.publicReadUint256.callAsync(byteArray, testUint256Offset);
return expect(uint256).to.bignumber.equal(testUint256);
});
it('should successfully read uint256 when it is offset in the array', async () => {
const prefixByteArrayBuffer = ethUtil.toBuffer('0xabcdef');
const formattedTestUint256 = new BN(testUint256.toString(10));
const testUint256AsBuffer = ethUtil.toBuffer(formattedTestUint256);
const combinedByteArrayBuffer = Buffer.concat([prefixByteArrayBuffer, testUint256AsBuffer]);
const combinedByteArray = ethUtil.bufferToHex(combinedByteArrayBuffer);
const testUint256Offset = new BigNumber(prefixByteArrayBuffer.byteLength);
const uint256 = await libBytes.publicReadUint256.callAsync(combinedByteArray, testUint256Offset);
return expect(uint256).to.bignumber.equal(testUint256);
});
it('should fail if the byte array is too short to hold a uint256', async () => {
const offset = new BigNumber(0);
return expectRevertOrOtherErrorAsync(
libBytes.publicReadUint256.callAsync(byteArrayShorterThan32Bytes, offset),
constants.LIB_BYTES_GREATER_OR_EQUAL_TO_32_LENGTH_REQUIRED,
);
});
it('should fail if the length between the offset and end of the byte array is too short to hold a uint256', async () => {
const formattedTestUint256 = new BN(testUint256.toString(10));
const testUint256AsBuffer = ethUtil.toBuffer(formattedTestUint256);
const byteArray = ethUtil.bufferToHex(testUint256AsBuffer);
const badOffset = new BigNumber(testUint256AsBuffer.byteLength);
return expectRevertOrOtherErrorAsync(
libBytes.publicReadUint256.callAsync(byteArray, badOffset),
constants.LIB_BYTES_GREATER_OR_EQUAL_TO_32_LENGTH_REQUIRED,
);
});
});
describe('writeUint256', () => {
it('should successfully write uint256 when the address takes up the whole array', async () => {
const byteArray = testBytes32;
const testUint256Offset = new BigNumber(0);
const newByteArray = await libBytes.publicWriteUint256.callAsync(
byteArray,
testUint256Offset,
testUint256B,
);
const newByteArrayAsUint256 = new BigNumber(newByteArray, 16);
return expect(newByteArrayAsUint256).to.be.bignumber.equal(testUint256B);
});
it('should successfully write uint256 when it is offset in the array', async () => {
const bytes32ByteArrayBuffer = ethUtil.toBuffer(testBytes32);
const prefixByteArrayBuffer = ethUtil.toBuffer('0xabcdef');
const combinedByteArrayBuffer = Buffer.concat([prefixByteArrayBuffer, bytes32ByteArrayBuffer]);
const combinedByteArray = ethUtil.bufferToHex(combinedByteArrayBuffer);
const testUint256Offset = new BigNumber(prefixByteArrayBuffer.byteLength);
const newByteArray = await libBytes.publicWriteUint256.callAsync(
combinedByteArray,
testUint256Offset,
testUint256B,
);
const newByteArrayBuffer = ethUtil.toBuffer(newByteArray);
const uint256FromOffsetBuffer = newByteArrayBuffer.slice(prefixByteArrayBuffer.byteLength);
const uint256FromOffset = new BigNumber(
ethUtil.addHexPrefix(ethUtil.bufferToHex(uint256FromOffsetBuffer)),
16,
);
return expect(uint256FromOffset).to.be.bignumber.equal(testUint256B);
});
it('should fail if the byte array is too short to hold a uint256', async () => {
const offset = new BigNumber(0);
return expectRevertOrOtherErrorAsync(
libBytes.publicWriteUint256.callAsync(byteArrayShorterThan32Bytes, offset, testUint256),
constants.LIB_BYTES_GREATER_OR_EQUAL_TO_32_LENGTH_REQUIRED,
);
});
it('should fail if the length between the offset and end of the byte array is too short to hold a uint256', async () => {
const byteArray = byteArrayLongerThan32Bytes;
const badOffset = new BigNumber(ethUtil.toBuffer(byteArray).byteLength);
return expectRevertOrOtherErrorAsync(
libBytes.publicWriteUint256.callAsync(byteArray, badOffset, testUint256),
