1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
|
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: t; c-basic-offset: 8 -*-
*
* Copyright (C) 2000 Helix Code, Inc.
*
* Authors: Michael Zucchi <notzed@helixcode.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public License
* as published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with the Gnome Library; see the file COPYING.LIB. If not,
* write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 02111-1307, USA.
*/
/* hash based index mechanism */
#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <string.h>
#include "block.h"
#include "index.h"
#define d(x)
#define HASH_SIZE (1024)
#define KEY_THRESHOLD (sizeof(struct _hashkey) + 4) /* minimum number of free bytes we worry about
maintaining free blocks for */
#define ARRAY_LEN(a) (sizeof(a)/sizeof(a[0]))
typedef guint32 hashid_t;
static struct _IBEXIndex *hash_create(struct _memcache *bc, int size);
static struct _IBEXIndex *hash_open(struct _memcache *bc, blockid_t root);
static int hash_sync(struct _IBEXIndex *index);
static int hash_close(struct _IBEXIndex *index);
static hashid_t hash_find(struct _IBEXIndex *index, const char *key, int keylen);
static void hash_remove(struct _IBEXIndex *index, const char *key, int keylen);
static hashid_t hash_insert(struct _IBEXIndex *index, const char *key, int keylen);
static char *hash_get_key(struct _IBEXIndex *index, hashid_t hashbucket, int *len);
static void hash_set_data_block(struct _IBEXIndex *index, hashid_t keyid, blockid_t blockid, blockid_t tail);
static blockid_t hash_get_data_block(struct _IBEXIndex *index, hashid_t keyid, blockid_t *tail);
struct _IBEXIndexClass ibex_hash_class = {
hash_create, hash_open,
hash_sync, hash_close,
hash_find,
hash_remove,
hash_insert,
hash_get_key,
hash_set_data_block,
hash_get_data_block,
};
/* the reason we have the tail here is that otherwise we need to
have a 32 bit blockid for the root node; which would make this
structure the same size anyway, with about 24 wasted bits */
struct _hashkey {
blockid_t next; /* next in hash chain */
blockid_t tail;
unsigned int root:32-BLOCK_BITS;
unsigned int keyoffset:BLOCK_BITS;
};
struct _hashblock {
/*blockid_t next;*/ /* all key blocks linked together? */
guint32 used; /* elements used */
union {
struct _hashkey keys[(BLOCK_SIZE-4)/sizeof(struct _hashkey)];
char keydata[BLOCK_SIZE-4];
} hashblock_u;
};
#define hb_keys hashblock_u.keys
#define hb_keydata hashblock_u.keydata
/* size of block overhead + 2 key block overhead */
#define MAX_KEYLEN (BLOCK_SIZE - 4 - 12 - 12)
/* root block for a hash index */
struct _hashroot {
hashid_t free; /* free list */
guint32 size; /* how big the hash table is */
hashid_t table[(BLOCK_SIZE-8)/sizeof(hashid_t)]; /* pointers to blocks of pointers */
};
struct _hashtableblock {
hashid_t buckets[BLOCK_SIZE/sizeof(hashid_t)];
};
/* map a hash index to a block index */
#define HASH_INDEX(b) ((b) & (BLOCK_SIZE-1))
/* map a hash index to a block number */
#define HASH_BLOCK(b) ((b) & ~(BLOCK_SIZE-1))
/* map a block + index to a hash key */
#define HASH_KEY(b, i) (((b) & ~(BLOCK_SIZE-1)) | ((i) & (BLOCK_SIZE-1)))
/* taken from tdb/gdbm */
static unsigned int hash_key(const unsigned char *key, int keylen)
{
char *newkey;
newkey = alloca(keylen+1);
memcpy(newkey, key, keylen);
newkey[keylen]=0;
return g_str_hash(newkey);
#if 0
unsigned int value; /* Used to compute the hash value. */
