import { BlockchainLifecycle } from '@0xproject/dev-utils';
import { assetProxyUtils, generatePseudoRandomSalt } from '@0xproject/order-utils';
import { AssetProxyId } from '@0xproject/types';
import { BigNumber } from '@0xproject/utils';
import BN = require('bn.js');
import * as chai from 'chai';
import ethUtil = require('ethereumjs-util');
import { TestLibBytesContract } from '../../src/generated_contract_wrappers/test_lib_bytes';
import { artifacts } from '../../src/utils/artifacts';
import { expectRevertOrOtherErrorAsync, expectRevertOrOtherErrorAsync } from '../../src/utils/assertions';
import { assetProxyUtils } from '../../src/utils/asset_proxy_utils';
import { chaiSetup } from '../../src/utils/chai_setup';
import { constants } from '../../src/utils/constants';
import { provider, txDefaults, web3Wrapper } from '../../src/utils/web3_wrapper';
chaiSetup.configure();
const expect = chai.expect;
const blockchainLifecycle = new BlockchainLifecycle(web3Wrapper);
describe('LibBytes', () => {
let libBytes: TestLibBytesContract;
const byteArrayShorterThan32Bytes = '0x012345';
const byteArrayShorterThan20Bytes = byteArrayShorterThan32Bytes;
const byteArrayLongerThan32Bytes =
'0x0123456789abcdef0123456789abcdef0123456789abcdef0123456789abcdef0123456789abcdef';
const byteArrayLongerThan32BytesFirstBytesSwapped =
'0x2301456789abcdef0123456789abcdef0123456789abcdef0123456789abcdef0123456789abcdef';
const byteArrayLongerThan32BytesLastBytesSwapped =
'0x0123456789abcdef0123456789abcdef0123456789abcdef0123456789abcdef0123456789abefcd';
let testAddress: string;
const testBytes32 = '0x102030405060708090a0b0c0d0e0f0102030405060708090a0b0c0d0e0f01020';
const testUint256 = new BigNumber(testBytes32, 16);
let shortData: string;
let shortTestBytes: string;
let shortTestBytesAsBuffer: Buffer;
let wordOfData: string;
let wordOfTestBytes: string;
let wordOfTestBytesAsBuffer: Buffer;
let longData: string;
let longTestBytes: string;
let longTestBytesAsBuffer: Buffer;
before(async () => {
await blockchainLifecycle.startAsync();
});
after(async () => {
await blockchainLifecycle.revertAsync();
});
before(async () => {
// Setup accounts & addresses
const accounts = await web3Wrapper.getAvailableAddressesAsync();
testAddress = accounts[1];
// Deploy LibBytes
libBytes = await TestLibBytesContract.deployFrom0xArtifactAsync(artifacts.TestLibBytes, provider, txDefaults);
// Verify lengths of test data
const byteArrayShorterThan32BytesLength = ethUtil.toBuffer(byteArrayShorterThan32Bytes).byteLength;
expect(byteArrayShorterThan32BytesLength).to.be.lessThan(32);
const byteArrayLongerThan32BytesLength = ethUtil.toBuffer(byteArrayLongerThan32Bytes).byteLength;
expect(byteArrayLongerThan32BytesLength).to.be.greaterThan(32);
const testBytes32Length = ethUtil.toBuffer(testBytes32).byteLength;
expect(testBytes32Length).to.be.equal(32);
// Create short test bytes
shortData = '0xffffaa';
const encodedShortData = ethUtil.toBuffer(shortData);
const shortDataLength = new BigNumber(encodedShortData.byteLength);
const encodedShortDataLength = assetProxyUtils.encodeUint256(shortDataLength);
shortTestBytesAsBuffer = Buffer.concat([encodedShortDataLength, encodedShortData]);
shortTestBytes = ethUtil.bufferToHex(shortTestBytesAsBuffer);
// Create test bytes one word in length
wordOfData = ethUtil.bufferToHex(assetProxyUtils.encodeUint256(generatePseudoRandomSalt()));
const encodedWordOfData = ethUtil.toBuffer(wordOfData);
const wordOfDataLength = new BigNumber(encodedWordOfData.byteLength);
const encodedWordOfDataLength = assetProxyUtils.encodeUint256(wordOfDataLength);
wordOfTestBytesAsBuffer = Buffer.concat([encodedWordOfDataLength, encodedWordOfData]);
wordOfTestBytes = ethUtil.bufferToHex(wordOfTestBytesAsBuffer);
// Create long test bytes (combines short test bytes with word of test bytes)