constants.LIB_BYTES_GREATER_OR_EQUAL_TO_32_LENGTH_REQUIRED,
);
});
});
describe('readFirst4', () => {
// AssertionError: expected promise to be rejected with an error including 'revert' but it was fulfilled with '0x08c379a0'
it('should revert if byte array has a length < 4', async () => {
const byteArrayLessThan4Bytes = '0x010101';
return expectRevertOrOtherErrorAsync(
libBytes.publicReadFirst4.callAsync(byteArrayLessThan4Bytes),
constants.LIB_BYTES_GREATER_OR_EQUAL_TO_4_LENGTH_REQUIRED,
);
});
it('should return the first 4 bytes of a byte array of arbitrary length', async () => {
const first4Bytes = await libBytes.publicReadFirst4.callAsync(byteArrayLongerThan32Bytes);
const expectedFirst4Bytes = byteArrayLongerThan32Bytes.slice(0, 10);
expect(first4Bytes).to.equal(expectedFirst4Bytes);
});
});
describe('readBytesWithLength', () => {
it('should successfully read short, nested array of bytes when it takes up the whole array', async () => {
const testBytesOffset = new BigNumber(0);
const bytes = await libBytes.publicReadBytesWithLength.callAsync(shortTestBytes, testBytesOffset);
return expect(bytes).to.be.equal(shortData);
});
it('should successfully read short, nested array of bytes when it is offset in the array', async () => {
const prefixByteArrayBuffer = ethUtil.toBuffer('0xabcdef');
const combinedByteArrayBuffer = Buffer.concat([prefixByteArrayBuffer, shortTestBytesAsBuffer]);
const combinedByteArray = ethUtil.bufferToHex(combinedByteArrayBuffer);
const testUint256Offset = new BigNumber(prefixByteArrayBuffer.byteLength);
const bytes = await libBytes.publicReadBytesWithLength.callAsync(combinedByteArray, testUint256Offset);
return expect(bytes).to.be.equal(shortData);
});
it('should successfully read a nested array of bytes - one word in length - when it takes up the whole array', async () => {
const testBytesOffset = new BigNumber(0);
const bytes = await libBytes.publicReadBytesWithLength.callAsync(wordOfTestBytes, testBytesOffset);
return expect(bytes).to.be.equal(wordOfData);
});
it('should successfully read a nested array of bytes - one word in length - when it is offset in the array', async () => {
const prefixByteArrayBuffer = ethUtil.toBuffer('0xabcdef');
const combinedByteArrayBuffer = Buffer.concat([prefixByteArrayBuffer, wordOfTestBytesAsBuffer]);
const combinedByteArray = ethUtil.bufferToHex(combinedByteArrayBuffer);
const testUint256Offset = new BigNumber(prefixByteArrayBuffer.byteLength);
const bytes = await libBytes.publicReadBytesWithLength.callAsync(combinedByteArray, testUint256Offset);
return expect(bytes).to.be.equal(wordOfData);
});
it('should successfully read long, nested array of bytes when it takes up the whole array', async () => {
const testBytesOffset = new BigNumber(0);
const bytes = await libBytes.publicReadBytesWithLength.callAsync(longTestBytes, testBytesOffset);
return expect(bytes).to.be.equal(longData);
});
it('should successfully read long, nested array of bytes when it is offset in the array', async () => {
const prefixByteArrayBuffer = ethUtil.toBuffer('0xabcdef');
const combinedByteArrayBuffer = Buffer.concat([prefixByteArrayBuffer, longTestBytesAsBuffer]);
const combinedByteArray = ethUtil.bufferToHex(combinedByteArrayBuffer);
const testUint256Offset = new BigNumber(prefixByteArrayBuffer.byteLength);
const bytes = await libBytes.publicReadBytesWithLength.callAsync(combinedByteArray, testUint256Offset);
return expect(bytes).to.be.equal(longData);
});
it('should fail if the byte array is too short to hold the length of a nested byte array', async () => {
// The length of the nested array is 32 bytes. By storing less than 32 bytes, a length cannot be read.
