/* -*- Mode: C; tab-width: 8; indent-tabs-mode: t; c-basic-offset: 8 -*- * * Copyright (C) 2000 Ximian, Inc. * * Authors: Michael Zucchi <notzed@ximian.com> * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public License * as published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with the Gnome Library; see the file COPYING.LIB. If not, * write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ /* hash based index mechanism */ #include <stdio.h> #include <stdlib.h> #include <sys/types.h> #include <sys/stat.h> #include <fcntl.h> #include <unistd.h> #include <string.h> #include "block.h" #include "index.h" #define d(x) #define HASH_SIZE (1024) #define KEY_THRESHOLD (sizeof(struct _hashkey) + 4) /* minimum number of free bytes we worry about maintaining free blocks for */ #define ARRAY_LEN(a) (sizeof(a)/sizeof(a[0])) typedef guint32 hashid_t; struct _HASHCursor { struct _IBEXCursor cursor; hashid_t key; hashid_t block; unsigned int index; unsigned int size; }; static struct _IBEXIndex *hash_create(struct _memcache *bc, int size); static struct _IBEXIndex *hash_open(struct _memcache *bc, blockid_t root); static int hash_sync(struct _IBEXIndex *index); static int hash_close(struct _IBEXIndex *index); static hashid_t hash_find(struct _IBEXIndex *index, const char *key, int keylen); static void hash_remove(struct _IBEXIndex *index, const char *key, int keylen); static hashid_t hash_insert(struct _IBEXIndex *index, const char *key, int keylen); static char *hash_get_key(struct _IBEXIndex *index, hashid_t hashbucket, int *len); static void hash_set_data_block(struct _IBEXIndex *index, hashid_t keyid, blockid_t blockid, blockid_t tail); static blockid_t hash_get_data_block(struct _IBEXIndex *index, hashid_t keyid, blockid_t *tail); static struct _IBEXCursor *hash_get_cursor(struct _IBEXIndex *index); static struct _IBEXCursor *hash_cursor_create(struct _IBEXIndex *); static void hash_cursor_close(struct _IBEXCursor *); static guint32 hash_cursor_next(struct _IBEXCursor *); static char *hash_cursor_next_key(struct _IBEXCursor *, int *keylenptr); struct _IBEXIndexClass ibex_hash_class = { hash_create, hash_open, hash_sync, hash_close, hash_find, hash_remove, hash_insert, hash_get_key, hash_set_data_block, hash_get_data_block, hash_get_cursor, }; struct _IBEXCursorClass ibex_hash_cursor_class = { hash_cursor_close, hash_cursor_next, hash_cursor_next_key }; /* the reason we have the tail here is that otherwise we need to have a 32 bit blockid for the root node; which would make this structure the same size anyway, with about 24 wasted bits */ struct _hashkey { blockid_t next; /* next in hash chain */ blockid_t tail; unsigned int root:32-BLOCK_BITS; unsigned int keyoffset:BLOCK_BITS; }; struct _hashblock { unsigned int next:32-BLOCK_BITS; /* next block, linked list of all key blocks: block number */ unsigned int used:BLOCK_BITS; /* number of elements used */ union { struct _hashkey keys[(BLOCK_SIZE-4)/sizeof(struct _hashkey)]; char keydata[BLOCK_SIZE-4]; } hashblock_u; }; #define hb_keys hashblock_u.keys #define hb_keydata hashblock_u.keydata /* size of block overhead + 2 key block overhead */ #define MAX_KEYLEN (BLOCK_SIZE - 4 - 12 - 12) /* root block for a hash index */ struct _hashroot { hashid_t free; /* free list */ guint32 size; /* how big the hash table is */ hashid_t keys; /* linked list of blocks */ hashid_t