summaryrefslogtreecommitdiffstats
path: root/mbbsd/random.c
blob: 2405ea92e6fa9fddb130f564b68cd053d7f93812 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
#ifdef __dietlibc__
/* 
   Copyright (C) 1995 Free Software Foundation

   The GNU C Library is free software; you can redistribute it and/or
   modify it under the terms of the GNU Lesser General Public
   License as published by the Free Software Foundation; either
   version 2.1 of the License, or (at your option) any later version.

   The GNU C Library is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   Lesser General Public License for more details.

   You should have received a copy of the GNU Lesser General Public
   License along with the GNU C Library; if not, write to the Free
   Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
   02111-1307 USA.  */

/*
   Copyright (C) 1983 Regents of the University of California.
   All rights reserved.

   Redistribution and use in source and binary forms, with or without
   modification, are permitted provided that the following conditions
   are met:

   1. Redistributions of source code must retain the above copyright
      notice, this list of conditions and the following disclaimer.
   2. Redistributions in binary form must reproduce the above copyright
      notice, this list of conditions and the following disclaimer in the
      documentation and/or other materials provided with the distribution.
   4. Neither the name of the University nor the names of its contributors
      may be used to endorse or promote products derived from this software
      without specific prior written permission.
   
   THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   SUCH DAMAGE.*/

/*
 * This is derived from the Berkeley source:
 *  @(#)random.c    5.5 (Berkeley) 7/6/88
 * It was reworked for the GNU C Library by Roland McGrath.
 * Rewritten to be reentrant by Ulrich Drepper, 1995
 */

#include <errno.h>
#include <limits.h>
#include <stddef.h>
#include <stdlib.h>
struct random_data
  {
    int32_t *fptr;              /* Front pointer.  */
    int32_t *rptr;              /* Rear pointer.  */
    int32_t *state;             /* Array of state values.  */
    int rand_type;              /* Type of random number generator.  */
    int rand_deg;               /* Degree of random number generator.  */
    int rand_sep;               /* Distance between front and rear.  */
    int32_t *end_ptr;           /* Pointer behind state table.  */
  };
int __random_r (struct random_data *buf, int32_t *result);



/* An improved random number generation package.  In addition to the standard
   rand()/srand() like interface, this package also has a special state info
   interface.  The initstate() routine is called with a seed, an array of
   bytes, and a count of how many bytes are being passed in; this array is
   then initialized to contain information for random number generation with
   that much state information.  Good sizes for the amount of state
   information are 32, 64, 128, and 256 bytes.  The state can be switched by
   calling the setstate() function with the same array as was initialized
   with initstate().  By default, the package runs with 128 bytes of state
   information and generates far better random numbers than a linear
   congruential generator.  If the amount of state information is less than
   32 bytes, a simple linear congruential R.N.G. is used.  Internally, the
   state information is treated as an array of longs; the zeroth element of
   the array is the type of R.N.G. being used (small integer); the remainder
   of the array is the state information for the R.N.G.  Thus, 32 bytes of
   state information will give 7 longs worth of state information, which will
   allow a degree seven polynomial.  (Note: The zeroth word of state
   information also has some other information stored in it; see setstate
   for details).  The random number generation technique is a linear feedback
   shift register approach, employing trinomials (since there are fewer terms
   to sum up that way).  In this approach, the least significant bit of all
   the numbers in the state table will act as a linear feedback shift register,
   and will have period 2^deg - 1 (where deg is the degree of the polynomial
   being used, assuming that the polynomial is irreducible and primitive).
   The higher order bits will have longer periods, since their values are
   also influenced by pseudo-random carries out of the lower bits.  The
   total period of the generator is approximately deg*(2**deg - 1); thus
   doubling the amount of state information has a vast influence on the
   period of the generator.  Note: The deg*(2**deg - 1) is an approximation
   only good for large deg, when the period of the shift register is the
   dominant factor.  With deg equal to seven, the period is actually much
   longer than the 7*(2**7 - 1) predicted by this formula.  */



/* For each of the currently supported random number generators, we have a
   break value on the amount of state information (you need at least this many
   bytes of state info to support this random number generator), a degree for
   the polynomial (actually a trinomial) that the R.N.G. is based on, and
   separation between the two lower order coefficients of the trinomial.  */

/* Linear congruential.  */
#define TYPE_0      0
#define BREAK_0     8
#define DEG_0       0
#define SEP_0       0

/* x**7 + x**3 + 1.  */
#define TYPE_1      1
#define BREAK_1     32
#define DEG_1       7
#define SEP_1       3