longData = ethUtil.bufferToHex(Buffer.concat([encodedShortData, encodedWordOfData]));
const longDataLength = new BigNumber(encodedShortData.byteLength + encodedWordOfData.byteLength);
const encodedLongDataLength = assetProxyUtils.encodeUint256(longDataLength);
longTestBytesAsBuffer = Buffer.concat([encodedLongDataLength, encodedShortData, encodedWordOfData]);
longTestBytes = ethUtil.bufferToHex(longTestBytesAsBuffer);
});
beforeEach(async () => {
await blockchainLifecycle.startAsync();
});
afterEach(async () => {
await blockchainLifecycle.revertAsync();
});
describe('popByte', () => {
it('should revert if length is 0', async () => {
return expectRevertOrOtherErrorAsync(
libBytes.publicPopByte.callAsync(constants.NULL_BYTES),
constants.LIB_BYTES_GT_ZERO_LENGTH_REQUIRED,
);
});
it('should pop the last byte from the input and return it', async () => {
const [newBytes, poppedByte] = await libBytes.publicPopByte.callAsync(byteArrayLongerThan32Bytes);
const expectedNewBytes = byteArrayLongerThan32Bytes.slice(0, -2);
const expectedPoppedByte = `0x${byteArrayLongerThan32Bytes.slice(-2)}`;
expect(newBytes).to.equal(expectedNewBytes);
expect(poppedByte).to.equal(expectedPoppedByte);
});
});
describe('popAddress', () => {
it('should revert if length is less than 20', async () => {
return expectRevertOrOtherErrorAsync(
libBytes.publicPopAddress.callAsync(byteArrayShorterThan20Bytes),
constants.LIB_BYTES_GTE_20_LENGTH_REQUIRED,
);
});
it('should pop the last 20 bytes from the input and return it', async () => {
const [newBytes, poppedAddress] = await libBytes.publicPopAddress.callAsync(byteArrayLongerThan32Bytes);
const expectedNewBytes = byteArrayLongerThan32Bytes.slice(0, -40);
const expectedPoppedAddress = `0x${byteArrayLongerThan32Bytes.slice(-40)}`;
expect(newBytes).to.equal(expectedNewBytes);
expect(poppedAddress).to.equal(expectedPoppedAddress);
});
});
describe('areBytesEqual', () => {
it('should return true if byte arrays are equal (both arrays < 32 bytes)', async () => {
const areBytesEqual = await libBytes.publicAreBytesEqual.callAsync(
byteArrayShorterThan32Bytes,
byteArrayShorterThan32Bytes,
);
return expect(areBytesEqual).to.be.true();
});
it('should return true if byte arrays are equal (both arrays > 32 bytes)', async () => {
const areBytesEqual = await libBytes.publicAreBytesEqual.callAsync(
byteArrayLongerThan32Bytes,
byteArrayLongerThan32Bytes,
);
return expect(areBytesEqual).to.be.true();
});
it('should return false if byte arrays are not equal (first array < 32 bytes, second array > 32 bytes)', async () => {
const areBytesEqual = await libBytes.publicAreBytesEqual.callAsync(
byteArrayShorterThan32Bytes,
byteArrayLongerThan32Bytes,
);
return expect(areBytesEqual).to.be.false();
});
it('should return false if byte arrays are not equal (first array > 32 bytes, second array < 32 bytes)', async () => {
const areBytesEqual = await libBytes.publicAreBytesEqual.callAsync(
byteArrayLongerThan32Bytes,
byteArrayShorterThan32Bytes,
);
return expect(areBytesEqual).to.be.false();
});
it('should return false if byte arrays are not equal (same length, but a byte in first word differs)', async () => {
const areBytesEqual = await libBytes.publicAreBytesEqual.callAsync(
byteArrayLongerThan32BytesFirstBytesSwapped,
byteArrayLongerThan32Bytes,
);
return expect(areBytesEqual).to.be.false();
});
it('should return false if byte arrays are not equal (same length, but a byte in last word differs)', async () => {
const areBytesEqual = await libBytes.publicAreBytesEqual.callAsync(
byteArrayLongerThan32BytesLastBytesSwapped,
byteArrayLongerThan32Bytes,
);
return expect(areBytesEqual).to.be.false();
});
});
describe('readAddress', () => {
it('should successfully read address when the address takes up the whole array)', async () => {
const byteArray = ethUtil.addHexPrefix(testAddress);
