// Copyright 2018 The dexon-consensus-core Authors // This file is part of the dexon-consensus-core library. // // The dexon-consensus-core library is free software: you can redistribute it // and/or modify it under the terms of the GNU Lesser General Public License as // published by the Free Software Foundation, either version 3 of the License, // or (at your option) any later version. // // The dexon-consensus-core library is distributed in the hope that it will be // useful, but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser // General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the dexon-consensus-core library. If not, see // . package core import ( "fmt" "github.com/dexon-foundation/dexon-consensus-core/common" "github.com/dexon-foundation/dexon-consensus-core/core/types" ) // Errors for sanity check error. var ( ErrAckingBlockNotExists = fmt.Errorf("acking block not exists") ErrInvalidParentChain = fmt.Errorf("invalid parent chain") ErrDuplicatedAckOnOneChain = fmt.Errorf("duplicated ack on one chain") ErrChainStatusCorrupt = fmt.Errorf("chain status corrupt") ) // blockLattice is a module for storing blocklattice. type blockLattice struct { // lattice stores chains' blocks and other info. chains []*chainStatus // blockByHash stores blocks, indexed by block hash. blockByHash map[common.Hash]*types.Block // shardID caches which shard I belongs to. shardID uint32 } type chainStatus struct { // ID keeps the chainID of this chain status. ID uint32 // blocks stores blocks proposed for this chain, sorted by height. blocks []*types.Block // minHeight keeps minimum height in blocks. minHeight uint64 // nextAck stores the height of next height that should be acked, i.e. last // acked height + 1. Initialized to 0. // being acked. For example, rb.chains[vid1].nextAck[vid2] - 1 is the last // acked height by vid2 acking vid1. nextAck []uint64 // nextOutput is the next output height of block, default to 0. nextOutput uint64 } func (s *chainStatus) getBlockByHeight(height uint64) (b *types.Block) { if height < s.minHeight { return } idx := int(height - s.minHeight) if idx >= len(s.blocks) { return } b = s.blocks[idx] return } func (s *chainStatus) addBlock(b *types.Block) error { if len(s.blocks) > 0 { // Make sure the height of incoming block should be // plus one to current latest blocks if exists. if s.blocks[len(s.blocks)-1].Position.Height != b.Position.Height-1 { return ErrChainStatusCorrupt } } else { if b.Position.Height != 0 { return ErrChainStatusCorrupt } } s.blocks = append(s.blocks, b) return nil } func (s *chainStatus) calcPurgeHeight() (safe uint64, ok bool) { // blocks with height less than min(nextOutput, nextAck...) // are safe to be purged. safe = s.nextOutput for _, ackedHeight := range s.nextAck { if safe > ackedHeight { safe = ackedHeight } } // Both 'nextOutput' and 'nextAck' represents some block to be // outputed/acked. To find a block already outputed/acked, the height // needs to be minus 1. if safe == 0 { // Avoid underflow. return } safe-- if safe < s.minHeight { return } ok = true return } // purge blocks if they are safe to be deleted from working set. func (s *chainStatus) purge() (purged common.Hashes) { safe, ok := s.calcPurgeHeight() if !ok { return } newMinIndex := safe - s.minHeight + 1 for _, b := range s.blocks[:newMinIndex] { purged = append(purged, b.Hash) } s.blocks = s.blocks[newMinIndex:] s.minHeight = safe + 1 return } // nextPosition returns a valid position for new block in this chain. func (s *chainStatus) nextPosition(shardID uint32) types.Position { return types.Position{ ShardID: shardID, ChainID: s.ID, Height: s.minHeight + uint64(len(s.blocks)), } } // newBlockLattice creates a new blockLattice struct. func newBlockLattice(shardID, chainNum uint32) (bl *blockLattice) { bl = &blockLattice{ shardID: shardID, chains: make([]*chainStatus, chainNum), blockByHash: make(map[common.Hash]*types.Block), } for i := range bl.chains { bl.chains[i] = &chainStatus{ ID: uint32(i), blocks: []*types.Block{}, nextAck: make([]uint64, chainNum), } } return } func (bl *blockLattice) sanityCheck(b *types.Block) error { // Check if the chain id is valid. if b.Position.ChainID >= uint32(len(bl.chains)) { return ErrInvalidChainID } // TODO(mission): Check if its proposer is in validator set somewhere, // blocklattice doesn't have to know about node set. // Check if it forks if bInLattice := bl.chains[b.Position.ChainID].getBlockByHeight( b.Position.Height); bInLattice != nil { if b.Hash != bInLattice.Hash { return ErrForkBlock } return ErrAlreadyInLattice } // TODO(mission): check if fork by loading blocks from DB if the block // doesn't exists because forking is serious. // Check if it acks older blocks. acksByChainID := make(map[uint32]struct{}, len(bl.chains)) for _, hash := range b.Acks { if bAck, exist := bl.blockByHash[hash]; exist { if bAck.Position.Height < bl.chains[bAck.Position.ChainID].nextAck[b.Position.ChainID] { return ErrDoubleAck } // Check if ack two blocks on the same chain. This would need // to check after we replace map with slice for acks. if _, acked := acksByChainID[bAck.Position.ChainID]; acked { return ErrDuplicatedAckOnOneChain } acksByChainID[bAck.Position.ChainID] = struct{}{} } else { // This error has the same checking effect as areAllAcksInLattice. return ErrAckingBlockNotExists } } // Check non-genesis blocks if it acks its parent. if b.Position.Height > 0 { if !b.IsAcking(b.ParentHash) { return ErrNotAckParent } bParent := bl.blockByHash[b.ParentHash] if bParent.Position.ChainID != b.Position.ChainID { return ErrInvalidParentChain } if bParent.Position.Height != b.Position.Height-1 { return ErrInvalidBlockHeight } // Check if its timestamp is valid. if !b.Timestamp.After(bParent.Timestamp) { return ErrInvalidTimestamp } } return nil } // areAllAcksReceived checks if all ack blocks of a block are all in lattice, // blockLattice would make sure all blocks not acked by some chain would be kept // in working set. func (bl *blockLattice) areAllAcksInLattice(b *types.Block) bool { for _, h := range b.Acks { bAck, exist := bl.blockByHash[h] if !exist { return false } if bAckInLattice := bl.chains[bAck.Position.ChainID].getBlockByHeight( bAck.Position.Height); bAckInLattice != nil { if bAckInLattice.Hash != bAck.Hash { panic("areAllAcksInLattice: blockLattice.chains has corrupted") } } else { return false } } return true } // addBlock processes block, it does sanity check, inserts block into // lattice and deletes blocks which will not be used. func (bl *blockLattice) addBlock( block *types.Block) (deliverable []*types.Block, err error) { var ( bAck *types.Block updated bool ) // If a block does not pass sanity check, report error. if err = bl.sanityCheck(block); err != nil { return } if err = bl.chains[block.Position.ChainID].addBlock(block); err != nil { return } bl.blockByHash[block.Hash] = block // Update nextAcks. for _, ack := range block.Acks { bAck = bl.blockByHash[ack] bl.chains[bAck.Position.ChainID].nextAck[block.Position.ChainID] = bAck.Position.Height + 1 } // Extract blocks that deliverable to total ordering. // A block is deliverable to total ordering iff: // - All its acking blocks are delivered to total ordering. for { updated = false for _, status := range bl.chains { tip := status.getBlockByHeight(status.nextOutput) if tip == nil { continue } allAckingBlockDelivered := true for _, ack := range tip.Acks { bAck, exists := bl.blockByHash[ack] if !exists { continue } if bl.chains[bAck.Position.ChainID].nextOutput > bAck.Position.Height { continue } // This acked block exists and not delivered yet. allAckingBlockDelivered = false } if allAckingBlockDelivered { deliverable = append(deliverable, tip) status.nextOutput++ updated = true } } if !updated { break } } // Delete old blocks in "chains" and "blocks" to release memory space. // // A block is safe to be deleted iff: // - It's delivered to total ordering // - All chains (including its proposing chain) acks some block with // higher height in its proposing chain. // // This works because blocks of height below this minimum are not going to be // acked anymore, the ackings of these blocks are illegal. for _, status := range bl.chains { for _, h := range status.purge() { delete(bl.blockByHash, h) } } return } // prepareBlock helps to setup fields of block based on its ProposerID, // including: // - Set 'Acks' and 'Timestamps' for the highest block of each validator not // acked by this proposer before. // - Set 'ParentHash' and 'Height' from parent block, if we can't find a // parent, these fields would be setup like a genesis block. func (bl *blockLattice) prepareBlock(block *types.Block) { // Reset fields to make sure we got these information from parent block. block.Position.Height = 0 block.ParentHash = common.Hash{} acks := common.Hashes{} for chainID := range bl.chains { // find height of the latest block for that validator. var ( curBlock *types.Block nextHeight = bl.chains[chainID].nextAck[block.Position.ChainID] ) for { tmpBlock := bl.chains[chainID].getBlockByHeight(nextHeight) if tmpBlock == nil { break } curBlock = tmpBlock nextHeight++ } if curBlock == nil { continue } acks = append(acks, curBlock.Hash) if uint32(chainID) == block.Position.ChainID { block.ParentHash = curBlock.Hash block.Position.Height = curBlock.Position.Height + 1 } } block.Acks = common.NewSortedHashes(acks) return } // TODO(mission): make more abstraction for this method. // nextHeight returns the next height for the chain. func (bl *blockLattice) nextPosition(chainID uint32) types.Position { return bl.chains[chainID].nextPosition(bl.shardID) }