// Copyright 2018 The dexon-consensus-core Authors // This file is part of the dexon-consensus-core library. // // The dexon-consensus-core library is free software: you can redistribute it // and/or modify it under the terms of the GNU Lesser General Public License as // published by the Free Software Foundation, either version 3 of the License, // or (at your option) any later version. // // The dexon-consensus-core library is distributed in the hope that it will be // useful, but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser // General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the dexon-consensus-core library. If not, see // . package core import ( "errors" "math" "sort" "sync" "time" "github.com/dexon-foundation/dexon-consensus-core/common" "github.com/dexon-foundation/dexon-consensus-core/core/types" ) const ( infinity uint64 = math.MaxUint64 ) const ( // TotalOrderingModeError returns mode error. TotalOrderingModeError uint32 = iota // TotalOrderingModeNormal returns mode normal. TotalOrderingModeNormal // TotalOrderingModeEarly returns mode early. TotalOrderingModeEarly // TotalOrderingModeFlush returns mode flush. TotalOrderingModeFlush ) var ( // ErrNotValidDAG would be reported when block subbmitted to totalOrdering // didn't form a DAG. ErrNotValidDAG = errors.New("not a valid dag") // ErrFutureRoundDelivered means some blocks from later rounds are // delivered, this means program error. ErrFutureRoundDelivered = errors.New("future round delivered") // ErrBlockFromPastRound means we receive some block from past round. ErrBlockFromPastRound = errors.New("block from past round") // ErrTotalOrderingHangs means total ordering hangs somewhere. ErrTotalOrderingHangs = errors.New("total ordering hangs") // ErrForwardAck means a block acking some blocks from newer round. ErrForwardAck = errors.New("forward ack") // ErrUnexpected means general (I'm lazy) errors. ErrUnexpected = errors.New("unexpected") ) // totalOrderingConfig is the configuration for total ordering. type totalOrderingConfig struct { roundBasedConfig // k represents the k in 'k-level total ordering'. // In short, only block height equals to (global minimum height + k) // would be taken into consideration. k uint64 // phi is a const to control how strong the leading preceding block // should be. phi uint64 // chainNum is the count of chains. numChains uint32 // Is round cutting required? isFlushRequired bool } func (config *totalOrderingConfig) fromConfig( roundID uint64, cfg *types.Config) { config.k = uint64(cfg.K) config.numChains = cfg.NumChains config.phi = uint64(float32(cfg.NumChains-1)*cfg.PhiRatio + 1) config.setupRoundBasedFields(roundID, cfg) } func newGenesisTotalOrderingConfig( dMoment time.Time, config *types.Config) *totalOrderingConfig { c := &totalOrderingConfig{} c.fromConfig(0, config) c.setRoundBeginTime(dMoment) return c } func newTotalOrderingConfig( prev *totalOrderingConfig, cur *types.Config) *totalOrderingConfig { c := &totalOrderingConfig{} c.fromConfig(prev.roundID+1, cur) c.setRoundBeginTime(prev.roundEndTime) prev.isFlushRequired = c.k != prev.k || c.phi != prev.phi || c.numChains != prev.numChains return c } // totalOrderingWinRecord caches which chains this candidate // wins another one based on their height vector. type totalOrderingWinRecord struct { wins []int8 count uint } func (rec *totalOrderingWinRecord) reset() { rec.count = 0 for idx := range rec.wins { rec.wins[idx] = 0 } } func newTotalOrderingWinRecord(numChains uint32) ( rec *totalOrderingWinRecord) { rec = &totalOrderingWinRecord{} rec.reset() rec.wins = make([]int8, numChains) return } // grade implements the 'grade' potential function described in white paper. func (rec *totalOrderingWinRecord) grade( numChains uint32, phi uint64, globalAnsLength uint64) int { if uint64(rec.count) >= phi { return 1 } else if uint64(rec.count) < phi-uint64(numChains)+globalAnsLength { return 0 } else { return -1 } } // totalOrderingHeightRecord records two things: // - the minimum heiht of block from that chain acking this block. // - the count of blocks from that chain acking this block. type totalOrderingHeightRecord struct{ minHeight, count uint64 } // totalOrderingObjectCache caches objects for reuse. // The target object is map because: // - reuse map would prevent it grows during usage, when map grows, // hashes of key would be recaculated, bucket reallocated, and values // are copied. // However, to reuse a map, we have no easy way to erase its content but // iterating its keys and delete corresponding values. type totalOrderingObjectCache struct { ackedStatus [][]*totalOrderingHeightRecord heightVectors [][]uint64 winRecordContainers [][]*totalOrderingWinRecord