const testAddressOffset = new BigNumber(0);
const address = await libBytes.publicReadAddress.callAsync(byteArray, testAddressOffset);
return expect(address).to.be.equal(testAddress);
});
it('should successfully read address when it is offset in the array)', async () => {
const addressByteArrayBuffer = ethUtil.toBuffer(testAddress);
const prefixByteArrayBuffer = ethUtil.toBuffer('0xabcdef');
const combinedByteArrayBuffer = Buffer.concat([prefixByteArrayBuffer, addressByteArrayBuffer]);
const combinedByteArray = ethUtil.bufferToHex(combinedByteArrayBuffer);
const testAddressOffset = new BigNumber(prefixByteArrayBuffer.byteLength);
const address = await libBytes.publicReadAddress.callAsync(combinedByteArray, testAddressOffset);
return expect(address).to.be.equal(testAddress);
});
it('should fail if the byte array is too short to hold an address)', async () => {
const shortByteArray = '0xabcdef';
const offset = new BigNumber(0);
return expectRevertOrOtherErrorAsync(
libBytes.publicReadAddress.callAsync(shortByteArray, offset),
constants.LIB_BYTES_GTE_20_LENGTH_REQUIRED,
);
});
it('should fail if the length between the offset and end of the byte array is too short to hold an address)', async () => {
const byteArray = ethUtil.addHexPrefix(testAddress);
const badOffset = new BigNumber(ethUtil.toBuffer(byteArray).byteLength);
return expectRevertOrOtherErrorAsync(
libBytes.publicReadAddress.callAsync(byteArray, badOffset),
constants.LIB_BYTES_GTE_20_LENGTH_REQUIRED,
);
});
});
/// @TODO Implement test cases for writeAddress. Test template below.
/// Currently, the generated contract wrappers do not support this library's write methods.
/*
describe('writeAddress', () => {
it('should successfully write address when the address takes up the whole array)', async () => {});
it('should successfully write address when it is offset in the array)', async () => {});
it('should fail if the byte array is too short to hold an address)', async () => {});
it('should fail if the length between the offset and end of the byte array is too short to hold an address)', async () => {});
});
*/
describe('readBytes32', () => {
it('should successfully read bytes32 when the bytes32 takes up the whole array)', async () => {
const testBytes32Offset = new BigNumber(0);
const bytes32 = await libBytes.publicReadBytes32.callAsync(testBytes32, testBytes32Offset);
return expect(bytes32).to.be.equal(testBytes32);
});
it('should successfully read bytes32 when it is offset in the array)', async () => {
const bytes32ByteArrayBuffer = ethUtil.toBuffer(testBytes32);
const prefixByteArrayBuffer = ethUtil.toBuffer('0xabcdef');
const combinedByteArrayBuffer = Buffer.concat([prefixByteArrayBuffer, bytes32ByteArrayBuffer]);
const combinedByteArray = ethUtil.bufferToHex(combinedByteArrayBuffer);
const testAddressOffset = new BigNumber(prefixByteArrayBuffer.byteLength);
const bytes32 = await libBytes.publicReadBytes32.callAsync(combinedByteArray, testAddressOffset);
return expect(bytes32).to.be.equal(testBytes32);
});
it('should fail if the byte array is too short to hold a bytes32)', async () => {
const offset = new BigNumber(0);
return expectRevertOrOtherErrorAsync(
libBytes.publicReadBytes32.callAsync(byteArrayShorterThan32Bytes, offset),
constants.LIB_BYTES_GTE_32_LENGTH_REQUIRED,
);
});
it('should fail if the length between the offset and end of the byte array is too short to hold a bytes32)', async () => {
const badOffset = new BigNumber(ethUtil.toBuffer(testBytes32).byteLength);
return expectRevertOrOtherErrorAsync(
libBytes.publicReadBytes32.callAsync(testBytes32, badOffset),
constants.LIB_BYTES_GTE_32_LENGTH_REQUIRED,
);
});
});
/// @TODO Implement test cases for writeBytes32. Test template below.
/// Currently, the generated contract wrappers do not support this library's write methods.