const offset = new BigNumber(0);
return expectRevertOrOtherErrorAsync(
libBytes.publicReadBytesWithLength.callAsync(byteArrayShorterThan32Bytes, offset),
constants.LIB_BYTES_GREATER_OR_EQUAL_TO_32_LENGTH_REQUIRED,
);
});
it('should fail if we store a nested byte array length, without a nested byte array', async () => {
const offset = new BigNumber(0);
return expectRevertOrOtherErrorAsync(
libBytes.publicReadBytesWithLength.callAsync(testBytes32, offset),
constants.LIB_BYTES_GREATER_OR_EQUAL_TO_NESTED_BYTES_LENGTH_REQUIRED,
);
});
it('should fail if the length between the offset and end of the byte array is too short to hold the length of a nested byte array', async () => {
const badOffset = new BigNumber(ethUtil.toBuffer(byteArrayShorterThan32Bytes).byteLength);
return expectRevertOrOtherErrorAsync(
libBytes.publicReadBytesWithLength.callAsync(byteArrayShorterThan32Bytes, badOffset),
constants.LIB_BYTES_GREATER_OR_EQUAL_TO_32_LENGTH_REQUIRED,
);
});
it('should fail if the length between the offset and end of the byte array is too short to hold the nested byte array', async () => {
const badOffset = new BigNumber(ethUtil.toBuffer(testBytes32).byteLength);
return expectRevertOrOtherErrorAsync(
libBytes.publicReadBytesWithLength.callAsync(testBytes32, badOffset),
constants.LIB_BYTES_GREATER_OR_EQUAL_TO_32_LENGTH_REQUIRED,
);
});
});
describe('writeBytesWithLength', () => {
it('should successfully write short, nested array of bytes when it takes up the whole array)', async () => {
const testBytesOffset = new BigNumber(0);
const emptyByteArray = ethUtil.bufferToHex(new Buffer(shortTestBytesAsBuffer.byteLength));
const bytesWritten = await libBytes.publicWriteBytesWithLength.callAsync(emptyByteArray, testBytesOffset, shortData);
const bytesRead = await libBytes.publicReadBytesWithLength.callAsync(bytesWritten, testBytesOffset);
return expect(bytesRead).to.be.equal(shortData);
});
it('should successfully write short, nested array of bytes when it is offset in the array', async () => {
// Write a prefix to the array
const prefixData = '0xabcdef';
const prefixDataAsBuffer = ethUtil.toBuffer(prefixData);
const prefixOffset = new BigNumber(0);
const emptyByteArray = ethUtil.bufferToHex(
new Buffer(prefixDataAsBuffer.byteLength + shortTestBytesAsBuffer.byteLength),
);
let bytesWritten = await libBytes.publicWriteBytesWithLength.callAsync(emptyByteArray, prefixOffset, prefixData);
// Write data after prefix
const testBytesOffset = new BigNumber(prefixDataAsBuffer.byteLength);
bytesWritten = await libBytes.publicWriteBytesWithLength.callAsync(bytesWritten, testBytesOffset, shortData);
// Read data after prefix and validate
const bytes = await libBytes.publicReadBytesWithLength.callAsync(bytesWritten, testBytesOffset);
return expect(bytes).to.be.equal(shortData);
});
it('should successfully write a nested array of bytes - one word in length - when it takes up the whole array', async () => {
const testBytesOffset = new BigNumber(0);
const emptyByteArray = ethUtil.bufferToHex(new Buffer(wordOfTestBytesAsBuffer.byteLength));
const bytesWritten = await libBytes.publicWriteBytesWithLength.callAsync(emptyByteArray, testBytesOffset, wordOfData);
const bytesRead = await libBytes.publicReadBytesWithLength.callAsync(bytesWritten, testBytesOffset);
return expect(bytesRead).to.be.equal(wordOfData);
});
it('should successfully write a nested array of bytes - one word in length - when it is offset in the array', async () => {
// Write a prefix to the array
const prefixData = '0xabcdef';
const prefixDataAsBuffer = ethUtil.toBuffer(prefixData);
const prefixOffset = new BigNumber(0);
const emptyByteArray = ethUtil.bufferToHex(
new Buffer(prefixDataAsBuffer.byteLength + wordOfTestBytesAsBuffer.byteLength),
);