unsigned int i; /* Used to cycle through random values. */
/* Set the initial value from the key size. */
value = 0x238F13AF * keylen;
for (i=0; i < keylen; i++) {
value = (value + (key[i] << (i*5 % 24)));
}
value = (1103515243 * value + 12345);
return value;
#endif
}
/* create a new hash table, return a pointer to its root block */
static struct _IBEXIndex *
hash_create(struct _memcache *bc, int size)
{
blockid_t root, block;
struct _hashroot *hashroot;
int i;
struct _hashtableblock *table;
struct _IBEXIndex *index;
g_assert(size<=10240);
d(printf("initialising hash table, size = %d\n", size));
index = g_malloc0(sizeof(*index));
index->blocks = bc;
index->klass = &ibex_hash_class;
root = ibex_block_get(bc);
index->root = root;
d(printf(" root = %d\n", root));
hashroot = (struct _hashroot *)ibex_block_read(bc, root);
hashroot->free = 0;
hashroot->size = size;
ibex_block_dirty((struct _block *)hashroot);
for (i=0;i<size/(BLOCK_SIZE/sizeof(blockid_t));i++) {
d(printf("initialising hash table index block %d\n", i));
block = hashroot->table[i] = ibex_block_get(bc);
table = (struct _hashtableblock *)ibex_block_read(bc, block);
memset(table, 0, sizeof(table));
ibex_block_dirty((struct _block *)table);
}
return index;
}
static struct _IBEXIndex *
hash_open(struct _memcache *bc, blockid_t root)
{
struct _IBEXIndex *index;
/* FIXME: check a 'magic', and the root for validity */
index = g_malloc0(sizeof(*index));
index->blocks = bc;
index->root = root;
index->klass = &ibex_hash_class;
return index;
}
static int hash_sync(struct _IBEXIndex *index)
{
/* nop, index always synced on disk (at least, to blocks) */
return 0;
}
static int hash_close(struct _IBEXIndex *index)
{
#ifdef INDEX_STAT
printf("Performed %d lookups, average %f depth\n", index->lookups, (double)index->lookup_total/index->lookups);
#endif
g_free(index);
return 0;
}
/* convert a hashbucket id into a name */
static char *
hash_get_key(struct _IBEXIndex *index, hashid_t hashbucket, int *len)
{
struct _hashblock *bucket;
int ind;
char *ret, *start, *end;
if (hashbucket == 0) {
if (len)
*len = 0;
return g_strdup("");
}
bucket = (struct _hashblock *)ibex_block_read(index->blocks, HASH_BLOCK(hashbucket));
ind = HASH_INDEX(hashbucket);
g_assert(ind < bucket->used);
start = &bucket->hb_keydata[bucket->hb_keys[ind].keyoffset];
if (ind == 0) {
end = &bucket->hb_keydata[sizeof(bucket->hb_keydata)/sizeof(bucket->hb_keydata[0])];
} else {
end = &bucket->hb_keydata[bucket->hb_keys[ind-1].keyoffset];
}
ret = g_malloc(end-start+1);
memcpy(ret, start, end-start);
ret[end-start]=0;
if (len)
*len = end-start;
return ret;
}
/* sigh, this is fnugly code ... */
static hashid_t
hash_find(struct _IBEXIndex *index, const char *key, int keylen)
{
struct _hashroot *hashroot;
guint32 hash;
int hashentry;
blockid_t hashtable;
hashid_t hashbucket;
struct _hashtableblock *table;
g_assert(index != 0);
g_assert(index->root != 0);
d(printf("finding hash %.*s\n", keylen, key));
/* truncate the key to the maximum size */
if (keylen > MAX_KEYLEN)
keylen = MAX_KEYLEN;
hashroot = (struct _hashroot *)ibex_block_read(index->blocks, index->root);
/* find the table containing this entry */
hash = hash_key(key, keylen) % hashroot->size;
hashtable = hashroot->table[hash / (BLOCK_SIZE/sizeof(blockid_t))];
g_assert(hashtable != 0);
table = (struct _hashtableblock *)ibex_block_read(index->blocks, hashtable);
hashentry = hash % (BLOCK_SIZE/sizeof(blockid_t));
/* and its bucket */