/*
describe('writeBytes32', () => {
it('should successfully write bytes32 when the address takes up the whole array)', async () => {});
it('should successfully write bytes32 when it is offset in the array)', async () => {});
it('should fail if the byte array is too short to hold a bytes32)', async () => {});
it('should fail if the length between the offset and end of the byte array is too short to hold a bytes32)', async () => {});
});
*/
describe('readUint256', () => {
it('should successfully read uint256 when the uint256 takes up the whole array)', async () => {
const formattedTestUint256 = new BN(testUint256.toString(10));
const testUint256AsBuffer = ethUtil.toBuffer(formattedTestUint256);
const byteArray = ethUtil.bufferToHex(testUint256AsBuffer);
const testUint256Offset = new BigNumber(0);
const uint256 = await libBytes.publicReadUint256.callAsync(byteArray, testUint256Offset);
return expect(uint256).to.bignumber.equal(testUint256);
});
it('should successfully read uint256 when it is offset in the array)', async () => {
const prefixByteArrayBuffer = ethUtil.toBuffer('0xabcdef');
const formattedTestUint256 = new BN(testUint256.toString(10));
const testUint256AsBuffer = ethUtil.toBuffer(formattedTestUint256);
const combinedByteArrayBuffer = Buffer.concat([prefixByteArrayBuffer, testUint256AsBuffer]);
const combinedByteArray = ethUtil.bufferToHex(combinedByteArrayBuffer);
const testUint256Offset = new BigNumber(prefixByteArrayBuffer.byteLength);
const uint256 = await libBytes.publicReadUint256.callAsync(combinedByteArray, testUint256Offset);
return expect(uint256).to.bignumber.equal(testUint256);
});
it('should fail if the byte array is too short to hold a uint256)', async () => {
const offset = new BigNumber(0);
return expectRevertOrOtherErrorAsync(
libBytes.publicReadUint256.callAsync(byteArrayShorterThan32Bytes, offset),
constants.LIB_BYTES_GTE_32_LENGTH_REQUIRED,
);
});
it('should fail if the length between the offset and end of the byte array is too short to hold a uint256)', async () => {
const formattedTestUint256 = new BN(testUint256.toString(10));
const testUint256AsBuffer = ethUtil.toBuffer(formattedTestUint256);
const byteArray = ethUtil.bufferToHex(testUint256AsBuffer);
const badOffset = new BigNumber(testUint256AsBuffer.byteLength);
return expectRevertOrOtherErrorAsync(
libBytes.publicReadUint256.callAsync(byteArray, badOffset),
constants.LIB_BYTES_GTE_32_LENGTH_REQUIRED,
);
});
});
/// @TODO Implement test cases for writeUint256. Test template below.
/// Currently, the generated contract wrappers do not support this library's write methods.
/*
describe('writeUint256', () => {
it('should successfully write uint256 when the address takes up the whole array)', async () => {});
it('should successfully write uint256 when it is offset in the array)', async () => {});
it('should fail if the byte array is too short to hold a uint256)', async () => {});
it('should fail if the length between the offset and end of the byte array is too short to hold a uint256)', async () => {});
});
*/
describe('readFirst4', () => {
// AssertionError: expected promise to be rejected with an error including 'revert' but it was fulfilled with '0x08c379a0'
it('should revert if byte array has a length < 4', async () => {
const byteArrayLessThan4Bytes = '0x010101';
return expectRevertOrOtherErrorAsync(
libBytes.publicReadFirst4.callAsync(byteArrayLessThan4Bytes),
constants.LIB_BYTES_GTE_4_LENGTH_REQUIRED,
);
});
it('should return the first 4 bytes of a byte array of arbitrary length', async () => {
const first4Bytes = await libBytes.publicReadFirst4.callAsync(byteArrayLongerThan32Bytes);
const expectedFirst4Bytes = byteArrayLongerThan32Bytes.slice(0, 10);
expect(first4Bytes).to.equal(expectedFirst4Bytes);
});
});
describe('readBytes', () => {
it('should successfully read short, nested array of bytes when it takes up the whole array', async () => {
const testBytesOffset = new BigNumber(0);
const bytes = await libBytes.publicReadBytes.callAsync(shortTestBytes, testBytesOffset);
return expect(bytes).to.be.equal(shortData);
});
it('should successfully read short, nested array of bytes when it is offset in the array', async () => {
const prefixByteArrayBuffer = ethUtil.toBuffer('0xabcdef');
