/* -*- Mode: C; tab-width: 8; indent-tabs-mode: t; c-basic-offset: 8 -*- */ /* * Copyright 2002 Ximian, Inc. (www.ximian.com) * * This program is free software; you can redistribute it and/or * modify it under the terms of version 2 of the GNU General Public * License as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. * */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include "camel-sasl-ntlm.h" #include <ctype.h> #include <string.h> CamelServiceAuthType camel_sasl_ntlm_authtype = { N_("NTLM / SPA"), N_("This option will connect to a Windows-based server using " "NTLM / Secure Password Authentication."), "NTLM", TRUE }; static CamelSaslClass *parent_class = NULL; static GByteArray *ntlm_challenge (CamelSasl *sasl, GByteArray *token, CamelException *ex); static void camel_sasl_ntlm_class_init (CamelSaslNTLMClass *camel_sasl_ntlm_class) { CamelSaslClass *camel_sasl_class = CAMEL_SASL_CLASS (camel_sasl_ntlm_class); parent_class = CAMEL_SASL_CLASS (camel_type_get_global_classfuncs (camel_sasl_get_type ())); /* virtual method overload */ camel_sasl_class->challenge = ntlm_challenge; } CamelType camel_sasl_ntlm_get_type (void) { static CamelType type = CAMEL_INVALID_TYPE; if (type == CAMEL_INVALID_TYPE) { type = camel_type_register ( camel_sasl_get_type (), "CamelSaslNTLM", sizeof (CamelSaslNTLM), sizeof (CamelSaslNTLMClass), (CamelObjectClassInitFunc) camel_sasl_ntlm_class_init, NULL, NULL, NULL); } return type; } #define NTLM_REQUEST "NTLMSSP\x00\x01\x00\x00\x00\x06\x82\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x30\x00\x00\x00\x00\x00\x00\x00\x30\x00\x00\x00" #define NTLM_CHALLENGE_NONCE_OFFSET 24 #define NTLM_CHALLENGE_DOMAIN_OFFSET 48 #define NTLM_CHALLENGE_DOMAIN_LEN_OFFSET 44 #define NTLM_RESPONSE_HEADER "NTLMSSP\x00\x03\x00\x00\x00" #define NTLM_RESPONSE_FLAGS "\x82\x01" #define NTLM_RESPONSE_BASE_SIZE 64 #define NTLM_RESPONSE_LM_RESP_OFFSET 12 #define NTLM_RESPONSE_NT_RESP_OFFSET 20 #define NTLM_RESPONSE_DOMAIN_OFFSET 28 #define NTLM_RESPONSE_USER_OFFSET 36 #define NTLM_RESPONSE_HOST_OFFSET 44 #define NTLM_RESPONSE_FLAGS_OFFSET 60 static void ntlm_calc_response (const guchar key[21], const guchar plaintext[8], guchar results[24]); static void ntlm_lanmanager_hash (const char *password, char hash[21]); static void ntlm_nt_hash (const char *password, char hash[21]); static void ntlm_set_string (GByteArray *ba, int offset, const char *data, int len); static GByteArray * ntlm_challenge (CamelSasl *sasl, GByteArray *token, CamelException *ex) { GByteArray *ret; guchar nonce[8], hash[21], lm_resp[24], nt_resp[24]; ret = g_byte_array_new (); if (!token || !token->len) { g_byte_array_append (ret, NTLM_REQUEST, sizeof (NTLM_REQUEST) - 1); return ret; } memcpy (nonce, token->data + NTLM_CHALLENGE_NONCE_OFFSET, 8); ntlm_lanmanager_hash (sasl->service->url->passwd, hash); ntlm_calc_response (hash, nonce, lm_resp); ntlm_nt_hash (sasl->service->url->passwd, hash); ntlm_calc_response (hash, nonce, nt_resp); ret = g_byte_array_new (); g_byte_array_set_size (ret, NTLM_RESPONSE_BASE_SIZE); memset (ret->data, 0, NTLM_RESPONSE_BASE_SIZE); memcpy (ret->data, NTLM_RESPONSE_HEADER, sizeof (NTLM_RESPONSE_HEADER) - 1); memcpy (ret->data + NTLM_RESPONSE_FLAGS_OFFSET, NTLM_RESPONSE_FLAGS, sizeof (NTLM_RESPONSE_FLAGS) - 1); ntlm_set_string (ret, NTLM_RESPONSE_DOMAIN_OFFSET, token->data + NTLM_CHALLENGE_DOMAIN_OFFSET, atoi (token->data + NTLM_CHALLENGE_DOMAIN_LEN_OFFSET)); ntlm_set_string (ret, NTLM_RESPONSE_USER_OFFSET, sasl->service->url->user, strlen (sasl->service->url->user)); ntlm_set_string (ret, NTLM_RESPONSE_HOST_OFFSET, "UNKNOWN", sizeof ("UNKNOWN") - 1); ntlm_set_string (ret, NTLM_RESPONSE_LM_RESP_OFFSET, lm_resp, sizeof (lm_resp)); ntlm_set_string (ret, NTLM_RESPONSE_NT_RESP_OFFSET, nt_resp, sizeof (nt_resp)); sasl->authenticated = TRUE; return ret; } /* MD4 */ static void md4sum (const unsigned char *in, int nbytes, unsigned char digest[16]); /* DES */ typedef unsigned long DES_KS[16][2]; /* Single-key DES key schedule */ static void deskey (DES_KS, unsigned char *, int); static void des (DES_KS, unsigned char *); static void setup_schedule (const guchar *key_56, DES_KS ks); #define LM_PASSWORD_MAGIC "\x4B\x47\x53\x21\x40\x23\x24\x25" \ "\x4B\x47\x53\x21\x40\x23\x24\x25" \ "\x00\x00\x00\x00\x00" static void ntlm_lanmanager_hash (const char *password, char hash[21]) { guchar lm_password [15]; DES_KS ks; int i; for (i = 0; i < 14 && password [i]; i++) lm_password [i] = toupper ((unsigned char) password [i]); for (; i < 15; i++) lm_password [i] = '\0'; memcpy (hash, LM_PASSWORD_MAGIC, 21); setup_schedule (lm_password, ks); des (ks, hash); setup_schedule (lm_password + 7, ks); des (ks, hash + 8); } static void ntlm_nt_hash (const char *password, char hash[21]) { unsigned char *buf, *p; p = buf = g_malloc (strlen (password) * 2); while (*password) { *p++ = *password++; *p++ = '\0'; } md4sum (buf, p - buf, hash); memset (hash + 16, 0, 5); g_free (buf); } static void ntlm_set_string (GByteArray *ba, int offset, const char *data, int len) { ba->data[offset ] = ba->data[offset + 2] = len & 0xFF; ba->data[offset + 1] = ba->data[offset + 3] = (len >> 8) & 0xFF; ba->data[offset + 4] = ba->len & 0xFF; ba->data[offset + 5] = (ba->len >> 8) & 0xFF; g_byte_array_append (ba, data, len); } #define KEYBITS(k,s) \ (((k[(s)/8] << ((s)%8)) & 0xFF) | (k[(s)/8+1] >> (8-(s)%8))) /* DES utils */ /* Set up a key schedule based on a 56bit key */ static void setup_schedule (const guchar *key_56, DES_KS ks) { guchar key[8]; int i, c, bit; for (i = 0; i < 8; i++) { key [i] = KEYBITS (key_56, i * 7); /* Fix parity */ for (c = bit = 0; bit < 8; bit++) if (key [i] & (1 << bit)) c++; if (!