hashbucket = table->buckets[hashentry];
#ifdef INDEX_STAT
index->lookups++;
#endif
/* go down the bucket chain, reading each entry till we are done ... */
while (hashbucket != 0) {
struct _hashblock *bucket;
char *start, *end;
int ind;
#ifdef INDEX_STAT
index->lookup_total++;
#endif
d(printf(" checking bucket %d\n", hashbucket));
/* get the real bucket id from the hashbucket id */
bucket = (struct _hashblock *)ibex_block_read(index->blocks, HASH_BLOCK(hashbucket));
/* and get the key number within the block */
ind = HASH_INDEX(hashbucket);
g_assert(ind < bucket->used);
start = &bucket->hb_keydata[bucket->hb_keys[ind].keyoffset];
if (ind == 0) {
end = &bucket->hb_keydata[sizeof(bucket->hb_keydata)/sizeof(bucket->hb_keydata[0])];
} else {
end = &bucket->hb_keydata[bucket->hb_keys[ind-1].keyoffset];
}
if ( (end-start) == keylen
&& memcmp(start, key, keylen) == 0) {
return hashbucket;
}
hashbucket = bucket->hb_keys[ind].next;
}
return 0;
}
/* compresses the bucket 'bucket', removing data
at index 'index' */
static void
hash_compress(struct _hashblock *bucket, int index)
{
int i;
char *start, *end, *newstart;
/* get start/end of area to zap */
start = &bucket->hb_keydata[bucket->hb_keys[index].keyoffset];
if (index == 0) {
end = &bucket->hb_keydata[sizeof(bucket->hb_keydata)/sizeof(bucket->hb_keydata[0])];
} else {
end = &bucket->hb_keydata[bucket->hb_keys[index-1].keyoffset];
}
if (start == end)
return;
/* fixup data */
newstart = &bucket->hb_keydata[bucket->hb_keys[bucket->used-1].keyoffset];
memmove(newstart+(end-start), newstart, start-newstart);
/* fixup key pointers */
for (i=index;i<bucket->used;i++) {
bucket->hb_keys[i].keyoffset += (end-start);
}
ibex_block_dirty((struct _block *)bucket);
}
/* make room 'len' for the key 'index' */
/* assumes key 'index' is already empty (0 length) */
static void
hash_expand(struct _hashblock *bucket, int index, int len)
{
int i;
char *end, *newstart;
/* get start/end of area to zap */
if (index == 0) {
end = &bucket->hb_keydata[sizeof(bucket->hb_keydata)/sizeof(bucket->hb_keydata[0])];
} else {
end = &bucket->hb_keydata[bucket->hb_keys[index-1].keyoffset];
}
/* fixup data */
newstart = &bucket->hb_keydata[bucket->hb_keys[bucket->used-1].keyoffset];
memmove(newstart-len, newstart, end-newstart);
/* fixup key pointers */
for (i=index;i<bucket->used;i++) {
bucket->hb_keys[i].keyoffset -= len;
}
ibex_block_dirty((struct _block *)bucket);
}
static void
hash_remove(struct _IBEXIndex *index, const char *key, int keylen)
{
struct _hashroot *hashroot;
guint32 hash;
int hashentry;
blockid_t hashtable;
hashid_t hashbucket, hashprev;
struct _hashtableblock *table;
g_assert(index != 0);
g_assert(index->root != 0);
d(printf("removing hash %.*s\n", keylen, key));
/* truncate the key to the maximum size */
if (keylen > MAX_KEYLEN)
keylen = MAX_KEYLEN;
hashroot = (struct _hashroot *)ibex_block_read(index->blocks, index->root);
/* find the table containing this entry */
hash = hash_key(key, keylen) % hashroot->size;
hashtable = hashroot->table[hash / (BLOCK_SIZE/sizeof(blockid_t))];
table = (struct _hashtableblock *)ibex_block_read(index->blocks, hashtable);
hashentry = hash % (BLOCK_SIZE/sizeof(blockid_t));
/* and its bucket */
hashbucket = table->buckets[hashentry];
/* go down the bucket chain, reading each entry till we are done ... */
hashprev = 0;
while (hashbucket != 0) {
struct _hashblock *bucket;
char *start, *end;
int ind;