ackedVectors []map[common.Hash]struct{} winRecordPool sync.Pool numChains uint32 } // newTotalOrderingObjectCache constructs an totalOrderingObjectCache // instance. func newTotalOrderingObjectCache(numChains uint32) *totalOrderingObjectCache { return &totalOrderingObjectCache{ winRecordPool: sync.Pool{ New: func() interface{} { return newTotalOrderingWinRecord(numChains) }, }, numChains: numChains, } } // resize makes sure internal storage of totalOrdering instance can handle // maximum possible numChains in future configs. func (cache *totalOrderingObjectCache) resize(numChains uint32) { // Basically, everything in cache needs to be cleaned. if cache.numChains >= numChains { return } cache.ackedStatus = nil cache.heightVectors = nil cache.winRecordContainers = nil cache.ackedVectors = nil cache.numChains = numChains cache.winRecordPool = sync.Pool{ New: func() interface{} { return newTotalOrderingWinRecord(numChains) }, } } // requestAckedStatus requests a structure to record acking status of one // candidate (or a global view of acking status of pending set). func (cache *totalOrderingObjectCache) requestAckedStatus() ( acked []*totalOrderingHeightRecord) { if len(cache.ackedStatus) == 0 { acked = make([]*totalOrderingHeightRecord, cache.numChains) for idx := range acked { acked[idx] = &totalOrderingHeightRecord{count: 0} } } else { acked, cache.ackedStatus = cache.ackedStatus[len(cache.ackedStatus)-1], cache.ackedStatus[:len(cache.ackedStatus)-1] // Reset acked status. for idx := range acked { acked[idx].count = 0 } } return } // recycleAckedStatys recycles the structure to record acking status. func (cache *totalOrderingObjectCache) recycleAckedStatus( acked []*totalOrderingHeightRecord) { cache.ackedStatus = append(cache.ackedStatus, acked) } // requestWinRecord requests an totalOrderingWinRecord instance. func (cache *totalOrderingObjectCache) requestWinRecord() ( win *totalOrderingWinRecord) { win = cache.winRecordPool.Get().(*totalOrderingWinRecord) win.reset() return } // recycleWinRecord recycles an totalOrderingWinRecord instance. func (cache *totalOrderingObjectCache) recycleWinRecord( win *totalOrderingWinRecord) { if win == nil { return } cache.winRecordPool.Put(win) } // requestHeightVector requests a structure to record acking heights // of one candidate. func (cache *totalOrderingObjectCache) requestHeightVector() (hv []uint64) { if len(cache.heightVectors) == 0 { hv = make([]uint64, cache.numChains) } else { hv, cache.heightVectors = cache.heightVectors[len(cache.heightVectors)-1], cache.heightVectors[:len(cache.heightVectors)-1] } for idx := range hv { hv[idx] = infinity } return } // recycleHeightVector recycles an instance to record acking heights // of one candidate. func (cache *totalOrderingObjectCache) recycleHeightVector(hv []uint64) { cache.heightVectors = append(cache.heightVectors, hv) } // requestWinRecordContainer requests a map of totalOrderingWinRecord. func (cache *totalOrderingObjectCache) requestWinRecordContainer() ( con []*totalOrderingWinRecord) { if len(cache.winRecordContainers) == 0 { con = make([]*totalOrderingWinRecord, cache.numChains) } else { con, cache.winRecordContainers = cache.winRecordContainers[len(cache.winRecordContainers)-1], cache.winRecordContainers[:len(cache.winRecordContainers)-1] for idx := range con { con[idx] = nil } } return } // recycleWinRecordContainer recycles a map of totalOrderingWinRecord. func (cache *totalOrderingObjectCache) recycleWinRecordContainer( con []*totalOrderingWinRecord) { cache.winRecordContainers = append(cache.winRecordContainers, con) } // requestAckedVector requests an acked vector instance. func (cache *totalOrderingObjectCache) requestAckedVector() ( acked map[common.Hash]struct{}) { if len(cache.ackedVectors) == 0 { acked = make(map[common.Hash]struct{}) } else { acked, cache.ackedVectors = cache.ackedVectors[len(cache.ackedVectors)-1], cache.ackedVectors[:len(cache.ackedVectors)-1] for k := range acked { delete(acked, k) } } return } // recycleAckedVector recycles an acked vector instance. func (cache *totalOrderingObjectCache) recycleAckedVector( acked map[common.Hash]struct{}) { if acked == nil { return } cache.ackedVectors = append(cache.ackedVectors, acked) } // totalOrderingCandidateInfo describes proceeding status for one candidate, // including: // - acked status as height records, which could keep 'how many blocks from // one chain acking this candidate. // - cached height vector, which valid height based on K-level used for // comparison in 'grade' function. // - cached result of grade function to other candidates. // // Height Record: // When block A acks block B, all blocks proposed from the same proposer // as