let bytesWritten = await libBytes.publicWriteBytesWithLength.callAsync(emptyByteArray, prefixOffset, prefixData);
// Write data after prefix
const testBytesOffset = new BigNumber(prefixDataAsBuffer.byteLength);
bytesWritten = await libBytes.publicWriteBytesWithLength.callAsync(bytesWritten, testBytesOffset, wordOfData);
// Read data after prefix and validate
const bytes = await libBytes.publicReadBytesWithLength.callAsync(bytesWritten, testBytesOffset);
return expect(bytes).to.be.equal(wordOfData);
});
it('should successfully write a long, nested bytes when it takes up the whole array', async () => {
const testBytesOffset = new BigNumber(0);
const emptyByteArray = ethUtil.bufferToHex(new Buffer(longTestBytesAsBuffer.byteLength));
const bytesWritten = await libBytes.publicWriteBytesWithLength.callAsync(emptyByteArray, testBytesOffset, longData);
const bytesRead = await libBytes.publicReadBytesWithLength.callAsync(bytesWritten, testBytesOffset);
return expect(bytesRead).to.be.equal(longData);
});
it('should successfully write long, nested array of bytes when it is offset in the array', async () => {
// Write a prefix to the array
const prefixData = '0xabcdef';
const prefixDataAsBuffer = ethUtil.toBuffer(prefixData);
const prefixOffset = new BigNumber(0);
const emptyByteArray = ethUtil.bufferToHex(
new Buffer(prefixDataAsBuffer.byteLength + longTestBytesAsBuffer.byteLength),
);
let bytesWritten = await libBytes.publicWriteBytesWithLength.callAsync(emptyByteArray, prefixOffset, prefixData);
// Write data after prefix
const testBytesOffset = new BigNumber(prefixDataAsBuffer.byteLength);
bytesWritten = await libBytes.publicWriteBytesWithLength.callAsync(bytesWritten, testBytesOffset, longData);
// Read data after prefix and validate
const bytes = await libBytes.publicReadBytesWithLength.callAsync(bytesWritten, testBytesOffset);
return expect(bytes).to.be.equal(longData);
});
it('should fail if the byte array is too short to hold the length of a nested byte array', async () => {
const offset = new BigNumber(0);
const emptyByteArray = ethUtil.bufferToHex(new Buffer(1));
return expectRevertOrOtherErrorAsync(
libBytes.publicWriteBytesWithLength.callAsync(emptyByteArray, offset, longData),
constants.LIB_BYTES_GREATER_OR_EQUAL_TO_NESTED_BYTES_LENGTH_REQUIRED,
);
});
it('should fail if the length between the offset and end of the byte array is too short to hold the length of a nested byte array)', async () => {
const emptyByteArray = ethUtil.bufferToHex(new Buffer(shortTestBytesAsBuffer.byteLength));
const badOffset = new BigNumber(ethUtil.toBuffer(shortTestBytesAsBuffer).byteLength);
return expectRevertOrOtherErrorAsync(
libBytes.publicWriteBytesWithLength.callAsync(emptyByteArray, badOffset, shortData),
constants.LIB_BYTES_GREATER_OR_EQUAL_TO_NESTED_BYTES_LENGTH_REQUIRED,
);
});
});
describe('memCopy', () => {
// Create memory 0x000102...FF
const memSize = 256;
const memory = new Uint8Array(memSize).map((_, i) => i);
const memHex = toHex(memory);
// Reference implementation to test against
const refMemcpy = (mem: Uint8Array, dest: number, source: number, length: number): Uint8Array =>
Uint8Array.from(mem).copyWithin(dest, source, source + length);
// Test vectors: destination, source, length, job description
type Tests = Array<[number, number, number, string]>;
const test = (tests: Tests) =>
tests.forEach(([dest, source, length, job]) =>
it(job, async () => {
const expected = refMemcpy(memory, dest, source, length);
const resultStr = await libBytes.testMemcpy.callAsync(
memHex,
new BigNumber(dest),
new BigNumber(source),
new BigNumber(length),
);
const result = fromHex(resultStr);
expect(result).to.deep.equal(expected);
}),
);
test([[0, 0, 0, 'copies zero bytes with overlap']]);