d(printf(" checking bucket %d\n", hashbucket));
/* get the real bucket id from the hashbucket id */
bucket = (struct _hashblock *)ibex_block_read(index->blocks, HASH_BLOCK(hashbucket));
/* and get the key number within the block */
ind = HASH_INDEX(hashbucket);
g_assert(ind < bucket->used);
start = &bucket->hb_keydata[bucket->hb_keys[ind].keyoffset];
if (ind == 0) {
end = &bucket->hb_keydata[sizeof(bucket->hb_keydata)/sizeof(bucket->hb_keydata[0])];
} else {
end = &bucket->hb_keydata[bucket->hb_keys[ind-1].keyoffset];
}
if ( (end-start) == keylen
&& memcmp(start, key, keylen) == 0) {
struct _hashblock *prevbucket;
if (hashprev == 0) {
/* unlink from hash chain */
table->buckets[hashentry] = bucket->hb_keys[HASH_INDEX(hashbucket)].next;
/* link into free list */
bucket->hb_keys[HASH_INDEX(hashbucket)].next = hashroot->free;
hashroot->free = hashbucket;
/* compress away data */
hash_compress(bucket, HASH_INDEX(hashbucket));
ibex_block_dirty((struct _block *)bucket);
ibex_block_dirty((struct _block *)table);
ibex_block_dirty((struct _block *)hashroot);
} else {
prevbucket = (struct _hashblock *)ibex_block_read(index->blocks, HASH_BLOCK(hashprev));
prevbucket->hb_keys[HASH_INDEX(hashprev)].next =
bucket->hb_keys[ind].next;
/* link into free list */
bucket->hb_keys[ind].next = hashroot->free;
hashroot->free = hashbucket;
/* compress entry */
hash_compress(bucket, ind);
ibex_block_dirty((struct _block *)bucket);
ibex_block_dirty((struct _block *)prevbucket);
ibex_block_dirty((struct _block *)hashroot);
}
return;
}
hashprev = hashbucket;
hashbucket = bucket->hb_keys[ind].next;
}
}
/* set where the datablock is located */
static void
hash_set_data_block(struct _IBEXIndex *index, hashid_t keyid, blockid_t blockid, blockid_t tail)
{
struct _hashblock *bucket;
d(printf("setting data block hash %d to %d tail %d\n", keyid, blockid, tail));
/* map to a block number */
g_assert((blockid & (BLOCK_SIZE-1)) == 0);
blockid >>= BLOCK_BITS;
bucket = (struct _hashblock *)ibex_block_read(index->blocks, HASH_BLOCK(keyid));
if (bucket->hb_keys[HASH_INDEX(keyid)].root != blockid
|| bucket->hb_keys[HASH_INDEX(keyid)].tail != tail) {
bucket->hb_keys[HASH_INDEX(keyid)].tail = tail;
bucket->hb_keys[HASH_INDEX(keyid)].root = blockid;
ibex_block_dirty((struct _block *)bucket);
}
}
static blockid_t
hash_get_data_block(struct _IBEXIndex *index, hashid_t keyid, blockid_t *tail)
{
struct _hashblock *bucket;
d(printf("getting data block hash %d\n", keyid));
if (keyid == 0) {
if (tail)
*tail = 0;
return 0;
}
bucket = (struct _hashblock *)ibex_block_read(index->blocks, HASH_BLOCK(keyid));
if (tail)
*tail = bucket->hb_keys[HASH_INDEX(keyid)].tail;
return bucket->hb_keys[HASH_INDEX(keyid)].root << BLOCK_BITS;
}
static hashid_t
hash_insert(struct _IBEXIndex *index, const char *key, int keylen)
{
struct _hashroot *hashroot;
guint32 hash;
int hashentry;
blockid_t hashtable;
hashid_t hashbucket, keybucket, keyprev, keyfree;
struct _hashtableblock *table;
struct _hashblock *bucket;
int count;
g_assert(index != 0);
g_assert(index->root != 0);
/* truncate the key to the maximum size */
if (keylen > MAX_KEYLEN)
keylen = MAX_KEYLEN;
d(printf("inserting hash %.*s\n", keylen, key));
hashroot = (struct _hashroot *)ibex_block_read(index->blocks, index->root);
/* find the table containing this entry */
hash = hash_key(key, keylen) % hashroot->size;
hashtable = hashroot->table[hash / (BLOCK_SIZE/sizeof(blockid_t))];