block A with higher height would also acks block B. Therefore, // we just need to record: // - the minimum height of acking block from that proposer // - count of acking blocks from that proposer // to repsent the acking status for block A. type totalOrderingCandidateInfo struct { ackedStatus []*totalOrderingHeightRecord cachedHeightVector []uint64 winRecords []*totalOrderingWinRecord hash common.Hash } // newTotalOrderingCandidateInfo constructs an totalOrderingCandidateInfo // instance. func newTotalOrderingCandidateInfo( candidateHash common.Hash, objCache *totalOrderingObjectCache) *totalOrderingCandidateInfo { return &totalOrderingCandidateInfo{ ackedStatus: objCache.requestAckedStatus(), winRecords: objCache.requestWinRecordContainer(), hash: candidateHash, } } // clean clear information related to another candidate, which should be called // when that candidate is selected as deliver set. func (v *totalOrderingCandidateInfo) clean(otherCandidateChainID uint32) { v.winRecords[otherCandidateChainID] = nil } // recycle objects for later usage, this eases the loading of // golangs' GC. func (v *totalOrderingCandidateInfo) recycle( objCache *totalOrderingObjectCache) { if v.winRecords != nil { for _, win := range v.winRecords { objCache.recycleWinRecord(win) } objCache.recycleWinRecordContainer(v.winRecords) } if v.cachedHeightVector != nil { objCache.recycleHeightVector(v.cachedHeightVector) } objCache.recycleAckedStatus(v.ackedStatus) } // addBlock would update totalOrderingCandidateInfo, it's caller's duty // to make sure the input block acutally acking the target block. func (v *totalOrderingCandidateInfo) addBlock(b *types.Block) (err error) { rec := v.ackedStatus[b.Position.ChainID] if rec.count == 0 { rec.minHeight = b.Position.Height rec.count = 1 } else { if b.Position.Height < rec.minHeight { err = ErrNotValidDAG return } rec.count++ } return } // getAckingNodeSetLength would generate the Acking Node Set and return its // length. Only block height larger than // // global minimum height + k // // would be taken into consideration, ex. // // For some chain X: // - the global minimum acking height = 1, // - k = 1 // then only block height >= 2 would be added to acking node set. func (v *totalOrderingCandidateInfo) getAckingNodeSetLength( global *totalOrderingCandidateInfo, k uint64, numChains uint32) (count uint64) { var rec *totalOrderingHeightRecord for idx, gRec := range global.ackedStatus[:numChains] { if gRec.count == 0 { continue } rec = v.ackedStatus[idx] if rec.count == 0 { continue } // This line would check if these two ranges would overlap: // - (global minimum height + k, infinity) // - (local minimum height, local minimum height + count - 1) if rec.minHeight+rec.count-1 >= gRec.minHeight+k { count++ } } return } // updateAckingHeightVector would cached acking height vector. // // Only block height equals to (global minimum block height + k) would be // taken into consideration. func (v *totalOrderingCandidateInfo) updateAckingHeightVector( global *totalOrderingCandidateInfo, k uint64, dirtyChainIDs []int, objCache *totalOrderingObjectCache) { var ( idx int gRec, rec *totalOrderingHeightRecord ) // The reason not to merge the two loops is the iteration over map // is expensive when chain count is large, iterating over dirty // chains is cheaper. // TODO(mission): merge the code in this if/else if the performance won't be // downgraded when adding a function for the shared part. if v.cachedHeightVector == nil { // Generate height vector from scratch. v.cachedHeightVector = objCache.requestHeightVector() for idx, gRec = range global.ackedStatus { if gRec.count <= k { continue } rec = v.ackedStatus[idx] if rec.count == 0 { v.cachedHeightVector[idx] = infinity } else if rec.minHeight <= gRec.minHeight+k { // This check is sufficient to make sure the block height: // // gRec.minHeight + k // // would be included in this totalOrderingCandidateInfo. v.cachedHeightVector[idx] = gRec.minHeight + k } else { v.cachedHeightVector[idx] = infinity } } } else { // Return the cached one, only update dirty fields. for _, idx = range dirtyChainIDs { gRec = global.ackedStatus[idx] if gRec.count == 0 || gRec.count <= k { v.cachedHeightVector[idx] = infinity continue } rec = v.ackedStatus[idx] if rec.count == 0 { v.cachedHeightVector[idx] = infinity } else if rec.minHeight <= gRec.minHeight+k { v.cachedHeightVector[idx] = gRec.minHeight + k } else { v.cachedHeightVector[idx] = infinity } } } return } // updateWinRecord setup win records between two candidates. func (v *totalOrderingCandidateInfo) updateWinRecord( otherChainID uint32, other *totalOrderingCandidateInfo, dirtyChainIDs []int, objCache *totalOrderingObjectCache, numChains