/* * Copyright (C) 2001 Ximian Inc. * * Authors: Michael Zucchi * * This program is free software; you can redistribute it and/or * modify it under the terms of version 2 of the GNU General Public * License as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #ifdef HAVE_CONFIG_H #include #endif #include #include #include #include #include #include #include #include #include #include "e-util/e-msgport.h" #include "camel-block-file.h" #include "camel-partition-table.h" /* Do we synchronously write table updates - makes the tables consistent after program crash without sync */ /*#define SYNC_UPDATES*/ #ifdef ENABLE_THREADS #include #endif #define d(x) /*(printf("%s(%d):%s: ", __FILE__, __LINE__, __PRETTY_FUNCTION__),(x))*/ /* key index debug */ #define k(x) /*(printf("%s(%d):%s: ", __FILE__, __LINE__, __PRETTY_FUNCTION__),(x))*/ #ifdef ENABLE_THREADS struct _CamelPartitionTablePrivate { pthread_mutex_t lock; /* for locking partition */ }; #define CAMEL_PARTITION_TABLE_LOCK(kf, lock) (pthread_mutex_lock(&(kf)->priv->lock)) #define CAMEL_PARTITION_TABLE_UNLOCK(kf, lock) (pthread_mutex_unlock(&(kf)->priv->lock)) #else #define CAMEL_PARTITION_TABLE_LOCK(kf, lock) #define CAMEL_PARTITION_TABLE_UNLOCK(kf, lock) #endif static void camel_partition_table_class_init(CamelPartitionTableClass *klass) { } static void camel_partition_table_init(CamelPartitionTable *cpi) { struct _CamelPartitionTablePrivate *p; e_dlist_init(&cpi->partition); p = cpi->priv = g_malloc0(sizeof(*cpi->priv)); #ifdef ENABLE_THREADS pthread_mutex_init(&p->lock, NULL); #endif } static void camel_partition_table_finalise(CamelPartitionTable *cpi) { CamelBlock *bl; struct _CamelPartitionTablePrivate *p; p = cpi->priv; if (cpi->blocks) { while ((bl = (CamelBlock *)e_dlist_remhead(&cpi->partition))) { camel_block_file_sync_block(cpi->blocks, bl); camel_block_file_unref_block(cpi->blocks, bl); } camel_block_file_sync(cpi->blocks); camel_object_unref((CamelObject *)cpi->blocks); } #ifdef ENABLE_THREADS pthread_mutex_destroy(&p->lock); #endif g_free(p); } CamelType camel_partition_table_get_type(void) { static CamelType type = CAMEL_INVALID_TYPE; if (type == CAMEL_INVALID_TYPE) { type = camel_type_register(camel_object_get_type(), "CamelPartitionTable", sizeof (CamelPartitionTable), sizeof (CamelPartitionTableClass), (CamelObjectClassInitFunc) camel_partition_table_class_init, NULL, (CamelObjectInitFunc) camel_partition_table_init, (CamelObjectFinalizeFunc) camel_partition_table_finalise); } return type; } /* ********************************************************************** */ /* Have 2 hashes: Name -> nameid Word -> wordid nameid is pointer to name file, includes a bit to say if name is deleted wordid is a pointer to word file, includes pointer to start of word entries delete a name -> set it as deleted, do nothing else though lookup word, if nameid is deleted, mark it in wordlist as unused and mark for write (?) */ /* ********************************************************************** */ /* This simple hash seems to work quite well */ static camel_hash_t hash_key(const char *key) { camel_hash_t hash = 0xABADF00D; while (*key) { hash = hash * (*key) ^ (*key); key++; } return hash; } /* Call with lock held */ static CamelBlock *find_partition(CamelPartitionTable *cpi, camel_hash_t