1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
|
// Copyright 2018 The dexon-consensus-core Authors
// This file is part of the dexon-consensus-core library.
//
// The dexon-consensus-core library is free software: you can redistribute it
// and/or modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation, either version 3 of the License,
// or (at your option) any later version.
//
// The dexon-consensus-core library is distributed in the hope that it will be
// useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser
// General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the dexon-consensus-core library. If not, see
// <http://www.gnu.org/licenses/>.
package core
import (
"fmt"
"math"
"sort"
"github.com/dexon-foundation/dexon-consensus-core/common"
"github.com/dexon-foundation/dexon-consensus-core/core/types"
)
const (
infinity uint64 = math.MaxUint64
)
// ErrNotValidDAG would be reported when block subbmitted to totalOrdering
// didn't form a DAG.
var ErrNotValidDAG = fmt.Errorf("not a valid dag")
// ackingStatusVector describes the acking status, either globally or just
// for one candidate.
//
// When block A acks block B, all blocks proposed from the same proposer
// as block A with higher height would also acks block B. Therefore,
// we just need to record:
// - the minimum height of acking block from that proposer
// - count of acking blocks from that proposer
// to repsent the acking status for block A.
type ackingStatusVector map[types.ValidatorID]*struct{ minHeight, count uint64 }
// addBlock would update ackingStatusVector, it's caller's duty
// to make sure the input block acutally acking the target block.
func (v ackingStatusVector) addBlock(b *types.Block) (err error) {
rec, exists := v[b.ProposerID]
if !exists {
v[b.ProposerID] = &struct {
minHeight, count uint64
}{
minHeight: b.Height,
count: 1,
}
} else {
if b.Height < rec.minHeight {
err = ErrNotValidDAG
return
}
rec.count++
}
return
}
// getAckingNodeSet would generate the Acking Node Set.
// Only block height larger than
//
// global minimum height + k
//
// would be taken into consideration, ex.
//
// For some validator X:
// - the global minimum acking height = 1,
// - k = 1
// then only block height >= 2 would be added to acking node set.
func (v ackingStatusVector) getAckingNodeSet(
global ackingStatusVector, k uint64) map[types.ValidatorID]struct{} {
ret := make(map[types.ValidatorID]struct{})
for vID, gRec := range global {
rec, exists := v[vID]
if !exists {
continue
}
// This line would check if these two ranges would overlap:
// - (global minimum height + k, infinity)
// - (local minimum height, local minimum height + count - 1)
if rec.minHeight+rec.count-1 >= gRec.minHeight+k {
ret[vID] = struct{}{}
}
}
return ret
}
// getAckingHeightVector would convert 'ackingStatusVector' to
// Acking Height Vector.
//
// Only block height equals to (global minimum block height + k) would be
// taken into consideration.
func (v ackingStatusVector) getAckingHeightVector(
global ackingStatusVector, k uint64) map[types.ValidatorID]uint64 {
ret := make(map[types.ValidatorID]uint64)
for vID, gRec := range global {
rec, exists := v[vID]
if gRec.count <= k {
continue
} else if !exists {
ret[vID] = infinity
} else if rec.minHeight <= gRec.minHeight+k {
// This check is sufficient to make sure the block height:
//
// gRec.minHeight + k
//
// would be included in this ackingStatusVector.
ret[vID] = gRec.minHeight + k
} else {
ret[vID] = infinity
}
}
return ret
}
// blockVector stores all blocks grouped by their proposers and
// sorted by their block height.
type blockVector map[types.ValidatorID][]*types.Block
func (v blockVector) addBlock(b *types.Block) (err error) {
blocksFromProposer := v[b.ProposerID]
if len(blocksFromProposer) > 0 {
lastBlock := blocksFromProposer[len(blocksFromProposer)-1]
if b.Height-lastBlock.Height != 1 {
err = ErrNotValidDAG
return
}
}
v[b.ProposerID] = append(blocksFromProposer, b)
return
}
// getAckingStatusVector would convert a blockVector to
// ackingStatusVectorAckingStatus.
func (v blockVector) getAckingStatusVector() ackingStatusVector {
ret := ackingStatusVector{}
for vID, vec := range v {
if len(vec) == 0 {
continue
}
ret[vID] = &struct {
minHeight, count uint64
}{
minHeight: vec[0].Height,
count: uint64(len(vec)),
}
}
return ret
}
// totalOrdering represent a process unit to handle total ordering
// for blocks.
type totalOrdering struct {
// pendings stores blocks awaiting to be ordered.
pendings map[common.Hash]*types.Block
// k represents the k in 'k-level total ordering'.