uint32) { var ( idx int height uint64 ) // The reason not to merge the two loops is the iteration over map // is expensive when chain count is large, iterating over dirty // chains is cheaper. // TODO(mission): merge the code in this if/else if add a function won't // affect the performance. win := v.winRecords[otherChainID] if win == nil { win = objCache.requestWinRecord() v.winRecords[otherChainID] = win for idx, height = range v.cachedHeightVector[:numChains] { if height == infinity { continue } if other.cachedHeightVector[idx] == infinity { win.wins[idx] = 1 win.count++ } } } else { for _, idx = range dirtyChainIDs { if v.cachedHeightVector[idx] == infinity { if win.wins[idx] == 1 { win.wins[idx] = 0 win.count-- } continue } if other.cachedHeightVector[idx] == infinity { if win.wins[idx] == 0 { win.wins[idx] = 1 win.count++ } } else { if win.wins[idx] == 1 { win.wins[idx] = 0 win.count-- } } } } } // totalOrderingBreakpoint is a record to store the height discontinuity // on a chain. type totalOrderingBreakpoint struct { roundID uint64 // height of last block in previous round. lastHeight uint64 } // totalOrderingGroupVector keeps global status of current pending set. type totalOrderingGlobalVector struct { // blocks stores all blocks grouped by their proposers and // sorted by their block height. // // TODO(mission): the way we use this slice would make it reallocate // frequently. blocks [][]*types.Block // breakpoints caches rounds for chains that blocks' height on them are // not continuous. Ex. // ChainID Round Height // 1 0 0 // 1 0 1 // 1 1 2 // 1 1 3 // 1 1 4 // 1 3 0 <- a breakpoint for round 3 would be cached // for chain 1 as (roundID=1, lastHeight=4). breakpoints [][]*totalOrderingBreakpoint // curRound caches the last round ID used to purge breakpoints. curRound uint64 // tips records the last seen block for each chain. tips []*types.Block // cachedCandidateInfo is an totalOrderingCandidateInfo instance, // which is just used for actual candidates to calculate height vector. cachedCandidateInfo *totalOrderingCandidateInfo } func newTotalOrderingGlobalVector(numChains uint32) *totalOrderingGlobalVector { return &totalOrderingGlobalVector{ blocks: make([][]*types.Block, numChains), tips: make([]*types.Block, numChains), breakpoints: make([][]*totalOrderingBreakpoint, numChains), } } func (global *totalOrderingGlobalVector) resize(numChains uint32) { if len(global.blocks) >= int(numChains) { return } // Resize blocks. newBlocks := make([][]*types.Block, numChains) copy(newBlocks, global.blocks) global.blocks = newBlocks // Resize breakpoints. newBreakPoints := make([][]*totalOrderingBreakpoint, numChains) copy(newBreakPoints, global.breakpoints) global.breakpoints = newBreakPoints // Resize tips. newTips := make([]*types.Block, numChains) copy(newTips, global.tips) global.tips = newTips } func (global *totalOrderingGlobalVector) switchRound(roundID uint64) { if global.curRound+1 != roundID { panic(ErrUnexpected) } global.curRound = roundID for chainID, bs := range global.breakpoints { if len(bs) == 0 { continue } if bs[0].roundID == roundID { global.breakpoints[chainID] = bs[1:] } } } func (global *totalOrderingGlobalVector) prepareHeightRecord( candidate *types.Block, info *totalOrderingCandidateInfo, acked map[common.Hash]struct{}) { var ( chainID = candidate.Position.ChainID breakpoints = global.breakpoints[chainID] breakpoint *totalOrderingBreakpoint rec *totalOrderingHeightRecord ) // Setup height record for own chain. rec = &totalOrderingHeightRecord{ minHeight: candidate.Position.Height, } if len(breakpoints) == 0 { rec.count = uint64(len(global.blocks[chainID])) } else { rec.count = breakpoints[0].lastHeight - candidate.Position.Height + 1 } info.ackedStatus[chainID] = rec if acked == nil { return } for idx, blocks := range global.blocks { if idx == int(candidate.Position.ChainID) { continue } breakpoint = nil if len(global.breakpoints[idx]) > 0 { breakpoint = global.breakpoints[idx][0] } for i, b := range blocks { if breakpoint != nil && b.Position.Round >= breakpoint.roundID { break } if _, acked := acked[b.Hash]; !acked { continue } // If this block acks this candidate, all newer blocks // from the same chain also 'indirect' acks it. rec = info.ackedStatus[idx] rec.minHeight = b.Position.Height if breakpoint == nil { rec.count = uint64(len(blocks) - i) } else { rec.count = breakpoint.lastHeight - b.Position.Height + 1 } break } } } func (global *totalOrderingGlobalVector) addBlock( b *types.Block) (pos int, pending bool, err error) { curPosition := b.Position tip := global.tips[curPosition.ChainID] pos = len(global.blocks[curPosition.ChainID]) if tip != nil { // Perform light weight sanity