table[(BLOCK_SIZE-8)/sizeof(hashid_t)]; /* pointers to blocks of pointers */ }; struct _hashtableblock { hashid_t buckets[BLOCK_SIZE/sizeof(hashid_t)]; }; /* map a hash index to a block index */ #define HASH_INDEX(b) ((b) & (BLOCK_SIZE-1)) /* map a hash index to a block number */ #define HASH_BLOCK(b) ((b) & ~(BLOCK_SIZE-1)) /* map a block + index to a hash key */ #define HASH_KEY(b, i) (((b) & ~(BLOCK_SIZE-1)) | ((i) & (BLOCK_SIZE-1))) /* taken from tdb/gdbm */ static unsigned int hash_key(const unsigned char *key, int keylen) { char *newkey; newkey = alloca(keylen+1); memcpy(newkey, key, keylen); newkey[keylen]=0; return g_str_hash(newkey); #if 0 unsigned int value; /* Used to compute the hash value. */ unsigned int i; /* Used to cycle through random values. */ /* Set the initial value from the key size. */ value = 0x238F13AF * keylen; for (i=0; i < keylen; i++) { value = (value + (key[i] << (i*5 % 24))); } value = (1103515243 * value + 12345); return value; #endif } /* create a new hash table, return a pointer to its root block */ static struct _IBEXIndex * hash_create(struct _memcache *bc, int size) { blockid_t root, block; struct _hashroot *hashroot; int i; struct _hashtableblock *table; struct _IBEXIndex *index; g_assert(size<=10240); d(printf("initialising hash table, size = %d\n", size)); index = g_malloc0(sizeof(*index)); index->blocks = bc; index->klass = &ibex_hash_class; root = ibex_block_get(bc); index->root = root; d(printf(" root = %d\n", root)); hashroot = (struct _hashroot *)ibex_block_read(bc, root); hashroot->free = 0; hashroot->size = size; ibex_block_dirty((struct _block *)hashroot); for (i=0;i<size/(BLOCK_SIZE/sizeof(blockid_t));i++) { d(printf("initialising hash table index block %d\n", i)); block = hashroot->table[i] = ibex_block_get(bc); table = (struct _hashtableblock *)ibex_block_read(bc, block); memset(table, 0, sizeof(table)); ibex_block_dirty((struct _block *)table); } return index; } static struct _IBEXIndex * hash_open(struct _memcache *bc, blockid_t root) { struct _IBEXIndex *index; /* FIXME: check a 'magic', and the root for validity */ index = g_malloc0(sizeof(*index)); index->blocks = bc; index->root = root; index->klass = &ibex_hash_class; return index; } static int hash_sync(struct _IBEXIndex *index) { /* nop, index always synced on disk (at least, to blocks) */ return 0; } static int hash_close(struct _IBEXIndex *index) { #ifdef INDEX_STAT printf("Performed %d lookups, average %f depth\n", index->lookups, (double)index->lookup_total/index->lookups); #endif g_free(index); return 0; } /* get an iterator class */ static struct _IBEXCursor *hash_get_cursor(struct _IBEXIndex *index) { return hash_cursor_create(index); } /* convert a hashbucket id into a name */ static char * hash_get_key(struct _IBEXIndex *index, hashid_t hashbucket, int *len) { struct _hashblock *bucket; int ind; char *ret, *start, *end; if (hashbucket == 0) { if (len) *len = 0; return g_strdup(""); } bucket = (struct _hashblock *)ibex_block_read(index->blocks, HASH_BLOCK(hashbucket)); ind = HASH_INDEX(hashbucket); ibex_block_cache_assert(index->blocks, ind < bucket->used); start = &bucket->hb_keydata[bucket->hb_keys[ind].keyoffset]; if (ind == 0) { end = &bucket->hb_keydata[sizeof(bucket->hb_keydata)/sizeof(bucket->hb_keydata[0])]; } else { end = &bucket->hb_keydata[bucket->hb_keys[ind-1].keyoffset]; } ret = g_malloc(end-start+1); memcpy(ret, start, end-start); ret[end-start]=0; if (len) *len = end-start; return ret; } /* sigh, this is fnugly code ... */ static hashid_t hash_find(struct _IBEXIndex *index, const char *key, int keylen) { struct _hashroot *hashroot; guint32 hash; int hashentry; blockid_t hashtable; hashid_t hashbucket; struct _hashtableblock *table; g_assert(index != 0); g_assert(index->root != 0); d(printf("finding hash %.