// In short, only block height equals to (global minimum height + k)
// would be taken into consideration.
k uint64
// phi is a const to control how strong the leading preceding block
// should be.
phi uint64
// validatorCount is the count of validator set.
validatorCount uint64
// globalVector group all pending blocks by proposers and
// sort them by block height. This structure is helpful when:
//
// - build global height vector
// - picking candidates next round
globalVector blockVector
// candidateAckingStatusVectors caches ackingStatusVector of candidates.
candidateAckingStatusVectors map[common.Hash]ackingStatusVector
// acked cache the 'block A acked by block B' relation by
// keeping a record in acked[A.Hash][B.Hash]
acked map[common.Hash]map[common.Hash]struct{}
}
func newTotalOrdering(k, phi, validatorCount uint64) *totalOrdering {
return &totalOrdering{
candidateAckingStatusVectors: make(map[common.Hash]ackingStatusVector),
pendings: make(map[common.Hash]*types.Block),
k: k,
phi: phi,
validatorCount: validatorCount,
globalVector: blockVector{},
acked: make(map[common.Hash]map[common.Hash]struct{}),
}
}
// buildBlockRelation populates the acked according their acking relationships.
func (to *totalOrdering) buildBlockRelation(b *types.Block) {
// populateAcked would update all blocks implcitly acked
// by input block recursively.
var populateAcked func(bx, target *types.Block)
populateAcked = func(bx, target *types.Block) {
for ack := range bx.Acks {
acked, exists := to.acked[ack]
if !exists {
acked = make(map[common.Hash]struct{})
to.acked[ack] = acked
}
// This means we've walked this block already.
if _, alreadyPopulated := acked[target.Hash]; alreadyPopulated {
continue
}
acked[target.Hash] = struct{}{}
// See if we need to go forward.
if nextBlock, exists := to.pendings[ack]; !exists {
continue
} else {
populateAcked(nextBlock, target)
}
}
}
populateAcked(b, b)
}
// clean would remove a block from working set. This behaviour
// would prevent our memory usage growing infinity.
func (to *totalOrdering) clean(h common.Hash) {
delete(to.acked, h)
delete(to.pendings, h)
delete(to.candidateAckingStatusVectors, h)
}
// updateVectors is a helper function to update all cached vectors.
func (to *totalOrdering) updateVectors(b *types.Block) (err error) {
// Update global height vector
err = to.globalVector.addBlock(b)
if err != nil {
return
}
// Update acking status of candidates.
for candidate, vector := range to.candidateAckingStatusVectors {
if _, acked := to.acked[candidate][b.Hash]; !acked {
continue
}
if err = vector.addBlock(b); err != nil {
return
}
}
return
}
// grade implements the 'grade' potential function described in white paper.
func (to *totalOrdering) grade(
hvFrom, hvTo map[types.ValidatorID]uint64,
globalAns map[types.ValidatorID]struct{}) int {
count := uint64(0)
for vID, hFrom := range hvFrom {
hTo, exists := hvTo[vID]
if !exists {
continue
}
if hFrom != infinity && hTo == infinity {
count++
}
}
if count >= to.phi {
return 1
} else if count < to.phi-to.validatorCount+uint64(len(globalAns)) {
return 0
} else {
return -1
}
}
// buildAckingStatusVectorForNewCandidate is a helper function to
// build ackingStatusVector for new candidate.
func (to *totalOrdering) buildAckingStatusVectorForNewCandidate(
candidate *types.Block) (hVec ackingStatusVector) {
blocks := to.globalVector[candidate.ProposerID]
hVec = ackingStatusVector{
candidate.ProposerID: &struct {
minHeight, count uint64
}{
minHeight: candidate.Height,
count: uint64(len(blocks)),
},
}
ackedsForCandidate, exists := to.acked[candidate.Hash]
if !exists {
// This candidate is acked by nobody.
return
}
for vID, blocks := range to.globalVector {
if vID == candidate.ProposerID {
continue
}
for i, b := range blocks {
if _, acked := ackedsForCandidate[b.Hash]; !acked {
continue
}
// If this block acks this candidate, all newer blocks
// from the same validator also 'indirect' acks it.
hVec[vID] = &struct {
minHeight, count uint64
}{
minHeight: b.Height,
count: uint64(len(blocks) - i),
}
break
}
}
return
}
// isAckOnlyPrecedings is a helper function to check if a block
// only contain acks to delivered blocks.
func (to *totalOrdering) isAckOnlyPrecedings(b *types.Block) bool {
for ack := range b.Acks {
if _, pending := to.pendings[ack]; pending {
return false
}
}
return true
}
// output is a helper function to finish the delivery of
// deliverable preceding set.
func (to *totalOrdering) output(precedings map[common.Hash]struct{}) (ret []*types.Block) {
for p := range precedings {
// Remove the first element from corresponding blockVector.
b := to.pendings[p]
to.globalVector[b.ProposerID] = to.globalVector[b.ProposerID][1:]
ret = append(ret, b)
// Remove block relations.
to.clean(p)
}
sort.Sort(types.ByHash(ret))
// Find new candidates from tip of globalVector of each validator.