check based on tip. lastPosition := tip.Position if lastPosition.Round > curPosition.Round { err = ErrNotValidDAG return } if DiffUint64(lastPosition.Round, curPosition.Round) > 1 { if curPosition.Height != 0 { err = ErrNotValidDAG return } // Add breakpoint. global.breakpoints[curPosition.ChainID] = append( global.breakpoints[curPosition.ChainID], &totalOrderingBreakpoint{ roundID: curPosition.Round, lastHeight: lastPosition.Height, }) } else { if curPosition.Height != lastPosition.Height+1 { err = ErrNotValidDAG return } } } else { if curPosition.Round < global.curRound { err = ErrBlockFromPastRound return } if curPosition.Round > global.curRound { // Add breakpoint. global.breakpoints[curPosition.ChainID] = append( global.breakpoints[curPosition.ChainID], &totalOrderingBreakpoint{ roundID: curPosition.Round, lastHeight: 0, }) } } breakpoints := global.breakpoints[b.Position.ChainID] pending = len(breakpoints) > 0 && breakpoints[0].roundID <= b.Position.Round global.blocks[b.Position.ChainID] = append( global.blocks[b.Position.ChainID], b) global.tips[b.Position.ChainID] = b return } // updateCandidateInfo udpate cached candidate info. func (global *totalOrderingGlobalVector) updateCandidateInfo( dirtyChainIDs []int, objCache *totalOrderingObjectCache) { var ( idx int blocks []*types.Block block *types.Block info *totalOrderingCandidateInfo rec *totalOrderingHeightRecord breakpoint *totalOrderingBreakpoint ) if global.cachedCandidateInfo == nil { info = newTotalOrderingCandidateInfo(common.Hash{}, objCache) for idx, blocks = range global.blocks { if len(blocks) == 0 { continue } rec = info.ackedStatus[idx] if len(global.breakpoints[idx]) > 0 { breakpoint = global.breakpoints[idx][0] block = blocks[0] if block.Position.Round >= breakpoint.roundID { continue } rec.minHeight = block.Position.Height rec.count = breakpoint.lastHeight - block.Position.Height + 1 } else { rec.minHeight = blocks[0].Position.Height rec.count = uint64(len(blocks)) } } global.cachedCandidateInfo = info } else { info = global.cachedCandidateInfo for _, idx = range dirtyChainIDs { blocks = global.blocks[idx] if len(blocks) == 0 { info.ackedStatus[idx].count = 0 continue } rec = info.ackedStatus[idx] if len(global.breakpoints[idx]) > 0 { breakpoint = global.breakpoints[idx][0] block = blocks[0] if block.Position.Round >= breakpoint.roundID { continue } rec.minHeight = block.Position.Height rec.count = breakpoint.lastHeight - block.Position.Height + 1 } else { rec.minHeight = blocks[0].Position.Height rec.count = uint64(len(blocks)) } } } return } // totalOrdering represent a process unit to handle total ordering // for blocks. type totalOrdering struct { // pendings stores blocks awaiting to be ordered. pendings map[common.Hash]*types.Block // The round of config used when performing total ordering. curRound uint64 // duringFlush is a flag to switch the flush mode and normal mode. duringFlush bool // flushReadyChains checks if the last block of that chain arrived. Once // last blocks from all chains in current config are arrived, we can // perform flush. flushReadyChains map[uint32]struct{} // flush is a map to record which blocks are already flushed. flushed map[uint32]struct{} // globalVector group all pending blocks by proposers and // sort them by block height. This structure is helpful when: // // - build global height vector // - picking candidates next round globalVector *totalOrderingGlobalVector // candidates caches result of potential function during generating // preceding sets. candidates []*totalOrderingCandidateInfo // acked cache the 'block A acked by block B' relation by // keeping a record in acked[A.Hash][B.Hash] acked map[common.Hash]map[common.Hash]struct{} // dirtyChainIDs records which chainID that should be updated // for all cached status (win record, acking status). dirtyChainIDs []int // objCache caches allocated objects, like map. objCache *totalOrderingObjectCache // candidateChainMapping keeps a mapping from candidate's hash to // their chain IDs. candidateChainMapping map[uint32]common.Hash // candidateChainIDs records chain ID of all candidates. candidateChainIDs []uint32 // configs keeps configuration for each round in continuous way. configs []*totalOrderingConfig } // newTotalOrdering constructs an totalOrdering instance. func newTotalOrdering(config *totalOrderingConfig) *totalOrdering { globalVector := newTotalOrderingGlobalVector(config.numChains) objCache := newTotalOrderingObjectCache(config.numChains) candidates := make([]*totalOrderingCandidateInfo, config.numChains) to := &totalOrdering{ pendings: make(map[common.Hash]*types.Block), globalVector: globalVector, dirtyChainIDs: make([]int, 0, config.numChains), acked: make(map[common.Hash]map[common.Hash]struct{}), objCache: objCache, candidateChainMapping: make(map[uint32]common.Hash), candidates: candidates, candidateChainIDs: make([]uint32, 0, config.numChains), curRound: config.roundID, } to.configs = []*totalOrderingConfig{config} return to } // appendConfig add new configs for upcoming rounds. If you add a config for // round R, next time you can only add the config for round R+1. func (to *totalOrdering) appendConfig( round uint64, config *types.Config) error { if round != uint64(len(to.configs))+to.configs[0].roundID { return ErrRoundNotIncreasing } to.configs = append( to.configs, newTotalOrderingConfig(to.configs[len(to.configs)-1], config)) // Resize internal structures. to.globalVector.resize(config.NumChains) to.objCache.resize(config.NumChains) if int(config.NumChains) > len(to.candidates) { newCandidates := make([]*totalOrderingCandidateInfo, config.NumChains) copy(newCandidates, to.candidates) to.candidates = newCandidates } return nil } func (to *totalOrdering) switchRound() { to.curRound++ to.globalVector.switchRound(to.curRound) } // buildBlockRelation populates the acked according their acking relationships. // This function would update all blocks implcitly acked by input block // recursively. func (to *totalOrdering) buildBlockRelation(b *types.Block) { var ( curBlock, nextBlock *types.Block ack common.Hash acked map[common.Hash]struct{} exists, alreadyPopulated bool toCheck = []*types.Block{b} ) for { if len(toCheck) == 0 { break } curBlock, toCheck = toCheck[len(toCheck)-1], toCheck[:len(toCheck)-1] if curBlock.Position.Round > b.Position.Round { // It's illegal for a block to acking some block from future // round, this rule should be promised before delivering to // total ordering. panic(ErrForwardAck) } for _, ack = range curBlock.Acks { if acked, exists = to.acked[ack]; !exists { acked = to.objCache.requestAckedVector() to.acked[ack] = acked } // This means we've walked this block already. if _, alreadyPopulated = acked[b.Hash]; alreadyPopulated { continue } acked[b.Hash] = struct{}{} // See if we need to go forward. if nextBlock, exists = to.pendings[ack]; !exists { continue } else { toCheck = append(toCheck, nextBlock) } } } } // clean a block from working set. This behaviour would prevent // our memory usage growing infinity. func (to *totalOrdering) clean(b *types.Block) { var ( h = b.Hash chainID = b.Position.ChainID ) to.objCache.recycleAckedVector(to.acked[h]) delete(to.acked, h) delete(to.pendings, h) to.candidates[chainID].recycle(to.objCache) to.candidates[chainID] = nil delete(to.candidateChainMapping, chainID) // Remove this candidate from candidate IDs. to.candidateChainIDs = removeFromSortedUint32Slice(to.candidateChainIDs, chainID) // Clear records of this candidate from other candidates. for _, idx := range to.candidateChainIDs { to.candidates[idx].clean(chainID) } } // updateVectors is a helper function to update all cached vectors. func (to *totalOrdering) updateVectors(b *types.Block) (pos int, err error) { var ( candidateHash common.Hash chainID uint32 acked bool pending bool ) // Update global height vector if pos, pending, err = to.globalVector.addBlock(b); err != nil { return } if to.duringFlush { // It makes no sense to calculate potential functions of total ordering // when flushing would be happened. return } if pending { // The chain of this block contains breakpoints, which means their // height are not continuous. This implementation of DEXON total // ordering algorithm assumes the height of blocks in working set should // be continuous. // // To workaround this issue, when block arrived after breakpoints, // their information would not be contributed to current working set. // This mechanism works because we switch rounds by flushing and // reset the whole working set. return } // Update acking status of candidates. for chainID, candidateHash = range to.candidateChainMapping { if _, acked = to.acked[candidateHash][b.Hash]; !acked { continue } if err = to.candidates[chainID].addBlock(b); err != nil { return } } return } // prepareCandidate is a helper function to // build totalOrderingCandidateInfo for new candidate. func (to *totalOrdering) prepareCandidate(candidate *types.Block) { var ( info = newTotalOrderingCandidateInfo(candidate.Hash, to.objCache) chainID = candidate.Position.ChainID ) to.candidates[chainID] = info to.candidateChainMapping[chainID] = candidate.Hash // Add index to slot to allocated list, make sure the modified list sorted. to.candidateChainIDs = append(to.candidateChainIDs, chainID) sort.Slice(to.candidateChainIDs, func(i, j int) bool { return