(c & 1)) key [i] ^= 0x01; } deskey (ks, key, 0); } static void ntlm_calc_response (const guchar key[21], const guchar plaintext[8], guchar results[24]) { DES_KS ks; memcpy (results, plaintext, 8); memcpy (results + 8, plaintext, 8); memcpy (results + 16, plaintext, 8); setup_schedule (key, ks); des (ks, results); setup_schedule (key + 7, ks); des (ks, results + 8); setup_schedule (key + 14, ks); des (ks, results + 16); } /* * MD4 encoder. (The one everyone else uses is not GPL-compatible; * this is a reimplementation from spec.) This doesn't need to be * efficient for our purposes, although it would be nice to fix * it to not malloc()... */ #define F(X,Y,Z) ( ((X)&(Y)) | ((~(X))&(Z)) ) #define G(X,Y,Z) ( ((X)&(Y)) | ((X)&(Z)) | ((Y)&(Z)) ) #define H(X,Y,Z) ( (X)^(Y)^(Z) ) #define ROT(val, n) ( ((val) << (n)) | ((val) >> (32 - (n))) ) static void md4sum (const unsigned char *in, int nbytes, unsigned char digest[16]) { unsigned char *M; guint32 A, B, C, D, AA, BB, CC, DD, X[16]; int pbytes, nbits = nbytes * 8, i, j; pbytes = (120 - (nbytes % 64)) % 64; M = alloca (nbytes + pbytes + 8); memcpy (M, in, nbytes); memset (M + nbytes, 0, pbytes + 8); M[nbytes] = 0x80; M[nbytes + pbytes] = nbits & 0xFF; M[nbytes + pbytes + 1] = (nbits >> 8) & 0xFF; M[nbytes + pbytes + 2] = (nbits >> 16) & 0xFF; M[nbytes + pbytes + 3] = (nbits >> 24) & 0xFF; A = 0x67452301; B = 0xEFCDAB89; C = 0x98BADCFE; D = 0x10325476; for (i = 0; i < nbytes + pbytes + 8; i += 64) { for (j = 0; j < 16; j++) { X[j] = (M[i + j*4]) | (M[i + j*4 + 1] << 8) | (M[i + j*4 + 2] << 16) | (M[i + j*4 + 3] << 24); } AA = A; BB = B; CC = C; DD = D; A = ROT (A + F(B, C, D) + X[0], 3); D = ROT (D + F(A, B, C) + X[1], 7); C = ROT (C + F(D, A, B) + X[2], 11); B = ROT (B + F(C, D, A) + X[3], 19); A = ROT (A + F(B, C, D) + X[4], 3); D = ROT (D + F(A, B, C) + X[5], 7); C = ROT (C + F(D, A, B) + X[6], 11); B = ROT (B + F(C, D, A) + X[7], 19); A = ROT (A + F(B, C, D) + X[8], 3); D = ROT (D + F(A, B, C) + X[9], 7); C = ROT (C + F(D, A, B) + X[10], 11); B = ROT (B + F(C, D, A) + X[11], 19); A = ROT (A + F(B, C, D) + X[12], 3); D = ROT (D + F(A, B, C) + X[13], 7); C = ROT (C + F(D, A, B) + X[14], 11); B = ROT (B + F(C, D, A) + X[15], 19); A = ROT (A + G(B, C, D) + X[0] + 0x5A827999, 3); D = ROT (D + G(A, B, C) + X[4] + 0x5A827999, 5); C = ROT (C + G(D, A, B) + X[8] + 0x5A827999, 9); B = ROT (B + G(C, D, A) + X[12] + 0x5A827999, 13); A = ROT (A + G(B, C, D) + X[1] + 0x5A827999, 3); D = ROT (D + G(A, B, C) + X[5] + 0x5A827999, 5); C = ROT (C + G(D, A, B) + X[9] + 0x5A827999, 9); B = ROT (B + G(C, D, A) + X[13] + 0x5A827999, 13); A = ROT (A + G(B, C, D) + X[2] + 0x5A827999, 3); D = ROT (D + G(A, B, C) + X[6] + 0x5A827999, 5); C = ROT (C + G(D, A, B) + X[10] + 0x5A827999, 9); B = ROT (B + G(C, D, A) + X[14] + 0x5A827999, 13); A = ROT (A + G(B, C, D) + X[3] + 0x5A827999, 3); D = ROT (D + G(A, B, C) + X[7] + 0x5A827999, 5); C = ROT (C + G(D, A, B) + X[11] + 0x5A827999, 9); B = ROT (B + G(C, D, A) + X[15] + 0x5A827999, 13); A = ROT (A + H(B, C, D) + X[0] + 0x6ED9EBA1, 3); D = ROT (D + H(A, B, C) + X[8] + 0x6ED9EBA1, 9); C = ROT (C + H(D, A, B) + X[4] + 0x6ED9EBA1, 11); B = ROT (B + H(C, D, A) + X[12] + 0x6ED9EBA1, 15); A = ROT (A + H(B, C, D) + X[2] + 0x6ED9EBA1, 3); D = ROT (D + H(A, B, C) + X[10] + 0x6ED9EBA1, 9); C = ROT (C + H(D, A, B) + X[6] + 0x6ED9EBA1, 11); B = ROT (B + H(C, D, A) + X[14] + 0x6ED9EBA1, 15); A = ROT (A + H(B, C, D) + X[1] + 0x6ED9EBA1, 3); D = ROT (D + H(A, B, C) + X[9] + 