const shortDataAsBuffer = ethUtil.toBuffer(shortData);
const combinedByteArrayBuffer = Buffer.concat([prefixByteArrayBuffer, shortTestBytesAsBuffer]);
const combinedByteArray = ethUtil.bufferToHex(combinedByteArrayBuffer);
const testUint256Offset = new BigNumber(prefixByteArrayBuffer.byteLength);
const bytes = await libBytes.publicReadBytes.callAsync(combinedByteArray, testUint256Offset);
return expect(bytes).to.be.equal(shortData);
});
it('should successfully read a nested array of bytes - one word in length - when it takes up the whole array', async () => {
const testBytesOffset = new BigNumber(0);
const bytes = await libBytes.publicReadBytes.callAsync(wordOfTestBytes, testBytesOffset);
return expect(bytes).to.be.equal(wordOfData);
});
it('should successfully read a nested array of bytes - one word in length - when it is offset in the array', async () => {
const prefixByteArrayBuffer = ethUtil.toBuffer('0xabcdef');
const wordOfDataAsBuffer = ethUtil.toBuffer(wordOfData);
const combinedByteArrayBuffer = Buffer.concat([prefixByteArrayBuffer, wordOfTestBytesAsBuffer]);
const combinedByteArray = ethUtil.bufferToHex(combinedByteArrayBuffer);
const testUint256Offset = new BigNumber(prefixByteArrayBuffer.byteLength);
const bytes = await libBytes.publicReadBytes.callAsync(combinedByteArray, testUint256Offset);
return expect(bytes).to.be.equal(wordOfData);
});
it('should successfully read long, nested array of bytes when it takes up the whole array', async () => {
const testBytesOffset = new BigNumber(0);
const bytes = await libBytes.publicReadBytes.callAsync(longTestBytes, testBytesOffset);
return expect(bytes).to.be.equal(longData);
});
it('should successfully read long, nested array of bytes when it is offset in the array', async () => {
const prefixByteArrayBuffer = ethUtil.toBuffer('0xabcdef');
const longDataAsBuffer = ethUtil.toBuffer(longData);
const combinedByteArrayBuffer = Buffer.concat([prefixByteArrayBuffer, longTestBytesAsBuffer]);
const combinedByteArray = ethUtil.bufferToHex(combinedByteArrayBuffer);
const testUint256Offset = new BigNumber(prefixByteArrayBuffer.byteLength);
const bytes = await libBytes.publicReadBytes.callAsync(combinedByteArray, testUint256Offset);
return expect(bytes).to.be.equal(longData);
});
it('should fail if the byte array is too short to hold the length of a nested byte array)', async () => {
// The length of the nested array is 32 bytes. By storing less than 32 bytes, a length cannot be read.
const offset = new BigNumber(0);
return expectRevertOrAlwaysFailingTransactionAsync(
libBytes.publicReadBytes.callAsync(byteArrayShorterThan32Bytes, offset),
);
});
it('should fail if we store a nested byte array length, without a nested byte array)', async () => {
const offset = new BigNumber(0);
return expectRevertOrAlwaysFailingTransactionAsync(libBytes.publicReadBytes.callAsync(testBytes32, offset));
});
it('should fail if the length between the offset and end of the byte array is too short to hold the length of a nested byte array)', async () => {
const badOffset = new BigNumber(ethUtil.toBuffer(byteArrayShorterThan32Bytes).byteLength);
return expectRevertOrAlwaysFailingTransactionAsync(
libBytes.publicReadBytes.callAsync(byteArrayShorterThan32Bytes, badOffset),
);
});
it('should fail if the length between the offset and end of the byte array is too short to hold the nested byte array)', async () => {
const badOffset = new BigNumber(ethUtil.toBuffer(testBytes32).byteLength);
return expectRevertOrAlwaysFailingTransactionAsync(
libBytes.publicReadBytes.callAsync(testBytes32, badOffset),
);
});
});
describe('writeBytes', () => {
it('should successfully write short, nested array of bytes when it takes up the whole array)', async () => {
const testBytesOffset = new BigNumber(0);
const emptyByteArray = ethUtil.bufferToHex(new Buffer(shortTestBytesAsBuffer.byteLength));
const bytesWritten = await libBytes.publicWriteBytes.callAsync(emptyByteArray, testBytesOffset, shortData);
const bytesRead = await libBytes.publicReadBytes.callAsync(bytesWritten, testBytesOffset);
return expect(bytesRead).to.be.equal(shortData);
});
it('should successfully write short, nested array of bytes when it is offset in the array', async () => {
// Write a prefix to the array