to.candidateChainIDs[i] < to.candidateChainIDs[j] }) to.globalVector.prepareHeightRecord( candidate, info, to.acked[candidate.Hash]) return } // isAckOnlyPrecedings is a helper function to check if a block // only contain acks to delivered blocks. func (to *totalOrdering) isAckOnlyPrecedings(b *types.Block) bool { for _, ack := range b.Acks { if _, pending := to.pendings[ack]; pending { return false } } return true } // output is a helper function to finish the delivery of // deliverable preceding set. func (to *totalOrdering) output( precedings map[common.Hash]struct{}, numChains uint32) (ret []*types.Block) { for p := range precedings { // Remove the first element from corresponding blockVector. b := to.pendings[p] chainID := b.Position.ChainID // TODO(mission): This way to use slice makes it reallocate frequently. to.globalVector.blocks[int(chainID)] = to.globalVector.blocks[int(chainID)][1:] ret = append(ret, b) // Remove block relations. to.clean(b) to.dirtyChainIDs = append(to.dirtyChainIDs, int(chainID)) } sort.Sort(types.ByHash(ret)) // Find new candidates from tip of globalVector of each chain. // The complexity here is O(N^2logN). // TODO(mission): only those tips that acking some blocks in // the devliered set should be checked. This // improvment related to the latency introduced by K. for chainID, blocks := range to.globalVector.blocks[:numChains] { if len(blocks) == 0 { continue } if _, picked := to.candidateChainMapping[uint32(chainID)]; picked { continue } if !to.isAckOnlyPrecedings(blocks[0]) { continue } // Build totalOrderingCandidateInfo for new candidate. to.prepareCandidate(blocks[0]) } return ret } // generateDeliverSet would: // - generate preceding set // - check if the preceding set deliverable by checking potential function func (to *totalOrdering) generateDeliverSet() ( delivered map[common.Hash]struct{}, mode uint32) { var ( chainID, otherChainID uint32 info, otherInfo *totalOrderingCandidateInfo precedings = make(map[uint32]struct{}) cfg = to.configs[to.curRound-to.configs[0].roundID] ) mode = TotalOrderingModeNormal to.globalVector.updateCandidateInfo(to.dirtyChainIDs, to.objCache) globalInfo := to.globalVector.cachedCandidateInfo for _, chainID = range to.candidateChainIDs { to.candidates[chainID].updateAckingHeightVector( globalInfo, cfg.k, to.dirtyChainIDs, to.objCache) } // Update winning records for each candidate. // TODO(mission): It's not reasonable to // request one routine for each candidate, the context // switch rate would be high. var wg sync.WaitGroup wg.Add(len(to.candidateChainIDs)) for _, chainID := range to.candidateChainIDs { info = to.candidates[chainID] go func(can uint32, canInfo *totalOrderingCandidateInfo) { for _, otherChainID := range to.candidateChainIDs { if can == otherChainID { continue } canInfo.updateWinRecord( otherChainID, to.candidates[otherChainID], to.dirtyChainIDs, to.objCache, cfg.numChains) } wg.Done() }(chainID, info) } wg.Wait() // Reset dirty chains. to.dirtyChainIDs = to.dirtyChainIDs[:0] // TODO(mission): ANS should be bound by current numChains. globalAnsLength := globalInfo.getAckingNodeSetLength( globalInfo, cfg.k, cfg.numChains) CheckNextCandidateLoop: for _, chainID = range to.candidateChainIDs { info = to.candidates[chainID] for _, otherChainID = range to.candidateChainIDs { if chainID == otherChainID { continue } otherInfo = to.candidates[otherChainID] // TODO(mission): grade should be bound by current numChains. if otherInfo.winRecords[chainID].grade( cfg.numChains, cfg.phi, globalAnsLength) != 0 { continue CheckNextCandidateLoop } } precedings[chainID] = struct{}{} } if len(precedings) == 0 { return } // internal is a helper function to verify internal stability. internal := func() bool { var ( isPreceding, beaten bool p uint32 ) for _, chainID = range to.candidateChainIDs { if _, isPreceding = precedings[chainID]; isPreceding { continue } beaten = false for p = range precedings { // TODO(mission): grade should be bound by current numChains. if beaten = to.candidates[p].winRecords[chainID].grade( cfg.numChains, cfg.phi, globalAnsLength) == 1; beaten { break } } if !beaten { return false } } return true } // checkAHV is a helper function to verify external stability. // It would make sure some preceding block is strong enough // to lead the whole preceding set. checkAHV := func() bool { var ( height, count uint64 p uint32 ) for p = range precedings { count = 0 info = to.candidates[p] for _, height = range info.cachedHeightVector { if height != infinity { count++ if count > cfg.phi { return true } } } } return false } // checkANS is a helper function to verify external stability. // It would make sure all preceding blocks are strong enough // to be delivered. checkANS := func() bool { var chainAnsLength uint64 