0x6ED9EBA1, 9); C = ROT (C + H(D, A, B) + X[5] + 0x6ED9EBA1, 11); B = ROT (B + H(C, D, A) + X[13] + 0x6ED9EBA1, 15); A = ROT (A + H(B, C, D) + X[3] + 0x6ED9EBA1, 3); D = ROT (D + H(A, B, C) + X[11] + 0x6ED9EBA1, 9); C = ROT (C + H(D, A, B) + X[7] + 0x6ED9EBA1, 11); B = ROT (B + H(C, D, A) + X[15] + 0x6ED9EBA1, 15); A += AA; B += BB; C += CC; D += DD; } digest[0] = A & 0xFF; digest[1] = (A >> 8) & 0xFF; digest[2] = (A >> 16) & 0xFF; digest[3] = (A >> 24) & 0xFF; digest[4] = B & 0xFF; digest[5] = (B >> 8) & 0xFF; digest[6] = (B >> 16) & 0xFF; digest[7] = (B >> 24) & 0xFF; digest[8] = C & 0xFF; digest[9] = (C >> 8) & 0xFF; digest[10] = (C >> 16) & 0xFF; digest[11] = (C >> 24) & 0xFF; digest[12] = D & 0xFF; digest[13] = (D >> 8) & 0xFF; digest[14] = (D >> 16) & 0xFF; digest[15] = (D >> 24) & 0xFF; } /* Public domain DES implementation from Phil Karn */ static unsigned long Spbox[8][64] = { { 0x01010400, 0x00000000, 0x00010000, 0x01010404, 0x01010004, 0x00010404, 0x00000004, 0x00010000, 0x00000400, 0x01010400, 0x01010404, 0x00000400, 0x01000404, 0x01010004, 0x01000000, 0x00000004, 0x00000404, 0x01000400, 0x01000400, 0x00010400, 0x00010400, 0x01010000, 0x01010000, 0x01000404, 0x00010004, 0x01000004, 0x01000004, 0x00010004, 0x00000000, 0x00000404, 0x00010404, 0x01000000, 0x00010000, 0x01010404, 0x00000004, 0x01010000, 0x01010400, 0x01000000, 0x01000000, 0x00000400, 0x01010004, 0x00010000, 0x00010400, 0x01000004, 0x00000400, 0x00000004, 0x01000404, 0x00010404, 0x01010404, 0x00010004, 0x01010000, 0x01000404, 0x01000004, 0x00000404, 0x00010404, 0x01010400, 0x00000404, 0x01000400, 0x01000400, 0x00000000, 0x00010004, 0x00010400, 0x00000000, 0x01010004 }, { 0x80108020, 0x80008000, 0x00008000, 0x00108020, 0x00100000, 0x00000020, 0x80100020, 0x80008020, 0x80000020, 0x80108020, 0x80108000, 0x80000000, 0x80008000, 0x00100000, 0x00000020, 0x80100020, 0x00108000, 0x00100020, 0x80008020, 0x00000000, 0x80000000, 0x00008000, 0x00108020, 0x80100000, 0x00100020, 0x80000020, 0x00000000, 0x00108000, 0x00008020, 0x80108000, 0x80100000, 0x00008020, 0x00000000, 0x00108020, 0x80100020, 0x00100000, 0x80008020, 0x80100000, 0x80108000, 0x00008000, 0x80100000, 0x80008000, 0x00000020, 0x80108020, 0x00108020, 0x00000020, 0x00008000, 0x80000000, 0x00008020, 0x80108000, 0x00100000, 0x80000020, 0x00100020, 0x80008020, 0x80000020, 0x00100020, 0x00108000, 0x00000000, 0x80008000, 0x00008020, 0x80000000, 0x80100020, 0x80108020, 0x00108000 }, { 0x00000208, 0x08020200, 0x00000000, 0x08020008, 0x08000200, 0x00000000, 0x00020208, 0x08000200, 0x00020008, 0x08000008, 0x08000008, 0x00020000, 0x08020208, 0x00020008, 0x08020000, 0x00000208, 0x08000000, 0x00000008, 0x08020200, 0x00000200, 0x00020200, 0x08020000, 0x08020008, 0x00020208, 0x08000208, 0x00020200, 0x00020000, 0x08000208, 0x00000008, 0x08020208, 0x00000200, 0x08000000, 0x08020200, 0x08000000, 0x00020008, 0x00000208, 0x00020000, 0x08020200, 0x08000200, 0x00000000, 0x00000200, 0x00020008, 0x08020208, 0x08000200, 0x08000008, 0x00000200, 0x00000000, 0x08020008, 0x08000208, 0x00020000, 