*s\n", keylen, key)); /* truncate the key to the maximum size */ if (keylen > MAX_KEYLEN) keylen = MAX_KEYLEN; hashroot = (struct _hashroot *)ibex_block_read(index->blocks, index->root); /* find the table containing this entry */ hash = hash_key(key, keylen) % hashroot->size; hashtable = hashroot->table[hash / (BLOCK_SIZE/sizeof(blockid_t))]; ibex_block_cache_assert(index->blocks, hashtable != 0); table = (struct _hashtableblock *)ibex_block_read(index->blocks, hashtable); hashentry = hash % (BLOCK_SIZE/sizeof(blockid_t)); /* and its bucket */ hashbucket = table->buckets[hashentry]; #ifdef INDEX_STAT index->lookups++; #endif /* go down the bucket chain, reading each entry till we are done ... */ while (hashbucket != 0) { struct _hashblock *bucket; char *start, *end; int ind; #ifdef INDEX_STAT index->lookup_total++; #endif d(printf(" checking bucket %d\n", hashbucket)); /* get the real bucket id from the hashbucket id */ bucket = (struct _hashblock *)ibex_block_read(index->blocks, HASH_BLOCK(hashbucket)); /* and get the key number within the block */ ind = HASH_INDEX(hashbucket); ibex_block_cache_assert(index->blocks, ind < bucket->used); start = &bucket->hb_keydata[bucket->hb_keys[ind].keyoffset]; if (ind == 0) { end = &bucket->hb_keydata[sizeof(bucket->hb_keydata)/sizeof(bucket->hb_keydata[0])]; } else { end = &bucket->hb_keydata[bucket->hb_keys[ind-1].keyoffset]; } if ( (end-start) == keylen && memcmp(start, key, keylen) == 0) { return hashbucket; } hashbucket = bucket->hb_keys[ind].next; } return 0; } static int hash_info(struct _IBEXIndex *idex, struct _hashblock *bucket, int index) { char *start, *end; ibex_block_cache_assert(idex->blocks, index < bucket->used); start = &bucket->hb_keydata[bucket->hb_keys[index].keyoffset]; if (index == 0) { end = &bucket->hb_keydata[sizeof(bucket->hb_keydata)/sizeof(bucket->hb_keydata[0])]; } else { end = &bucket->hb_keydata[bucket->hb_keys[index-1].keyoffset]; } return end-start; } /* TODO: get rid of hash_compress/remove and just have one a-la the disktail code */ /* compresses the bucket 'bucket', removing data at index 'index' */ static void hash_compress(struct _hashblock *bucket, int index) { int i; char *start, *end, *newstart; /* get start/end of area to zap */ start = &bucket->hb_keydata[bucket->hb_keys[index].keyoffset]; if (index == 0) { end = &bucket->hb_keydata[sizeof(bucket->hb_keydata)/sizeof(bucket->hb_keydata[0])]; } else { end = &bucket->hb_keydata[bucket->hb_keys[index-1].keyoffset]; } if (start == end) return; /* fixup data */ newstart = &bucket->hb_keydata[bucket->hb_keys[bucket->used-1].keyoffset]; memmove(newstart+(end-start), newstart, start-newstart); /* fixup key pointers */ for (i=index;i<bucket->used;i++) { bucket->hb_keys[i].keyoffset += (end-start); } ibex_block_dirty((struct _block *)bucket); } /* make room 'len' for the key 'index' */ /* assumes key 'index' is already empty (0 length) */ static void hash_expand(struct _hashblock *bucket, int index, int len) { int i; char *end, *newstart; /* get start/end of area to zap */ if (index == 0) { end = &bucket->hb_keydata[sizeof(bucket->hb_keydata)/sizeof(bucket->hb_keydata[0])]; } else { end = &bucket->hb_keydata[bucket->hb_keys[index-1].keyoffset]; } /* fixup data */ newstart = &bucket->hb_keydata[bucket->hb_keys[bucket->used-1].keyoffset]; memmove(newstart-len, newstart, end-newstart); /* fixup key pointers */ for (i=index;i<bucket->used;i++) { bucket->hb_keys[i].keyoffset -= len; } ibex_block_dirty((struct _block *)bucket); } static void hash_remove(struct _IBEXIndex *index, const char *key, int keylen) { struct _hashroot *hashroot; guint32 hash; int hashentry; blockid_t hashtable; hashid_t hashbucket, hashprev; struct _hashtableblock *table; g_assert(index != 0); g_assert(index->root != 0); d(printf("removing hash %.*s\n", keylen, key)); /* truncate the key to the maximum size */ if (keylen > MAX_KEYLEN) keylen = MAX_KEYLEN; hashroot = (struct _hashroot *)ibex_block_read(index->blocks, index->root); /* find the table containing this entry */ hash = hash_key(key, keylen) % hashroot->size; hashtable = hashroot->table[hash / (BLOCK_SIZE/sizeof(blockid_t))]; table = (struct _hashtableblock *)ibex_block_read(index->blocks, hashtable); hashentry = hash % (BLOCK_SIZE/sizeof(blockid_t)); /* and its bucket */ hashbucket = table->buckets[hashentry]; /* go down the bucket chain, reading each entry till we are done ... */ hashprev = 0; while (hashbucket != 0) { struct _hashblock *bucket; char *start, *end; int ind; d(printf(" checking bucket %d\n", hashbucket)); /* get the real bucket id from the hashbucket id */ bucket = (struct _hashblock *)ibex_block_read(index->blocks, HASH_BLOCK(hashbucket)); /* and get the key number within the block */ ind = HASH_INDEX(hashbucket); ibex_block_cache_assert(index->blocks, ind < bucket->used); start = &bucket->hb_keydata[bucket->hb_keys[ind].keyoffset]; if (ind == 0) { end = &bucket->hb_keydata[sizeof(bucket->hb_keydata)/sizeof(bucket->hb_keydata[0])]; } else { end = &bucket->hb_keydata[bucket->hb_keys[ind-1].keyoffset]; } if ( (end-start) == keylen && memcmp(start, key, keylen) == 0) { struct _hashblock *prevbucket; if (hashprev == 0) { /* unlink from hash chain */ table->buckets[hashentry] = bucket->hb_keys[HASH_INDEX(hashbucket)].next; /* link into free list */ bucket->hb_keys[HASH_INDEX(hashbucket)].next = hashroot->free; hashroot->free = hashbucket; /* compress away data */ hash_compress(bucket, HASH_INDEX(hashbucket)); ibex_block_dirty((struct _block *)bucket); ibex_block_dirty((struct _block *)table); ibex_block_dirty((struct _block *)hashroot); } else { prevbucket = (struct _hashblock *)ibex_block_read(index->blocks, HASH_BLOCK(hashprev)); prevbucket->hb_keys[HASH_INDEX(hashprev)].next = bucket->hb_keys[ind].next; /* link into free list */ bucket->hb_keys[ind].next = hashroot->free; hashroot->free = hashbucket; /* compress entry */ hash_compress(bucket, ind); ibex_block_dirty((struct _block *)bucket); ibex_block_dirty((struct _block *)prevbucket); ibex_block_dirty((struct _block *)hashroot); } return; } hashprev = hashbucket; hashbucket = bucket->hb_keys[ind].next; } } /* set where the datablock is located */ static void hash_set_data_block(struct _IBEXIndex *index, hashid_t keyid, blockid_t blockid, blockid_t tail) { struct _hashblock *bucket; d(printf("setting