for p := range precedings { // TODO(mission): ANS should be bound by current numChains. chainAnsLength = to.candidates[p].getAckingNodeSetLength( globalInfo, cfg.k, cfg.numChains) if uint64(chainAnsLength) < uint64(cfg.numChains)-cfg.phi { return false } } return true } // If all chains propose enough blocks, we should force // to deliver since the whole picture of the DAG is revealed. if globalAnsLength != uint64(cfg.numChains) { // Check internal stability first. if !internal() { return } // The whole picture is not ready, we need to check if // exteranl stability is met, and we can deliver earlier. if checkAHV() && checkANS() { mode = TotalOrderingModeEarly } else { return } } delivered = make(map[common.Hash]struct{}) for p := range precedings { delivered[to.candidates[p].hash] = struct{}{} } return } // flushBlocks flushes blocks. func (to *totalOrdering) flushBlocks( b *types.Block) (flushed []*types.Block, mode uint32, err error) { cfg := to.configs[to.curRound-to.configs[0].roundID] mode = TotalOrderingModeFlush if cfg.isValidLastBlock(b) { to.flushReadyChains[b.Position.ChainID] = struct{}{} } // Flush blocks until last blocks from all chains are arrived. if len(to.flushReadyChains) < int(cfg.numChains) { return } if len(to.flushReadyChains) > int(cfg.numChains) { // This line should never be reached. err = ErrFutureRoundDelivered return } // Dump all blocks in this round. for { if len(to.flushed) == int(cfg.numChains) { break } // Dump all candidates without checking potential function. flushedHashes := make(map[common.Hash]struct{}) for _, chainID := range to.candidateChainIDs { candidateBlock := to.pendings[to.candidates[chainID].hash] if candidateBlock.Position.Round > to.curRound { continue } flushedHashes[candidateBlock.Hash] = struct{}{} } if len(flushedHashes) == 0 { err = ErrTotalOrderingHangs return } flushedBlocks := to.output(flushedHashes, cfg.numChains) for _, b := range flushedBlocks { if !cfg.isValidLastBlock(b) { continue } to.flushed[b.Position.ChainID] = struct{}{} } flushed = append(flushed, flushedBlocks...) } // Switch back to normal mode: delivered by DEXON total ordering algorithm. to.duringFlush = false to.flushed = make(map[uint32]struct{}) to.flushReadyChains = make(map[uint32]struct{}) // Clean all cached intermediate stats. for idx := range to.candidates { if to.candidates[idx] == nil { continue } to.candidates[idx].recycle(to.objCache) to.candidates[idx] = nil } to.dirtyChainIDs = nil to.candidateChainMapping = make(map[uint32]common.Hash) to.candidateChainIDs = nil to.globalVector.cachedCandidateInfo = nil to.switchRound() // Force to pick new candidates. numChains := to.configs[to.curRound-to.configs[0].roundID].numChains to.output(map[common.Hash]struct{}{}, numChains) return } // deliverBlocks delivers blocks by DEXON total ordering algorithm. func (to *totalOrdering) deliverBlocks() ( delivered []*types.Block, mode uint32, err error) { hashes, mode := to.generateDeliverSet() cfg := to.configs[to.curRound-to.configs[0].roundID] // output precedings delivered = to.output(hashes, cfg.numChains) // Check if any block in delivered set are the last block in this round // of that chain. If yes, flush or round-switching would be performed. for _, b := range delivered { if b.Position.Round > to.curRound { err = ErrFutureRoundDelivered return } if !cfg.isValidLastBlock(b) { continue } if cfg.isFlushRequired { // Switch to flush mode. to.duringFlush = true to.flushReadyChains = make(map[uint32]struct{}) to.flushed = make(map[uint32]struct{}) } else { // Switch round directly. to.switchRound() } break } if to.duringFlush { // Make sure last blocks from all chains are marked as 'flushed'. for _, b := range delivered { if !cfg.isValidLastBlock(b) { continue } to.flushReadyChains[b.Position.ChainID] = struct{}{} to.flushed[b.Position.ChainID] = struct{}{} } } return } // processBlock is the entry point of totalOrdering. func (to *totalOrdering) processBlock( b *types.Block) ([]*types.Block, uint32, error) { // NOTE: I assume the block 'b' is already safe for total ordering. // That means, all its acking blocks are during/after // total ordering stage. cfg := to.configs[to.curRound-to.configs[0].roundID] to.pendings[b.Hash] = b to.buildBlockRelation(b) pos, err := to.updateVectors(b) if err != nil { return nil, uint32(0), err } // Mark the proposer of incoming block as dirty. if b.Position.ChainID < cfg.numChains { to.dirtyChainIDs = append(to.dirtyChainIDs, int(b.Position.ChainID)) _, picked := to.candidateChainMapping[b.Position.ChainID] if pos == 0 && !picked { if to.isAckOnlyPrecedings(b) { to.prepareCandidate(b) } } } if to.duringFlush { return to.flushBlocks(b) } return to.deliverBlocks() }