0x08000000, 0x08020208, 0x00000008, 0x00020208, 0x00020200, 0x08000008, 0x08020000, 0x08000208, 0x00000208, 0x08020000, 0x00020208, 0x00000008, 0x08020008, 0x00020200 }, { 0x00802001, 0x00002081, 0x00002081, 0x00000080, 0x00802080, 0x00800081, 0x00800001, 0x00002001, 0x00000000, 0x00802000, 0x00802000, 0x00802081, 0x00000081, 0x00000000, 0x00800080, 0x00800001, 0x00000001, 0x00002000, 0x00800000, 0x00802001, 0x00000080, 0x00800000, 0x00002001, 0x00002080, 0x00800081, 0x00000001, 0x00002080, 0x00800080, 0x00002000, 0x00802080, 0x00802081, 0x00000081, 0x00800080, 0x00800001, 0x00802000, 0x00802081, 0x00000081, 0x00000000, 0x00000000, 0x00802000, 0x00002080, 0x00800080, 0x00800081, 0x00000001, 0x00802001, 0x00002081, 0x00002081, 0x00000080, 0x00802081, 0x00000081, 0x00000001, 0x00002000, 0x00800001, 0x00002001, 0x00802080, 0x00800081, 0x00002001, 0x00002080, 0x00800000, 0x00802001, 0x00000080, 0x00800000, 0x00002000, 0x00802080 }, { 0x00000100, 0x02080100, 0x02080000, 0x42000100, 0x00080000, 0x00000100, 0x40000000, 0x02080000, 0x40080100, 0x00080000, 0x02000100, 0x40080100, 0x42000100, 0x42080000, 0x00080100, 0x40000000, 0x02000000, 0x40080000, 0x40080000, 0x00000000, 0x40000100, 0x42080100, 0x42080100, 0x02000100, 0x42080000, 0x40000100, 0x00000000, 0x42000000, 0x02080100, 0x02000000, 0x42000000, 0x00080100, 0x00080000, 0x42000100, 0x00000100, 0x02000000, 0x40000000, 0x02080000, 0x42000100, 0x40080100, 0x02000100, 0x40000000, 0x42080000, 0x02080100, 0x40080100, 0x00000100, 0x02000000, 0x42080000, 0x42080100, 0x00080100, 0x42000000, 0x42080100, 0x02080000, 0x00000000, 0x40080000, 0x42000000, 0x00080100, 0x02000100, 0x40000100, 0x00080000, 0x00000000, 0x40080000, 0x02080100, 0x40000100 }, { 0x20000010, 0x20400000, 0x00004000, 0x20404010, 0x20400000, 0x00000010, 0x20404010, 0x00400000, 0x20004000, 0x00404010, 0x00400000, 0x20000010, 0x00400010, 0x20004000, 0x20000000, 0x00004010, 0x00000000, 0x00400010, 0x20004010, 0x00004000, 0x00404000, 0x20004010, 0x00000010, 0x20400010, 0x20400010, 0x00000000, 0x00404010, 0x20404000, 0x00004010, 0x00404000, 0x20404000, 0x20000000, 0x20004000, 0x00000010, 0x20400010, 0x00404000, 0x20404010, 0x00400000, 0x00004010, 0x20000010, 0x00400000, 0x20004000, 0x20000000, 0x00004010, 0x20000010, 0x20404010, 0x00404000, 0x20400000, 0x00404010, 0x20404000, 0x00000000, 0x20400010, 0x00000010, 0x00004000, 0x20400000, 0x00404010, 0x00004000, 0x00400010, 0x20004010, 0x00000000, 0x20404000, 0x20000000, 0x00400010, 0x20004010 }, { 0x00200000, 0x04200002, 0x04000802, 0x00000000, 0x00000800, 0x04000802, 0x00200802, 0x04200800, 0x04200802, 0x00200000, 0x00000000, 0x04000002, 0x00000002, 0x04000000, 0x04200002, 0x00000802, 0x04000800, 0x00200802, 0x00200002, 0x04000800, 0x04000002, 0x04200000, 0x04200800, 0x00200002, 0x04200000, 0x00000800, 0x00000802, 0x04200802, 0x00200800, 0x00000002, 0x04000000, 0x00200800, 0x04000000, 0x00200800, 0x00200000, 0x04000802, 0x04000802, 0x04200002, 0x04200002, 0x00000002, 0x00200002, 0x04000000, 0x04000800, 0x00200000, 0x04200800, 0x00000802, 0x00200802, 