/* x**15 + x + 1.  */
#define TYPE_2      2
#define BREAK_2     64
#define DEG_2       15
#define SEP_2       1

/* x**31 + x**3 + 1.  */
#define TYPE_3      3
#define BREAK_3     128
#define DEG_3       31
#define SEP_3       3

/* x**63 + x + 1.  */
#define TYPE_4      4
#define BREAK_4     256
#define DEG_4       63
#define SEP_4       1


/* Array versions of the above information to make code run faster.
   Relies on fact that TYPE_i == i.  */

#define MAX_TYPES   5   /* Max number of types above.  */

struct random_poly_info
{
  int seps[MAX_TYPES];
  int degrees[MAX_TYPES];
};

static const struct random_poly_info random_poly_info =
{
  { SEP_0, SEP_1, SEP_2, SEP_3, SEP_4 },
  { DEG_0, DEG_1, DEG_2, DEG_3, DEG_4 }
};




/* Initialize the random number generator based on the given seed.  If the
   type is the trivial no-state-information type, just remember the seed.
   Otherwise, initializes state[] based on the given "seed" via a linear
   congruential generator.  Then, the pointers are set to known locations
   that are exactly rand_sep places apart.  Lastly, it cycles the state
   information a given number of times to get rid of any initial dependencies
   introduced by the L.C.R.N.G.  Note that the initialization of randtbl[]
   for default usage relies on values produced by this routine.  */
int
__srandom_r (seed, buf)
     unsigned int seed;
     struct random_data *buf;
{
  int type;
  int32_t *state;
  long int i;
  long int word;
  int32_t *dst;
  int kc;

  if (buf == NULL)
    goto fail;
  type = buf->rand_type;
  if ((unsigned int) type >= MAX_TYPES)
    goto fail;

  state = buf->state;
  /* We must make sure the seed is not 0.  Take arbitrarily 1 in this case.  */
  if (seed == 0)
    seed = 1;
  state[0] = seed;
  if (type == TYPE_0)
    goto done;

  dst = state;
  word = seed;
  kc = buf->rand_deg;
  for (i = 1; i < kc; ++i)
    {
      /* This does:
       state[i] = (16807 * state[i - 1]) % 2147483647;
     but avoids overflowing 31 bits.  */
      long int hi = word / 127773;
      long int lo = word % 127773;
      word = 16807 * lo - 2836 * hi;
      if (word < 0)
    word += 2147483647;
      *++dst = word;
    }

  buf->fptr = &state[buf->rand_sep];
  buf->rptr = &state[0];
  kc *= 10;
  while (--kc >= 0)
    {
      int32_t discard;
      (void) __random_r (buf, &discard);
    }

 done:
  return 0;

 fail:
  return -1;
}


/* Initialize the state information in the given array of N bytes for
   future random number generation.  Based on the number of bytes we
   are given, and the break values for the different R.N.G.'s, we choose
   the best (largest) one we can and set things up for it.  srandom is
   then called to initialize the state information.  Note that on return
   from srandom, we set state[-1] to be the type multiplexed with the current
   value of the rear pointer; this is so successive calls to initstate won't
   lose this information and will be able to restart with setstate.
   Note: The first thing we do is save the current state, if any, just like
   setstate so that it doesn't matter when initstate is called.
   Returns a pointer to the old state.  */
int
__initstate_r (seed, arg_state, n, buf)
     unsigned int seed;
     char *arg_state;
     size_t n;
     struct random_data *buf;
{
  int type;
  int degree;
  int separation;
  int32_t *state;

  if (buf == NULL)
    goto fail;

  if (n >= BREAK_3)
    type = n < BREAK_4 ? TYPE_3 : TYPE_4;
  else if (n < BREAK_1)
    {
      if (n < BREAK_0)
    {
      __set_errno (EINVAL);
      goto fail;
    }
      type = TYPE_0;
    }
  else
    type = n < BREAK_2 ? TYPE_1 : TYPE_2;

  degree = random_poly_info.degrees[type];
  separation = random_poly_info.seps[type];

  buf->rand_type = type;
  buf->rand_sep = separation;
  buf->rand_deg = degree;
  state = &((int32_t *) arg_state)[1];  /* First location.  */
  /* Must set END_PTR before srandom.  */
  buf->end_ptr = &state[degree];

  buf->state = state;

