aboutsummaryrefslogtreecommitdiffstats
path: root/meowpp/dsa/KD_Tree.h
diff options
context:
space:
mode:
authorcathook <b01902109@csie.ntu.edu.tw>2014-04-19 23:39:29 +0800
committercathook <b01902109@csie.ntu.edu.tw>2014-04-19 23:39:29 +0800
commitc3ddd993afbdfe37e85df4a54738469dcbc0a37c (patch)
tree06c56613d6dc5189f4ac3535507d8fdd6a761643 /meowpp/dsa/KD_Tree.h
parente9a16c4ef0ea782d7db8d788c455ea946eaab039 (diff)
downloadmeow-c3ddd993afbdfe37e85df4a54738469dcbc0a37c.tar
meow-c3ddd993afbdfe37e85df4a54738469dcbc0a37c.tar.gz
meow-c3ddd993afbdfe37e85df4a54738469dcbc0a37c.tar.bz2
meow-c3ddd993afbdfe37e85df4a54738469dcbc0a37c.tar.lz
meow-c3ddd993afbdfe37e85df4a54738469dcbc0a37c.tar.xz
meow-c3ddd993afbdfe37e85df4a54738469dcbc0a37c.tar.zst
meow-c3ddd993afbdfe37e85df4a54738469dcbc0a37c.zip
Add description
Diffstat (limited to 'meowpp/dsa/KD_Tree.h')
-rw-r--r--meowpp/dsa/KD_Tree.h42
1 files changed, 42 insertions, 0 deletions
diff --git a/meowpp/dsa/KD_Tree.h b/meowpp/dsa/KD_Tree.h
index 0abc358..2e55d12 100644
--- a/meowpp/dsa/KD_Tree.h
+++ b/meowpp/dsa/KD_Tree.h
@@ -68,6 +68,48 @@ namespace meow{
void clear();
void reset(size_t _dimension);
};
+ /*********************************************************
+ @asciidoc
+ === meow:: *KD_Tree<Keys, Key, Value>* (C++ class)
+ .Description
+ `KD_Tree` is *K-dimension tree*, which is a dictionary(key->value).
+ Where the type if key is a *K-dimension vector* .
+
+ .Template Request
+ * `Keys` should has `operator[]` to allow the KD_Tree access the k-dimensions
+ * `Key` should has `operator*`, `operator+`
+
+ .Support Methods
+ * N <- numbers of element in the kd-tree
+ * K <- dimensions
+ * `Keys` is the tyepname of the vector
+ * `Key` is the typename of the element in the vector
+ * `Value` is the typename of value
+ [options="header",width="100%",cols="1>,1<s,5<,1<,2<,10<",grid="rows"]
+ |=======================================================================
+ |Const?|Name| Parameters| Return Type| Time Complexity| Description
+ |const|root|(size_t number)|size_t|very fast|
+ ||insert|(Key const& k, Value v)|void|O(1)|Insert a pair (k->v)
+ || build|()|void|O(KN logN) | Build the data structure(the `insert()`
+ method will not build the data structure immediately)
+ |const|query|(Keys const& point, int k)|Value|O(kN ^1-1/k^ ) |
+ Using Euclidean-Distance to find the k-nearest neighbor from `point` .
+ And return the corrosponding value
+ |const|query|(Keys const& point, int k)|std::vector<Value>|O(kN ^1-1/k^ ) |
+ Using Euclidean-Distance to find all the x-nearest neighbor from `point` ,
+ where x <= k. And return an array of all the corrosponding value.
+ ||clear|()|O(1)|Clear all data
+ ||reset|(size_t dimension)|O(1)|Clear all data and then
+ set the this->dimension be `dimension`
+ |=======================================================================
+NOTE: O(kN ^1-1/k^ ) is reference from wiki. +
+`query()` and `rangeQuery()` will run `build()` first if you called `insert()`
+before call them. And `build()` is very slow, so you should not use this class
+as a dynamic tree
+
+'''
+@asciidoc-
+ *********************************************************/
}
#include "KD_Tree.hpp"