0x04200800, 0x00000802, 0x04000002, 0x04200802, 0x04200000, 0x00200800, 0x00000000, 0x00000002, 0x04200802, 0x00000000, 0x00200802, 0x04200000, 0x00000800, 0x04000002, 0x04000800, 0x00000800, 0x00200002 }, { 0x10001040, 0x00001000, 0x00040000, 0x10041040, 0x10000000, 0x10001040, 0x00000040, 0x10000000, 0x00040040, 0x10040000, 0x10041040, 0x00041000, 0x10041000, 0x00041040, 0x00001000, 0x00000040, 0x10040000, 0x10000040, 0x10001000, 0x00001040, 0x00041000, 0x00040040, 0x10040040, 0x10041000, 0x00001040, 0x00000000, 0x00000000, 0x10040040, 0x10000040, 0x10001000, 0x00041040, 0x00040000, 0x00041040, 0x00040000, 0x10041000, 0x00001000, 0x00000040, 0x10040040, 0x00001000, 0x00041040, 0x10001000, 0x00000040, 0x10000040, 0x10040000, 0x10040040, 0x10000000, 0x00040000, 0x10001040, 0x00000000, 0x10041040, 0x00040040, 0x10000040, 0x10040000, 0x10001000, 0x10001040, 0x00000000, 0x10041040, 0x00041000, 0x00041000, 0x00001040, 0x00001040, 0x00040040, 0x10000000, 0x10041000 } }; #undef F #define F(l,r,key){\ work = ((r >> 4) | (r << 28)) ^ key[0];\ l ^= Spbox[6][work & 0x3f];\ l ^= Spbox[4][(work >> 8) & 0x3f];\ l ^= Spbox[2][(work >> 16) & 0x3f];\ l ^= Spbox[0][(work >> 24) & 0x3f];\ work = r ^ key[1];\ l ^= Spbox[7][work & 0x3f];\ l ^= Spbox[5][(work >> 8) & 0x3f];\ l ^= Spbox[3][(work >> 16) & 0x3f];\ l ^= Spbox[1][(work >> 24) & 0x3f];\ } /* Encrypt or decrypt a block of data in ECB mode */ static void des(ks,block) unsigned long ks[16][2]; /* Key schedule */ unsigned char block[8]; /* Data block */ { unsigned long left,right,work; /* Read input block and place in left/right in big-endian order */ left = ((unsigned long)block[0] << 24) | ((unsigned long)block[1] << 16) | ((unsigned long)block[2] << 8) | (unsigned long)block[3]; right = ((unsigned long)block[4] << 24) | ((unsigned long)block[5] << 16) | ((unsigned long)block[6] << 8) | (unsigned long)block[7]; /* Hoey's clever initial permutation algorithm, from Outerbridge * (see Schneier p 478) * * The convention here is the same as Outerbridge: rotate each * register left by 1 bit, i.e., so that "left" contains permuted * input bits 2, 3, 4, ... 1 and "right" contains 33, 34, 35, ... 32 * (using origin-1 numbering as in the FIPS). This allows us to avoid * one of the two rotates that would otherwise be required in each of * the 16 rounds. */ work = ((left >> 4) ^ right) & 0x0f0f0f0f; right ^= work; left ^= work << 4; work = ((left >> 16) ^ right) & 0xffff; right ^= work; left ^= work << 16; work = ((right >> 2) ^ left) & 0x33333333; left ^= work; right ^= (work << 2); work = ((right >> 8) ^ left) & 0xff00ff; left ^= work; right ^= (work << 8); right = (right << 1) | (right >> 31); work = (left ^ right) & 0xaaaaaaaa; left ^= work; right ^= work; left = (left << 1) | (left >> 31); /* Now do the 16 rounds */ F(left,right,ks[0]); F(right,left,ks[1]); F(left,right,ks[2]); F(right,left,ks[3]); F(left,right,ks[4]); F(right,left,ks[5]); F(left,right,ks[6]); F(right,left,ks[7]); F(left,right,ks[8]); F(right,left,ks[9]); F(left,right,ks[10]); F(right,left,ks[11]); F(left,right,ks[12]); F(right,left,ks[13]); F(left,right,ks[14]); F(right,left,ks[15]); /* Inverse