  __srandom_r (seed, buf);

  state[-1] = TYPE_0;
  if (type != TYPE_0)
    state[-1] = (buf->rptr - state) * MAX_TYPES + type;

  return 0;

 fail:
  __set_errno (EINVAL);
  return -1;
}


/* Restore the state from the given state array.
   Note: It is important that we also remember the locations of the pointers
   in the current state information, and restore the locations of the pointers
   from the old state information.  This is done by multiplexing the pointer
   location into the zeroth word of the state information. Note that due
   to the order in which things are done, it is OK to call setstate with the
   same state as the current state
   Returns a pointer to the old state information.  */
int
__setstate_r (arg_state, buf)
     char *arg_state;
     struct random_data *buf;
{
  int32_t *new_state = 1 + (int32_t *) arg_state;
  int type;
  int old_type;
  int32_t *old_state;
  int degree;
  int separation;

  if (arg_state == NULL || buf == NULL)
    goto fail;

  old_type = buf->rand_type;
  old_state = buf->state;
  if (old_type == TYPE_0)
    old_state[-1] = TYPE_0;
  else
    old_state[-1] = (MAX_TYPES * (buf->rptr - old_state)) + old_type;

  type = new_state[-1] % MAX_TYPES;
  if (type < TYPE_0 || type > TYPE_4)
    goto fail;

  buf->rand_deg = degree = random_poly_info.degrees[type];
  buf->rand_sep = separation = random_poly_info.seps[type];
  buf->rand_type = type;

  if (type != TYPE_0)
    {
      int rear = new_state[-1] / MAX_TYPES;
      buf->rptr = &new_state[rear];
      buf->fptr = &new_state[(rear + separation) % degree];
    }
  buf->state = new_state;
  /* Set end_ptr too.  */
  buf->end_ptr = &new_state[degree];

  return 0;

 fail:
  __set_errno (EINVAL);
  return -1;
}


/* If we are using the trivial TYPE_0 R.N.G., just do the old linear
   congruential bit.  Otherwise, we do our fancy trinomial stuff, which is the
   same in all the other cases due to all the global variables that have been
   set up.  The basic operation is to add the number at the rear pointer into
   the one at the front pointer.  Then both pointers are advanced to the next
   location cyclically in the table.  The value returned is the sum generated,
   reduced to 31 bits by throwing away the "least random" low bit.
   Note: The code takes advantage of the fact that both the front and
   rear pointers can't wrap on the same call by not testing the rear
   pointer if the front one has wrapped.  Returns a 31-bit random number.  */

int
__random_r (buf, result)
     struct random_data *buf;
     int32_t *result;
{
  int32_t *state;

  if (buf == NULL || result == NULL)
    goto fail;

  state = buf->state;

  if (buf->rand_type == TYPE_0)
    {
      int32_t val = state[0];
      val = ((state[0] * 1103515245) + 12345) & 0x7fffffff;
      state[0] = val;
      *result = val;
    }
  else
    {
      int32_t *fptr = buf->fptr;
      int32_t *rptr = buf->rptr;
      int32_t *end_ptr = buf->end_ptr;
      int32_t val;

      val = *fptr += *rptr;
      /* Chucking least random bit.  */
      *result = (val >> 1) & 0x7fffffff;
      ++fptr;
      if (fptr >= end_ptr)
    {
      fptr = state;
      ++rptr;
    }
      else
    {
      ++rptr;
      if (rptr >= end_ptr)
        rptr = state;
    }
      buf->fptr = fptr;
      buf->rptr = rptr;
    }
  return 0;

 fail:
  __set_errno (EINVAL);
  return -1;
}

/* Copyright (C) 1995 Free Software Foundation

   The GNU C Library is free software; you can redistribute it and/or
   modify it under the terms of the GNU Lesser General Public
   License as published by the Free Software Foundation; either
   version 2.1 of the License, or (at your option) any later version.

   The GNU C Library is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   Lesser General Public License for more details.

   You should have received a copy of the GNU Lesser General Public
   License along with the GNU C Library; if not, write to the Free
   Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
   02111-1307 USA.  */

/*
 * This is derived from the Berkeley source:
 *  @(#)random.c    5.5 (Berkeley) 7/6/88
 * It was reworked for the GNU C Library by Roland McGrath.
 * Rewritten to use reentrant functions by Ulrich Drepper, 1995.
 */

/*
   Copyright (C) 1983 Regents of the University of California.
   All rights reserved.
 