data block hash %d to %d tail %d\n", keyid, blockid, tail)); /* map to a block number */ ibex_block_cache_assert(index->blocks, (blockid & (BLOCK_SIZE-1)) == 0); blockid >>= BLOCK_BITS; bucket = (struct _hashblock *)ibex_block_read(index->blocks, HASH_BLOCK(keyid)); if (bucket->hb_keys[HASH_INDEX(keyid)].root != blockid || bucket->hb_keys[HASH_INDEX(keyid)].tail != tail) { bucket->hb_keys[HASH_INDEX(keyid)].tail = tail; bucket->hb_keys[HASH_INDEX(keyid)].root = blockid; ibex_block_dirty((struct _block *)bucket); } } static blockid_t hash_get_data_block(struct _IBEXIndex *index, hashid_t keyid, blockid_t *tail) { struct _hashblock *bucket; d(printf("getting data block hash %d\n", keyid)); if (keyid == 0) { if (tail) *tail = 0; return 0; } bucket = (struct _hashblock *)ibex_block_read(index->blocks, HASH_BLOCK(keyid)); if (tail) *tail = bucket->hb_keys[HASH_INDEX(keyid)].tail; return bucket->hb_keys[HASH_INDEX(keyid)].root << BLOCK_BITS; } static hashid_t hash_insert(struct _IBEXIndex *index, const char *key, int keylen) { struct _hashroot *hashroot; guint32 hash; int hashentry; blockid_t hashtable; hashid_t hashbucket, keybucket, keyprev, keyfree; struct _hashtableblock *table; struct _hashblock *bucket; int count; g_assert(index != 0); g_assert(index->root != 0); /* truncate the key to the maximum size */ if (keylen > MAX_KEYLEN) keylen = MAX_KEYLEN; d(printf("inserting hash %.*s\n", keylen, key)); hashroot = (struct _hashroot *)ibex_block_read(index->blocks, index->root); /* find the table containing this entry */ hash = hash_key(key, keylen) % hashroot->size; hashtable = hashroot->table[hash / (BLOCK_SIZE/sizeof(blockid_t))]; table = (struct _hashtableblock *)ibex_block_read(index->blocks, hashtable); hashentry = hash % (BLOCK_SIZE/sizeof(blockid_t)); /* and its bucket */ hashbucket = table->buckets[hashentry]; /* now look for a free slot, first try the free list */ /* but dont try too hard if our key is just too long ... so just scan upto 4 blocks, but if we dont find a space, tough ... */ keybucket = hashroot->free; keyprev = 0; count = 0; while (keybucket && count<4) { int space; d(printf(" checking free %d\n", keybucket)); /* read the bucket containing this free key */ bucket = (struct _hashblock *)ibex_block_read(index->blocks, HASH_BLOCK(keybucket)); /* check if there is enough space for the key */ space = &bucket->hb_keydata[bucket->hb_keys[bucket->used-1].keyoffset] - (char *)&bucket->hb_keys[bucket->used]; if (space >= keylen) { hash_expand(bucket, HASH_INDEX(keybucket), keylen); memcpy(&bucket->hb_keydata[bucket->hb_keys[HASH_INDEX(keybucket)].keyoffset], key, keylen); /* check if there is free space still in this node, and there are no other empty blocks */ keyfree = bucket->hb_keys[HASH_INDEX(keybucket)].next; if ((space-keylen) >= KEY_THRESHOLD) { int i; int head = ARRAY_LEN(bucket->hb_keydata); int found = FALSE; for (i=0;i<bucket->used;i++) { if (bucket->hb_keys[i].keyoffset == head) { /* already have a free slot in this block, leave it */ found = TRUE; break; } head = bucket->hb_keys[i].keyoffset; } if (!found) { /* we should link in a new free slot for this node */ bucket->hb_keys[bucket->used].next = bucket->hb_keys[HASH_INDEX(keybucket)].next; bucket->hb_keys[bucket->used].keyoffset = bucket->hb_keys[bucket->used-1].keyoffset; keyfree = HASH_KEY(HASH_BLOCK(keybucket), bucket->used); bucket->used++; } } /* link 