permutation, also from Hoey via Outerbridge and Schneier */ right = (right << 31) | (right >> 1); work = (left ^ right) & 0xaaaaaaaa; left ^= work; right ^= work; left = (left >> 1) | (left << 31); work = ((left >> 8) ^ right) & 0xff00ff; right ^= work; left ^= work << 8; work = ((left >> 2) ^ right) & 0x33333333; right ^= work; left ^= work << 2; work = ((right >> 16) ^ left) & 0xffff; left ^= work; right ^= work << 16; work = ((right >> 4) ^ left) & 0x0f0f0f0f; left ^= work; right ^= work << 4; /* Put the block back into the user's buffer with final swap */ block[0] = right >> 24; block[1] = right >> 16; block[2] = right >> 8; block[3] = right; block[4] = left >> 24; block[5] = left >> 16; block[6] = left >> 8; block[7] = left; } /* Key schedule-related tables from FIPS-46 */ /* permuted choice table (key) */ static unsigned char pc1[] = { 57, 49, 41, 33, 25, 17, 9, 1, 58, 50, 42, 34, 26, 18, 10, 2, 59, 51, 43, 35, 27, 19, 11, 3, 60, 52, 44, 36, 63, 55, 47, 39, 31, 23, 15, 7, 62, 54, 46, 38, 30, 22, 14, 6, 61, 53, 45, 37, 29, 21, 13, 5, 28, 20, 12, 4 }; /* number left rotations of pc1 */ static unsigned char totrot[] = { 1,2,4,6,8,10,12,14,15,17,19,21,23,25,27,28 }; /* permuted choice key (table) */ static unsigned char pc2[] = { 14, 17, 11, 24, 1, 5, 3, 28, 15, 6, 21, 10, 23, 19, 12, 4, 26, 8, 16, 7, 27, 20, 13, 2, 41, 52, 31, 37, 47, 55, 30, 40, 51, 45, 33, 48, 44, 49, 39, 56, 34, 53, 46, 42, 50, 36, 29, 32 }; /* End of DES-defined tables */ /* bit 0 is left-most in byte */ static int bytebit[] = { 0200,0100,040,020,010,04,02,01 }; /* Generate key schedule for encryption or decryption * depending on the value of "decrypt" */ static void deskey(k,key,decrypt) DES_KS k; /* Key schedule array */ unsigned char *key; /* 64 bits (will use only 56) */ int decrypt; /* 0 = encrypt, 1 = decrypt */ { unsigned char pc1m[56]; /* place to modify pc1 into */ unsigned char pcr[56]; /* place to rotate pc1 into */ register int i,j,l; int m; unsigned char ks[8]; for (j=0; j<56; j++) { /* convert pc1 to bits of key */ l=pc1[j]-1; /* integer bit location */ m = l & 07; /* find bit */ pc1m[j]=(key[l>>3] & /* find which key byte l is in */ bytebit[m]) /* and which bit of that byte */ ? 1 : 0; /* and store 1-bit result */ } for (i=0; i<16; i++) { /* key chunk for each iteration */ memset(ks,0,sizeof(ks)); /* Clear key schedule */ for (j=0; j<56; j++) /* rotate pc1 the right amount */ pcr[j] = pc1m[(l=j+totrot[decrypt? 15-i : i])<(j<28? 28 : 56) ? l: l-28]; /* rotate left and right halves independently */ for (j=0; j<48; j++){ /* select bits individually */ /* check bit that goes to ks[j] */ if (pcr[pc2[j]-1]){ /* mask it in if it's there */ l= j % 6; ks[j/6] |= bytebit[l] >> 2; } } /* Now convert to packed odd/even interleaved form */ k[i][0] = ((long)ks[0] << 24) | ((long)ks[2] << 16) | ((long)ks[4] << 8) | ((long)ks[6]); k[i][1] = ((long)ks[1] << 24) | ((long)ks[3] << 16) | ((long)ks[5] << 8) | ((long)ks[7]); } }