table = (struct _hashtableblock *)ibex_block_read(index->blocks, hashtable);
hashentry = hash % (BLOCK_SIZE/sizeof(blockid_t));
/* and its bucket */
hashbucket = table->buckets[hashentry];
/* now look for a free slot, first try the free list */
/* but dont try too hard if our key is just too long ... so just scan upto
4 blocks, but if we dont find a space, tough ... */
keybucket = hashroot->free;
keyprev = 0;
count = 0;
while (keybucket && count<4) {
int space;
d(printf(" checking free %d\n", keybucket));
/* read the bucket containing this free key */
bucket = (struct _hashblock *)ibex_block_read(index->blocks, HASH_BLOCK(keybucket));
/* check if there is enough space for the key */
space = &bucket->hb_keydata[bucket->hb_keys[bucket->used-1].keyoffset]
- (char *)&bucket->hb_keys[bucket->used];
if (space >= keylen) {
hash_expand(bucket, HASH_INDEX(keybucket), keylen);
memcpy(&bucket->hb_keydata[bucket->hb_keys[HASH_INDEX(keybucket)].keyoffset],
key, keylen);
/* check if there is free space still in this node, and there are no other empty blocks */
keyfree = bucket->hb_keys[HASH_INDEX(keybucket)].next;
if ((space-keylen) >= KEY_THRESHOLD) {
int i;
int head = ARRAY_LEN(bucket->hb_keydata);
int found = FALSE;
for (i=0;i<bucket->used;i++) {
if (bucket->hb_keys[i].keyoffset == head) {
/* already have a free slot in this block, leave it */
found = TRUE;
break;
}
head = bucket->hb_keys[i].keyoffset;
}
if (!found) {
/* we should link in a new free slot for this node */
bucket->hb_keys[bucket->used].next = bucket->hb_keys[HASH_INDEX(keybucket)].next;
bucket->hb_keys[bucket->used].keyoffset = bucket->hb_keys[bucket->used-1].keyoffset;
keyfree = HASH_KEY(HASH_BLOCK(keybucket), bucket->used);
bucket->used++;
}
}
/* link 'keyfree' back to the parent ... */
if (keyprev == 0) {
hashroot->free = keyfree;
ibex_block_dirty((struct _block *)hashroot);
} else {
struct _hashblock *prevbucket;
prevbucket = (struct _hashblock *)ibex_block_read(index->blocks, HASH_BLOCK(keyprev));
prevbucket->hb_keys[HASH_INDEX(keyprev)].next = keyfree;
ibex_block_dirty((struct _block *)prevbucket);
}
/* link into the hash chain */
bucket->hb_keys[HASH_INDEX(keybucket)].next = hashbucket;
bucket->hb_keys[HASH_INDEX(keybucket)].root = 0;
bucket->hb_keys[HASH_INDEX(keybucket)].tail = 0;
table->buckets[hashentry] = keybucket;
ibex_block_dirty((struct _block *)table);
ibex_block_dirty((struct _block *)bucket);
d(printf(" new key id %d\n", keybucket));
d(printf(" new free id %d\n", hashroot->free));
return keybucket;
}
count++;
keyprev = keybucket;
keybucket = bucket->hb_keys[HASH_INDEX(keybucket)].next;
}
/* else create a new block ... */
keybucket = ibex_block_get(index->blocks);
bucket = (struct _hashblock *)ibex_block_read(index->blocks, keybucket);
d(printf("creating new key bucket %d\n", keybucket));
memset(bucket, 0, sizeof(*bucket));
bucket->used = 2;
/* first block, is the new key */
bucket->hb_keys[0].keyoffset = ARRAY_LEN(bucket->hb_keydata) - keylen;
memcpy(&bucket->hb_keydata[bucket->hb_keys[0].keyoffset], key, keylen);
bucket->hb_keys[0].next = hashbucket;
bucket->hb_keys[0].root = 0;
bucket->hb_keys[0].tail = 0;
table->buckets[hashentry] = HASH_KEY(keybucket, 0);
/* next block is a free block, link into free list */
bucket->hb_keys[1].keyoffset = bucket->hb_keys[0].keyoffset;
bucket->hb_keys[1].next = hashroot->free;
hashroot->free = HASH_KEY(keybucket, 1);
ibex_block_dirty((struct _block *)hashroot);
ibex_block_dirty((struct _block *)table);