const prefixData = '0xabcdef';
const prefixDataAsBuffer = ethUtil.toBuffer(prefixData);
const prefixOffset = new BigNumber(0);
const emptyByteArray = ethUtil.bufferToHex(
new Buffer(prefixDataAsBuffer.byteLength + shortTestBytesAsBuffer.byteLength),
);
let bytesWritten = await libBytes.publicWriteBytes.callAsync(emptyByteArray, prefixOffset, prefixData);
// Write data after prefix
const testBytesOffset = new BigNumber(prefixDataAsBuffer.byteLength);
bytesWritten = await libBytes.publicWriteBytes.callAsync(bytesWritten, testBytesOffset, shortData);
// Read data after prefix and validate
const bytes = await libBytes.publicReadBytes.callAsync(bytesWritten, testBytesOffset);
return expect(bytes).to.be.equal(shortData);
});
it('should successfully write a nested array of bytes - one word in length - when it takes up the whole array)', async () => {
const testBytesOffset = new BigNumber(0);
const emptyByteArray = ethUtil.bufferToHex(new Buffer(wordOfTestBytesAsBuffer.byteLength));
const bytesWritten = await libBytes.publicWriteBytes.callAsync(emptyByteArray, testBytesOffset, wordOfData);
const bytesRead = await libBytes.publicReadBytes.callAsync(bytesWritten, testBytesOffset);
return expect(bytesRead).to.be.equal(wordOfData);
});
it('should successfully write a nested array of bytes - one word in length - when it is offset in the array', async () => {
// Write a prefix to the array
const prefixData = '0xabcdef';
const prefixDataAsBuffer = ethUtil.toBuffer(prefixData);
const prefixOffset = new BigNumber(0);
const emptyByteArray = ethUtil.bufferToHex(
new Buffer(prefixDataAsBuffer.byteLength + wordOfTestBytesAsBuffer.byteLength),
);
let bytesWritten = await libBytes.publicWriteBytes.callAsync(emptyByteArray, prefixOffset, prefixData);
// Write data after prefix
const testBytesOffset = new BigNumber(prefixDataAsBuffer.byteLength);
bytesWritten = await libBytes.publicWriteBytes.callAsync(bytesWritten, testBytesOffset, wordOfData);
// Read data after prefix and validate
const bytes = await libBytes.publicReadBytes.callAsync(bytesWritten, testBytesOffset);
return expect(bytes).to.be.equal(wordOfData);
});
it('should successfully write a long, nested bytes when it takes up the whole array)', async () => {
const testBytesOffset = new BigNumber(0);
const emptyByteArray = ethUtil.bufferToHex(new Buffer(longTestBytesAsBuffer.byteLength));
const bytesWritten = await libBytes.publicWriteBytes.callAsync(emptyByteArray, testBytesOffset, longData);
const bytesRead = await libBytes.publicReadBytes.callAsync(bytesWritten, testBytesOffset);
return expect(bytesRead).to.be.equal(longData);
});
it('should successfully write long, nested array of bytes when it is offset in the array', async () => {
// Write a prefix to the array
const prefixData = '0xabcdef';
const prefixDataAsBuffer = ethUtil.toBuffer(prefixData);
const prefixOffset = new BigNumber(0);
const emptyByteArray = ethUtil.bufferToHex(
new Buffer(prefixDataAsBuffer.byteLength + longTestBytesAsBuffer.byteLength),
);
let bytesWritten = await libBytes.publicWriteBytes.callAsync(emptyByteArray, prefixOffset, prefixData);
// Write data after prefix
const testBytesOffset = new BigNumber(prefixDataAsBuffer.byteLength);
bytesWritten = await libBytes.publicWriteBytes.callAsync(bytesWritten, testBytesOffset, longData);
// Read data after prefix and validate
const bytes = await libBytes.publicReadBytes.callAsync(bytesWritten, testBytesOffset);
return expect(bytes).to.be.equal(longData);
});
it('should fail if the byte array is too short to hold the length of a nested byte array)', async () => {
const offset = new BigNumber(0);
const emptyByteArray = ethUtil.bufferToHex(new Buffer(1));
return expectRevertOrAlwaysFailingTransactionAsync(
libBytes.publicWriteBytes.callAsync(emptyByteArray, offset, longData),
);
});
it('should fail if the length between the offset and end of the byte array is too short to hold the length of a nested byte array)', async () => {
const emptyByteArray = ethUtil.bufferToHex(new Buffer(shortTestBytesAsBuffer.byteLength));
const badOffset = new BigNumber(ethUtil.toBuffer(shortTestBytesAsBuffer).byteLength);
return expectRevertOrAlwaysFailingTransactionAsync(
libBytes.publicWriteBytes.callAsync(emptyByteArray, badOffset, shortData),
);
});
});
});