describe('copies forward', () =>
test([
[128, 0, 0, 'zero bytes'],
[128, 0, 1, 'one byte'],
[128, 0, 11, 'eleven bytes'],
[128, 0, 31, 'thirty-one bytes'],
[128, 0, 32, 'one word'],
[128, 0, 64, 'two words'],
[128, 0, 96, 'three words'],
[128, 0, 33, 'one word and one byte'],
[128, 0, 72, 'two words and eight bytes'],
[128, 0, 100, 'three words and four bytes'],
]));
describe('copies forward within one word', () =>
test([
[16, 0, 0, 'zero bytes'],
[16, 0, 1, 'one byte'],
[16, 0, 11, 'eleven bytes'],
[16, 0, 16, 'sixteen bytes'],
]));
describe('copies forward with one byte overlap', () =>
test([
[0, 0, 1, 'one byte'],
[10, 0, 11, 'eleven bytes'],
[30, 0, 31, 'thirty-one bytes'],
[31, 0, 32, 'one word'],
[32, 0, 33, 'one word and one byte'],
[71, 0, 72, 'two words and eight bytes'],
[99, 0, 100, 'three words and four bytes'],
]));
describe('copies forward with thirty-one bytes overlap', () =>
test([
[0, 0, 31, 'thirty-one bytes'],
[1, 0, 32, 'one word'],
[2, 0, 33, 'one word and one byte'],
[41, 0, 72, 'two words and eight bytes'],
[69, 0, 100, 'three words and four bytes'],
]));
describe('copies forward with one word overlap', () =>
test([
[0, 0, 32, 'one word'],
[1, 0, 33, 'one word and one byte'],
[41, 0, 72, 'two words and eight bytes'],
[69, 0, 100, 'three words and four bytes'],
]));
describe('copies forward with one word and one byte overlap', () =>
test([
[0, 0, 33, 'one word and one byte'],
[40, 0, 72, 'two words and eight bytes'],
[68, 0, 100, 'three words and four bytes'],
]));
describe('copies forward with two words overlap', () =>
test([
[0, 0, 64, 'two words'],
[8, 0, 72, 'two words and eight bytes'],
[36, 0, 100, 'three words and four bytes'],
]));
describe('copies forward within one word and one byte overlap', () =>
test([[0, 0, 1, 'one byte'], [10, 0, 11, 'eleven bytes'], [15, 0, 16, 'sixteen bytes']]));
describe('copies backward', () =>
test([
[0, 128, 0, 'zero bytes'],
[0, 128, 1, 'one byte'],
[0, 128, 11, 'eleven bytes'],
[0, 128, 31, 'thirty-one bytes'],
[0, 128, 32, 'one word'],
[0, 128, 64, 'two words'],
[0, 128, 96, 'three words'],
[0, 128, 33, 'one word and one byte'],
[0, 128, 72, 'two words and eight bytes'],
[0, 128, 100, 'three words and four bytes'],
]));
describe('copies backward within one word', () =>
test([
[0, 16, 0, 'zero bytes'],
[0, 16, 1, 'one byte'],
[0, 16, 11, 'eleven bytes'],
[0, 16, 16, 'sixteen bytes'],
]));
describe('copies backward with one byte overlap', () =>
test([
[0, 0, 1, 'one byte'],
[0, 10, 11, 'eleven bytes'],
[0, 30, 31, 'thirty-one bytes'],
[0, 31, 32, 'one word'],
[0, 32, 33, 'one word and one byte'],
[0, 71, 72, 'two words and eight bytes'],
[0, 99, 100, 'three words and four bytes'],
]));
describe('copies backward with thirty-one bytes overlap', () =>
test([
[0, 0, 31, 'thirty-one bytes'],
[0, 1, 32, 'one word'],
[0, 2, 33, 'one word and one byte'],
[0, 41, 72, 'two words and eight bytes'],
[0, 69, 100, 'three words and four bytes'],
]));
describe('copies backward with one word overlap', () =>
test([
[0, 0, 32, 'one word'],
[0, 1, 33, 'one word and one byte'],
[0, 41, 72, 'two words and eight bytes'],
[0, 69, 100, 'three words and four bytes'],
]));
describe('copies backward with one word and one byte overlap', () =>
test([
[0, 0, 33, 'one word and one byte'],
[0, 40, 72, 'two words and eight bytes'],
[0, 68, 100, 'three words and four bytes'],
]));
describe('copies backward with two words overlap', () =>
test([
[0, 0, 64, 'two words'],
[0, 8, 72, 'two words and eight bytes'],
[0, 36, 100, 'three words and four bytes'],
]));
describe('copies forward within one word and one byte overlap', () =>
test([[0, 0, 1, 'one byte'], [0, 10, 11, 'eleven bytes'], [0, 15, 16, 'sixteen bytes']]));
});
});
// tslint:disable:max-file-line-count