ibex_block_dirty((struct _block *)bucket);
d(printf(" new key id %d\n", HASH_KEY(keybucket, 0)));
d(printf(" new free id %d\n", hashroot->free));
return HASH_KEY(keybucket, 0);
}
/* debug */
void ibex_hash_dump(struct _IBEXIndex *index);
static void ibex_hash_dump_rec(struct _IBEXIndex *index, int *words, int *wordslen);
void ibex_hash_dump(struct _IBEXIndex *index)
{
int words = 0, wordslen=0;
ibex_hash_dump_rec(index, &words, &wordslen);
printf("Total words = %d, bytes = %d, ave length = %f\n", words, wordslen, (double)wordslen/(double)words);
}
static void
ibex_hash_dump_rec(struct _IBEXIndex *index, int *words, int *wordslen)
{
int i;
struct _hashtableblock *table;
struct _hashblock *bucket;
struct _hashroot *hashroot;
blockid_t hashtable;
hashid_t hashbucket;
printf("Walking hash tree:\n");
hashroot = (struct _hashroot *)ibex_block_read(index->blocks, index->root);
for (i=0;i<hashroot->size;i++) {
printf("Hash table chain: %d\n", i);
hashtable = hashroot->table[i / (BLOCK_SIZE/sizeof(blockid_t))];
table = (struct _hashtableblock *)ibex_block_read(index->blocks, hashtable);
hashbucket = table->buckets[i % (BLOCK_SIZE/sizeof(blockid_t))];
while (hashbucket) {
int len;
*words = *words + 1;
bucket = (struct _hashblock *)ibex_block_read(index->blocks, HASH_BLOCK(hashbucket));
printf(" bucket %d: [used %d]", hashbucket, bucket->used);
if (HASH_INDEX(hashbucket) == 0) {
len = ARRAY_LEN(bucket->hb_keydata) -
bucket->hb_keys[HASH_INDEX(hashbucket)].keyoffset;
} else {
len = bucket->hb_keys[HASH_INDEX(hashbucket)-1].keyoffset -
bucket->hb_keys[HASH_INDEX(hashbucket)].keyoffset;
}
printf("'%.*s' = %d next=%d\n", len, &bucket->hb_keydata[bucket->hb_keys[HASH_INDEX(hashbucket)].keyoffset],
bucket->hb_keys[HASH_INDEX(hashbucket)].root,
bucket->hb_keys[HASH_INDEX(hashbucket)].next);
*wordslen = *wordslen + len;
ibex_diskarray_dump(index->blocks,
bucket->hb_keys[HASH_INDEX(hashbucket)].root << BLOCK_BITS,
bucket->hb_keys[HASH_INDEX(hashbucket)].tail);
hashbucket = bucket->hb_keys[HASH_INDEX(hashbucket)].next;
}
/* make sure its still in the cache */
hashroot = (struct _hashroot *)ibex_block_read(index->blocks, index->root);
}
hashbucket = hashroot->free;
printf("Dumping free lists ..\n");
while (hashbucket) {
printf(" %d", hashbucket);
bucket = (struct _hashblock *)ibex_block_read(index->blocks, HASH_BLOCK(hashbucket));
hashbucket = bucket->hb_keys[HASH_INDEX(hashbucket)].next;
}
printf("\n");
}
#if 0
int main(int argc, char **argv)
{
struct _memcache *bc;
struct _IBEXIndex *hash;
int i;
bc = ibex_block_cache_open("index.db", O_CREAT|O_RDWR, 0600);
hash = ibex_hash_class.create(bc, 1024);
for (i=0;i<10000;i++) {
char key[16];
sprintf(key, "key %d", i);
ibex_hash_class.insert(hash, key, strlen(key));
}
for (i=500;i<1000;i++) {
char key[16];
sprintf(key, "key %d", i);
ibex_hash_class.remove(hash, key, strlen(key));
}
for (i=500;i<1000;i++) {
char key[16];
sprintf(key, "key %d", i);
ibex_hash_class.insert(hash, key, strlen(key));
}
ibex_hash_dump(hash);
for (i=0;i<2000;i++) {
char key[16], *lookup;
hashid_t keyid;
blockid_t root, tail;
sprintf(key, "key %d", i);
keyid = ibex_hash_class.find(hash, key, strlen(key));
lookup = ibex_hash_class.get_key(hash, keyid, 0);
root = ibex_hash_class.get_data(hash, keyid, &tail);
printf("key %s = %d = '%s' root:%d tail:%d \n", key, keyid, lookup, root, tail);
g_free(lookup);
}
ibex_hash_class.close(hash);
ibex_block_cache_close(bc);
return 0;
}
#endif
|