   Redistribution and use in source and binary forms, with or without
   modification, are permitted provided that the following conditions
   are met:

   1. Redistributions of source code must retain the above copyright
      notice, this list of conditions and the following disclaimer.
   2. Redistributions in binary form must reproduce the above copyright
      notice, this list of conditions and the following disclaimer in the
      documentation and/or other materials provided with the distribution.
   4. Neither the name of the University nor the names of its contributors
      may be used to endorse or promote products derived from this software
      without specific prior written permission.
   
   THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   SUCH DAMAGE.*/

#include <limits.h>
#include <stddef.h>
#include <stdlib.h>


/* An improved random number generation package.  In addition to the standard
   rand()/srand() like interface, this package also has a special state info
   interface.  The initstate() routine is called with a seed, an array of
   bytes, and a count of how many bytes are being passed in; this array is
   then initialized to contain information for random number generation with
   that much state information.  Good sizes for the amount of state
   information are 32, 64, 128, and 256 bytes.  The state can be switched by
   calling the setstate() function with the same array as was initialized
   with initstate().  By default, the package runs with 128 bytes of state
   information and generates far better random numbers than a linear
   congruential generator.  If the amount of state information is less than
   32 bytes, a simple linear congruential R.N.G. is used.  Internally, the
   state information is treated as an array of longs; the zeroth element of
   the array is the type of R.N.G. being used (small integer); the remainder
   of the array is the state information for the R.N.G.  Thus, 32 bytes of
   state information will give 7 longs worth of state information, which will
   allow a degree seven polynomial.  (Note: The zeroth word of state
   information also has some other information stored in it; see setstate
   for details).  The random number generation technique is a linear feedback
   shift register approach, employing trinomials (since there are fewer terms
   to sum up that way).  In this approach, the least significant bit of all
   the numbers in the state table will act as a linear feedback shift register,
   and will have period 2^deg - 1 (where deg is the degree of the polynomial
   being used, assuming that the polynomial is irreducible and primitive).
   The higher order bits will have longer periods, since their values are
   also influenced by pseudo-random carries out of the lower bits.  The
   total period of the generator is approximately deg*(2**deg - 1); thus
   doubling the amount of state information has a vast influence on the
   period of the generator.  Note: The deg*(2**deg - 1) is an approximation
   only good for large deg, when the period of the shift register is the
   dominant factor.  With deg equal to seven, the period is actually much
   longer than the 7*(2**7 - 1) predicted by this formula.  */



/* For each of the currently supported random number generators, we have a
   break value on the amount of state information (you need at least this many
   bytes of state info to support this random number generator), a degree for
   the polynomial (actually a trinomial) that the R.N.G. is based on, and
   separation between the two lower order coefficients of the trinomial.  */

/* Linear congruential.  */
#define TYPE_0      0
#define BREAK_0     8
#define DEG_0       0
#define SEP_0       0

/* x**7 + x**3 + 1.  */
#define TYPE_1      1
#define BREAK_1     32
#define DEG_1       7
#define SEP_1       3

/* x**15 + x + 1.  */
#define TYPE_2      2
#define BREAK_2     64
#define DEG_2       15
#define SEP_2       1

/* x**31 + x**3 + 1.  */
#define TYPE_3      3
#define BREAK_3     128
#define DEG_3       31
#define SEP_3       3

/* x**63 + x + 1.  */
#define TYPE_4      4
#define BREAK_4     256
#define DEG_4       63
#define SEP_4       1


/* Array versions of the above information to make code run faster.
   Relies on fact that TYPE_i == i.  */

#define MAX_TYPES   5   /* Max number of types above.  */


/* Initially, everything is set up as if from:
    initstate(1, randtbl, 128);
   Note that this initialization takes advantage of the fact that srandom
   advances the front and rear pointers 10*rand_deg times, and hence the
   rear pointer which starts at 0 will also end up at zero; thus the zeroth
   element of the state information, which contains info about the current
   position of the rear pointer is just
    (MAX_TYPES * (rptr - state)) + TYPE_3 == TYPE_3.  */

static int32_t randtbl[DEG_3 + 1] =
  {
    TYPE_3,

    -1726662223, 379960547, 1735697613, 1040273694, 1313901226,
    1627687941, -179304937, -2073333483, 1780058412, -1989503057,
    -615974602, 344556628, 939512070, -1249116260, 1507946756,
    -812545463, 154635395, 1388815473, -1926676823, 525320961,
    -1009028674, 968117788, -123449607, 1284210865, 435012392,
    -2017506339, -911064859, -370259173, 1132637927, 1398500161,
    -205601318,
  };


static struct random_data unsafe_state =
  {
/* FPTR and RPTR are two pointers into the state info, a front and a rear
   pointer.  These two pointers are always rand_sep places aparts, as they
   cycle through the state information.  (Yes, this does mean we could get
   away with just one pointer, but the code for random is more efficient
   this way).  The pointers are left positioned as they would be from the call:
    initstate(1, randtbl, 128);
   (The position of the rear pointer, rptr, is really 0 (as explained above
   in the initialization of randtbl) because the state table pointer is set
   to point to randtbl[1] (as explained below).)  */