// The complexity here is O(N^2logN).
for _, blocks := range to.globalVector {
if len(blocks) == 0 {
continue
}
tip := blocks[0]
if _, alreadyCandidate :=
to.candidateAckingStatusVectors[tip.Hash]; alreadyCandidate {
continue
}
if !to.isAckOnlyPrecedings(tip) {
continue
}
// Build ackingStatusVector for new candidate.
to.candidateAckingStatusVectors[tip.Hash] =
to.buildAckingStatusVectorForNewCandidate(tip)
}
return ret
}
// generateDeliverSet would:
// - generate preceding set
// - check if the preceding set deliverable by checking potential function
func (to *totalOrdering) generateDeliverSet() (
delivered map[common.Hash]struct{}, early bool) {
globalAckingStatusVector := to.globalVector.getAckingStatusVector()
ahvs := map[common.Hash]map[types.ValidatorID]uint64{}
for candidate, v := range to.candidateAckingStatusVectors {
ahvs[candidate] = v.getAckingHeightVector(globalAckingStatusVector, to.k)
}
globalAns := globalAckingStatusVector.getAckingNodeSet(
globalAckingStatusVector, to.k)
precedings := make(map[common.Hash]struct{})
CheckNextCandidateLoop:
for candidate := range to.candidateAckingStatusVectors {
for otherCandidate := range to.candidateAckingStatusVectors {
if candidate == otherCandidate {
continue
}
if to.grade(ahvs[otherCandidate], ahvs[candidate], globalAns) != 0 {
continue CheckNextCandidateLoop
}
}
precedings[candidate] = struct{}{}
}
if len(precedings) == 0 {
return
}
// internal is a helper function to verify internal stability.
internal := func() bool {
for candidate := range to.candidateAckingStatusVectors {
if _, isPreceding := precedings[candidate]; isPreceding {
continue
}
beaten := false
for p := range precedings {
if beaten =
to.grade(ahvs[p], ahvs[candidate], globalAns) == 1; beaten {
break
}
}
if !beaten {
return false
}
}
return true
}
// checkAHV is a helper function to verify external stability.
// It would make sure some preceding block is strong enough
// to lead the whole preceding set.
checkAHV := func() bool {
for p := range precedings {
count := uint64(0)
for _, v := range ahvs[p] {
if v != infinity {
count++
}
}
if count > to.phi {
return true
}
}
return false
}
// checkANS is a helper function to verify external stability.
// It would make sure all preceding blocks are strong enough
// to be delivered.
checkANS := func() bool {
for p := range precedings {
validatorAns := to.candidateAckingStatusVectors[p].getAckingNodeSet(
globalAckingStatusVector, to.k)
if uint64(len(validatorAns)) < to.validatorCount-to.phi {
return false
}
}
return true
}
// Check internal stability first.
if !internal() {
return
}
// If all validators propose enough blocks, we should force
// to deliver since the whole picture of the DAG is revealed.
if uint64(len(globalAns)) != to.validatorCount {
// The whole picture is not ready, we need to check if
// exteranl stability is met, and we can deliver earlier.
if checkAHV() && checkANS() {
early = true
} else {
return
}
}
delivered = precedings
return
}
// processBlock is the entry point of totalOrdering.
func (to *totalOrdering) processBlock(b *types.Block) (
delivered []*types.Block, early bool, err error) {
// NOTE: I assume the block 'b' is already safe for total ordering.
// That means, all its acking blocks are during/after
// total ordering stage.
// Incremental part.
to.pendings[b.Hash] = b
to.buildBlockRelation(b)
if err = to.updateVectors(b); err != nil {
return
}
if to.isAckOnlyPrecedings(b) {
to.candidateAckingStatusVectors[b.Hash] =
to.buildAckingStatusVectorForNewCandidate(b)
}
// Not-Incremental part (yet).
// - generate ahv for each candidate
// - generate ans for each candidate
// - generate global ans
// - find preceding set
hashes, early := to.generateDeliverSet()
// output precedings
delivered = to.output(hashes)
return
}
|