'keyfree' back to the parent ... */ if (keyprev == 0) { hashroot->free = keyfree; ibex_block_dirty((struct _block *)hashroot); } else { struct _hashblock *prevbucket; prevbucket = (struct _hashblock *)ibex_block_read(index->blocks, HASH_BLOCK(keyprev)); prevbucket->hb_keys[HASH_INDEX(keyprev)].next = keyfree; ibex_block_dirty((struct _block *)prevbucket); } /* link into the hash chain */ bucket->hb_keys[HASH_INDEX(keybucket)].next = hashbucket; bucket->hb_keys[HASH_INDEX(keybucket)].root = 0; bucket->hb_keys[HASH_INDEX(keybucket)].tail = 0; table->buckets[hashentry] = keybucket; ibex_block_dirty((struct _block *)table); ibex_block_dirty((struct _block *)bucket); d(printf(" new key id %d\n", keybucket)); d(printf(" new free id %d\n", hashroot->free)); return keybucket; } count++; keyprev = keybucket; keybucket = bucket->hb_keys[HASH_INDEX(keybucket)].next; } /* else create a new block ... */ keybucket = ibex_block_get(index->blocks); bucket = (struct _hashblock *)ibex_block_read(index->blocks, keybucket); d(printf("creating new key bucket %d\n", keybucket)); memset(bucket, 0, sizeof(*bucket)); bucket->used = 2; /* first block, is the new key */ bucket->hb_keys[0].keyoffset = ARRAY_LEN(bucket->hb_keydata) - keylen; memcpy(&bucket->hb_keydata[bucket->hb_keys[0].keyoffset], key, keylen); bucket->hb_keys[0].next = hashbucket; bucket->hb_keys[0].root = 0; bucket->hb_keys[0].tail = 0; table->buckets[hashentry] = HASH_KEY(keybucket, 0); /* next block is a free block, link into free list */ bucket->hb_keys[1].keyoffset = bucket->hb_keys[0].keyoffset; bucket->hb_keys[1].next = hashroot->free; hashroot->free = HASH_KEY(keybucket, 1); /* link new block into keys list */ bucket->next = block_number(hashroot->keys); hashroot->keys = keybucket; ibex_block_dirty((struct _block *)hashroot); ibex_block_dirty((struct _block *)table); ibex_block_dirty((struct _block *)bucket); d(printf(" new key id %d\n", HASH_KEY(keybucket, 0))); d(printf(" new free id %d\n", hashroot->free)); return HASH_KEY(keybucket, 0); } /* hash cursor functions */ static struct _IBEXCursor * hash_cursor_create(struct _IBEXIndex *idx) { struct _HASHCursor *idc; struct _hashroot *hashroot; idc = g_malloc(sizeof(*idc)); idc->cursor.klass = &ibex_hash_cursor_class; idc->cursor.index = idx; idc->key = 0; idc->index = 0; hashroot = (struct _hashroot *)ibex_block_read(idx->blocks, idx->root); idc->size = hashroot->size; idc->block = hashroot->keys; return &idc->cursor; } static void hash_cursor_close(struct _IBEXCursor *idc) { g_free(idc); } static guint32 hash_cursor_next(struct _IBEXCursor *idc) { struct _HASHCursor *hc = (struct _HASHCursor *)idc; struct _hashblock *bucket; while (hc->block != 0) { bucket = (struct _hashblock *)ibex_block_read(idc->index->blocks, hc->block); while (hc->index < bucket->used) { if (hash_info(idc->index, bucket, hc->index) > 0) { hc->key = HASH_KEY(hc->block, hc->index); hc->index++; if (hc->index == bucket->used) { hc->index = 0; hc->block = block_location(bucket->next); } return hc->key; } hc->index++; } hc->index = 0; hc->block = block_location(bucket->next); } return hc->block; } static char * hash_cursor_next_key(struct _IBEXCursor *idc, int *keylenptr) { /* TODO: this could be made slightly mroe efficient going to the structs direct. but i'm lazy today */ return idc->index->klass->get_key(idc->index, idc->klass->next(idc), keylenptr); } /* debug */ void ibex_hash_dump(struct _IBEXIndex *index); static void ibex_hash_dump_rec(struct _IBEXIndex *index, int *words, int *wordslen); void ibex_hash_dump(struct _IBEXIndex *index) { int words = 0, wordslen=0; ibex_hash_dump_rec(index, &words, &wordslen); printf("Total words = %d, bytes = %d, ave length = %f\n", words, wordslen, (double)wordslen/(double)words); } static void ibex_hash_dump_rec(struct _IBEXIndex *index, int *words, int *wordslen) { int i; struct _hashtableblock *table; struct _hashblock *bucket; struct _hashroot *hashroot; blockid_t hashtable; hashid_t hashbucket; extern void ibex_diskarray_dump(struct _memcache *blocks, blockid_t head, blockid_t tail); printf("Walking hash tree:\n"); hashroot = (struct _hashroot *)ibex_block_read(index->blocks, index->root); for (i=0;i<hashroot->size;i++) { printf("Hash table chain: %d\n", i); hashtable = hashroot->table[i / (BLOCK_SIZE/sizeof(blockid_t))]; table = (struct _hashtableblock *)ibex_block_read(index->blocks, hashtable); hashbucket = table->buckets[i % (BLOCK_SIZE/sizeof(blockid_t))]; while (hashbucket) { int len; *words = *words + 1; bucket = (struct _hashblock *)ibex_block_read(index->blocks, HASH_BLOCK(hashbucket)); printf(" bucket %d: [used %d]", hashbucket, bucket->used); if (HASH_INDEX(hashbucket) == 0) { len = ARRAY_LEN(bucket->hb_keydata) - bucket->hb_keys[HASH_INDEX(hashbucket)].keyoffset; } else { len = bucket->hb_keys[HASH_INDEX(hashbucket)-1].keyoffset - bucket->hb_keys[HASH_INDEX(hashbucket)].keyoffset; } printf("'%.*s' = %d next=%d\n", len, &bucket->hb_keydata[bucket->hb_keys[HASH_INDEX(hashbucket)].keyoffset], bucket->hb_keys[HASH_INDEX(hashbucket)].root, bucket->hb_keys[HASH_INDEX(hashbucket)].next); *wordslen = *wordslen + len; ibex_diskarray_dump(index->blocks, bucket->hb_keys[HASH_INDEX(hashbucket)].root << BLOCK_BITS, bucket->hb_keys[HASH_INDEX(hashbucket)].tail); hashbucket = bucket->hb_keys[HASH_INDEX(hashbucket)].next; } /* make sure its still in the cache */ hashroot = (struct _hashroot *)ibex_block_read(index->blocks, index->root); } hashbucket = hashroot->free; printf("Dumping free lists ..\n"); while (hashbucket) { printf(" %d", hashbucket); bucket = (struct _hashblock *)ibex_block_read(index->blocks, HASH_BLOCK(hashbucket)); hashbucket = bucket->hb_keys[HASH_INDEX(hashbucket)].next; } printf("\n"); } #if 0 int main(int argc, char **argv) { struct _memcache *bc; struct _IBEXIndex *hash; int i; bc = ibex_block_cache_open("index.db", O_CREAT|O_RDWR, 0600); hash = ibex_hash_class.create(bc, 1024); for (i=0;i<10000;i++) { char key[16]; sprintf(key, "key %d", i); ibex_hash_class.insert(hash, key, strlen(key)); } for (i=500;i<1000;i++) { char key[16]; sprintf(key, "key %d", i); ibex_hash_class.remove(hash, key, strlen(key)); } for (i=500;i<1000;i++) { char key[16]; sprintf(key, "key %d", i); ibex_hash_class.insert(hash, key, strlen(key)); } ibex_hash_dump(hash); for (i=0;i<2000;i++) { char key[16], *lookup; hashid_t keyid; blockid_t root, tail; sprintf(key, "key %d", i); keyid = ibex_hash_class.find(hash, key, strlen(key)); lookup = ibex_hash_class.get_key(hash, keyid, 0); root = ibex_hash_class.get_data(hash, keyid, &tail); printf("key %s = %d = '%s' root:%d tail:%d \n", key, keyid, lookup, root, tail); g_free(lookup); } ibex_hash_class.close(hash); ibex_block_cache_close(bc); return 0; } #endif