    .fptr = &randtbl[SEP_3 + 1],
    .rptr = &randtbl[1],

/* The following things are the pointer to the state information table,
   the type of the current generator, the degree of the current polynomial
   being used, and the separation between the two pointers.
   Note that for efficiency of random, we remember the first location of
   the state information, not the zeroth.  Hence it is valid to access
   state[-1], which is used to store the type of the R.N.G.
   Also, we remember the last location, since this is more efficient than
   indexing every time to find the address of the last element to see if
   the front and rear pointers have wrapped.  */

    .state = &randtbl[1],

    .rand_type = TYPE_3,
    .rand_deg = DEG_3,
    .rand_sep = SEP_3,

    .end_ptr = &randtbl[sizeof (randtbl) / sizeof (randtbl[0])]
};

/* POSIX.1c requires that there is mutual exclusion for the `rand' and
   `srand' functions to prevent concurrent calls from modifying common
   data.  */

/* Initialize the random number generator based on the given seed.  If the
   type is the trivial no-state-information type, just remember the seed.
   Otherwise, initializes state[] based on the given "seed" via a linear
   congruential generator.  Then, the pointers are set to known locations
   that are exactly rand_sep places apart.  Lastly, it cycles the state
   information a given number of times to get rid of any initial dependencies
   introduced by the L.C.R.N.G.  Note that the initialization of randtbl[]
   for default usage relies on values produced by this routine.  */
void
__srandom (x)
     unsigned int x;
{
  (void) __srandom_r (x, &unsafe_state);
}


/* Initialize the state information in the given array of N bytes for
   future random number generation.  Based on the number of bytes we
   are given, and the break values for the different R.N.G.'s, we choose
   the best (largest) one we can and set things up for it.  srandom is
   then called to initialize the state information.  Note that on return
   from srandom, we set state[-1] to be the type multiplexed with the current
   value of the rear pointer; this is so successive calls to initstate won't
   lose this information and will be able to restart with setstate.
   Note: The first thing we do is save the current state, if any, just like
   setstate so that it doesn't matter when initstate is called.
   Returns a pointer to the old state.  */
char *
__initstate (seed, arg_state, n)
     unsigned int seed;
     char *arg_state;
     size_t n;
{
  int32_t *ostate;


  ostate = &unsafe_state.state[-1];

  __initstate_r (seed, arg_state, n, &unsafe_state);


  return (char *) ostate;
}


/* Restore the state from the given state array.
   Note: It is important that we also remember the locations of the pointers
   in the current state information, and restore the locations of the pointers
   from the old state information.  This is done by multiplexing the pointer
   location into the zeroth word of the state information. Note that due
   to the order in which things are done, it is OK to call setstate with the
   same state as the current state
   Returns a pointer to the old state information.  */
char *
__setstate (arg_state)
     char *arg_state;
{
  int32_t *ostate;


  ostate = &unsafe_state.state[-1];

  if (__setstate_r (arg_state, &unsafe_state) < 0)
    ostate = NULL;


  return (char *) ostate;
}


/* If we are using the trivial TYPE_0 R.N.G., just do the old linear
   congruential bit.  Otherwise, we do our fancy trinomial stuff, which is the
   same in all the other cases due to all the global variables that have been
   set up.  The basic operation is to add the number at the rear pointer into
   the one at the front pointer.  Then both pointers are advanced to the next
   location cyclically in the table.  The value returned is the sum generated,
   reduced to 31 bits by throwing away the "least random" low bit.
   Note: The code takes advantage of the fact that both the front and
   rear pointers can't wrap on the same call by not testing the rear
   pointer if the front one has wrapped.  Returns a 31-bit random number.  */

long int
__random ()
{
  int32_t retval;


  (void) __random_r (&unsafe_state, &retval);


  return retval;
}

long int glibc_random(void) { return __random(); }
void glibc_srandom(unsigned int seed) { __srandom(seed); }
char *glibc_initstate(unsigned int seed, char *state, size_t n) { return __initstate(seed,state,n); }
char *glibc_setstate(char *state) { return __setstate(state); }
#endif