id, int *indexp) { int index, jump; CamelBlock *bl; CamelPartitionMapBlock *ptb; CamelPartitionMap *part; /* first, find the block this key might be in, then binary search the block */ bl = (CamelBlock *)cpi->partition.head; while (bl->next) { ptb = (CamelPartitionMapBlock *)&bl->data; part = ptb->partition; if (ptb->used > 0 && id <= part[ptb->used-1].hashid) { index = ptb->used/2; jump = ptb->used/4; if (jump == 0) jump = 1; while (1) { if (id <= part[index].hashid) { if (index == 0 || id > part[index-1].hashid) break; index -= jump; } else { if (index >= ptb->used-1) break; index += jump; } jump = jump/2; if (jump == 0) jump = 1; } *indexp = index; return bl; } bl = bl->next; } g_warning("could not find a partition that could fit ! partition table corrupt!"); /* This should never be reached */ return NULL; } CamelPartitionTable *camel_partition_table_new(struct _CamelBlockFile *bs, camel_block_t root) { CamelPartitionTable *cpi; CamelPartitionMapBlock *ptb; CamelPartitionKeyBlock *kb; CamelBlock *block, *pblock; cpi = (CamelPartitionTable *)camel_object_new(camel_partition_table_get_type()); cpi->rootid = root; cpi->blocks = bs; camel_object_ref((CamelObject *)bs); /* read the partition table into memory */ do { block = camel_block_file_get_block(bs, root); if (block == NULL) goto fail; ptb = (CamelPartitionMapBlock *)&block->data; d(printf("Adding partition block, used = %d, hashid = %08x\n", ptb->used, ptb->partition[0].hashid)); /* if we have no data, prime initial block */ if (ptb->used == 0 && e_dlist_empty(&cpi->partition) && ptb->next == 0) { pblock = camel_block_file_new_block(bs); if (pblock == NULL) { camel_block_file_unref_block(bs, block); goto fail; } kb = (CamelPartitionKeyBlock *)&pblock->data; kb->used = 0; ptb->used = 1; ptb->partition[0].hashid = 0xffffffff; ptb->partition[0].blockid = pblock->id; camel_block_file_touch_block(bs, pblock); camel_block_file_unref_block(bs, pblock); camel_block_file_touch_block(bs, block); #ifdef SYNC_UPDATES camel_block_file_sync_block(bs, block); #endif } root = ptb->next; camel_block_file_detach_block(bs, block); e_dlist_addtail(&cpi->partition, (EDListNode *)block); } while (root); return cpi; fail: camel_object_unref((CamelObject *)cpi); return NULL; } /* sync our blocks, the caller must still sync the blockfile itself */ int camel_partition_table_sync(CamelPartitionTable *cpi) { CamelBlock *bl, *bn; struct _CamelPartitionTablePrivate *p; int ret = 0; CAMEL_PARTITION_TABLE_LOCK(cpi, lock); p = cpi->priv; if (cpi->blocks) { bl = (CamelBlock *)cpi->partition.head; bn = bl->next; while (bn) { ret = camel_block_file_sync_block(cpi->blocks, bl); if (ret == -1) goto fail; bl = bn; bn = bn->next; } } fail: CAMEL_PARTITION_TABLE_UNLOCK(cpi, lock); return ret; } camel_key_t camel_partition_table_lookup(CamelPartitionTable *cpi, const char *key) { CamelPartitionKeyBlock *pkb; CamelPartitionMapBlock *ptb; CamelBlock *block, *ptblock; camel_hash_t hashid; camel_key_t keyid = 0; int index, i; hashid = hash_key(key); CAMEL_PARTITION_TABLE_LOCK(cpi, lock); ptblock = find_partition(cpi, hashid, &index); if (ptblock == NULL) { CAMEL_PARTITION_TABLE_UNLOCK(cpi, lock); return 0; } ptb = (CamelPartitionMapBlock *)&ptblock->data; block = camel_block_file_get_block(cpi->blocks, ptb->partition[index].blockid); if (block == NULL) { CAMEL_PARTITION_TABLE_UNLOCK(cpi, lock); return 0; } pkb = (CamelPartitionKeyBlock *)&block->data; /* What to do about duplicate hash's? */ for (i=0;iused;i++) { if (pkb->keys[i].hashid == hashid) { /* !! need to: lookup and compare string value */ /* get_key() if key == key ... */ keyid = pkb->keys[i].keyid; break; } } CAMEL_PARTITION_TABLE_UNLOCK(cpi, lock); camel_block_file_unref_block(cpi->blocks, block); return keyid; } void camel_partition_table_remove(CamelPartitionTable *cpi, const char *key) { CamelPartitionKeyBlock *pkb; CamelPartitionMapBlock *ptb; CamelBlock *block, *ptblock; camel_hash_t hashid; camel_key_t keyid = 0; int index, i; hashid = hash_key(key); CAMEL_PARTITION_TABLE_LOCK(cpi, lock); ptblock = find_partition(cpi, hashid, &index); if (ptblock == NULL) { CAMEL_PARTITION_TABLE_UNLOCK(cpi, lock); return; } ptb = (CamelPartitionMapBlock *)&ptblock->data; block = camel_block_file_get_block(cpi->blocks, ptb->partition[index].blockid); if (block == NULL) { CAMEL_PARTITION_TABLE_UNLOCK(cpi, lock); return; } pkb = (CamelPartitionKeyBlock *)&block->data; /* What to do about duplicate hash's? */ for (i=0;iused;i++) { if (pkb->keys[i].hashid == hashid) { /* !! need to: lookup and compare string value */ /* get_key() if key == key ... */ keyid = pkb->keys[i].keyid; /* remove this key */ pkb->used--; for (;iused;i++) { pkb->keys[i].keyid = pkb->keys[i+1].keyid; pkb->keys[i].hashid = pkb->keys[i+1].hashid; } camel_block_file_touch_block(cpi->blocks, block); break; } } CAMEL_PARTITION_TABLE_UNLOCK(cpi, lock); camel_block_file_unref_block(cpi->blocks, block); } static int keys_cmp(const void *ap, const void *bp) { const CamelPartitionKey *a = ap; const CamelPartitionKey *b = bp; if (a->hashid < b->hashid) return -1; else if (a->hashid > b->hashid) return 1; return 0; } int camel_partition_table_add(CamelPartitionTable *cpi, const char *key, camel_key_t keyid) { camel_hash_t hashid, partid; int index, newindex = 0; /* initialisation of this and pkb/nkb is just to silence compiler */ CamelPartitionMapBlock *ptb, *ptn; CamelPartitionKeyBlock *kb, *newkb, *nkb = NULL, *pkb = NULL; CamelBlock *block, *ptblock, *ptnblock; int i, half, len; struct _CamelPartitionKey keys[CAMEL_BLOCK_SIZE/4]; int ret = -1; #define KEY_SIZE (sizeof(kb->keys)/sizeof(kb->keys[0])) hashid = hash_key(key); CAMEL_PARTITION_TABLE_LOCK(cpi, lock); ptblock = find_partition(cpi, hashid, &index); if (ptblock == NULL) { CAMEL_PARTITION_TABLE_UNLOCK(cpi, lock); return -1; } ptb = (CamelPartitionMapBlock *)&ptblock->data; block = camel_block_file_get_block(cpi->blocks, ptb->partition[index].blockid); if (block == NULL) { CAMEL_PARTITION_TABLE_UNLOCK(cpi, lock); return -1; } kb = (CamelPartitionKeyBlock *)&block->data; /* TODO: Keep the key array in sorted order, cheaper lookups and split operation */ if (kb->used < sizeof(kb->keys)/sizeof(kb->keys[0])) { /* Have room, just put it in */ kb->keys[kb->used].hashid = hashid; kb->keys[kb->used].keyid = keyid; kb->used++; } else { CamelBlock *newblock = NULL, *nblock = NULL, *pblock = NULL; /* Need to split? See if previous or next has room, then split across that instead */ /* TODO: Should look at next/previous partition table block as well ... */ if (index > 0) { pblock = camel_block_file_get_block(cpi->blocks, ptb->partition[index-1].blockid); if (pblock == NULL) goto fail; pkb = (CamelPartitionKeyBlock *)&pblock->data; } if (index < (ptb->used-1)) { nblock = camel_block_file_get_block(cpi->blocks, ptb->partition[index+1].blockid); if (nblock == NULL) { if (pblock) camel_block_file_unref_block(cpi->blocks, pblock); goto fail; } nkb = (CamelPartitionKeyBlock *)&nblock->data; } if (pblock && pkb->used < KEY_SIZE) { if (nblock && nkb->used < KEY_SIZE) { if (pkb->used < nkb->used) { newindex = index+1; newblock = nblock; } else { newindex = index-1; newblock = pblock; } } else { newindex = index-1; newblock = pblock; } } else { if (nblock && nkb->used < KEY_SIZE) { newindex = index+1; newblock = nblock; } } /* We had no room, need to split across another block */ if (newblock == NULL) { /* See if we have room in the partition table for this block or need to split that too */ if (ptb->used >= sizeof(ptb->partition)/sizeof(ptb->partition[0])) { /* TODO: Could check next block to see if it'll fit there first */ ptnblock = camel_block_file_new_block(cpi->blocks); if (ptnblock == NULL) { if (nblock) camel_block_file_unref_block(cpi->blocks, nblock); if (pblock) camel_block_file_unref_block(cpi->blocks, pblock); goto fail; } camel_block_file_detach_block(cpi->blocks, ptnblock); /* split block and link on-disk, always sorted */ ptn = (CamelPartitionMapBlock *)&ptnblock->data; ptn->next = ptb->next; ptb->next = ptnblock->id; len = ptb->used / 2; ptn->used = ptb->used - len; ptb->used = len; memcpy(ptn->partition, &ptb->partition[len], ptn->used * sizeof(ptb->partition[0])); /* link in-memory */ ptnblock->next = ptblock->next; ptblock->next->prev = ptnblock; ptblock->next = ptnblock; ptnblock->prev = ptblock; /* write in right order to ensure structure */ camel_block_file_touch_block(cpi->blocks, ptnblock); #ifdef SYNC_UPDATES camel_block_file_sync_block(cpi->blocks, ptnblock); #endif if (index > len) { camel_block_file_touch_block(cpi->blocks, ptblock); #ifdef SYNC_UPDATES camel_block_file_sync_block(cpi->blocks, ptblock); #endif index -= len; ptb = ptn; ptblock = ptnblock; } } /* try get newblock before modifying existing */ newblock = camel_block_file_new_block(cpi->blocks); if (newblock == NULL) { if (nblock) camel_block_file_unref_block(cpi->blocks, nblock); if (pblock) camel_block_file_unref_block(cpi->blocks, pblock); goto fail; } for (i=ptb->used-1;i>index;i--) { ptb->partition[i+1].hashid = ptb->partition[i].hashid; ptb->partition[i+1].blockid = ptb->partition[i].blockid; } ptb->used++; newkb = (CamelPartitionKeyBlock *)&newblock->data; newkb->used = 0; newindex = index+1; ptb->partition[newindex].hashid = ptb->partition[index].hashid; ptb->partition[newindex].blockid = newblock->id; if (nblock) camel_block_file_unref_block(cpi->blocks, nblock); if (pblock) camel_block_file_unref_block(cpi->blocks, pblock); } else { newkb = (CamelPartitionKeyBlock *)&newblock->data; if (newblock == pblock) { if (nblock) camel_block_file_unref_block(cpi->blocks, nblock); } else { if (pblock) camel_block_file_unref_block(cpi->blocks, pblock); } } /* sort keys to find midpoint */ len = kb->used; memcpy(keys, kb->keys, sizeof(kb->keys[0])*len); memcpy(keys+len, newkb->keys, sizeof(newkb->keys[0])*newkb->used); len += newkb->used; keys[len].hashid = hashid; keys[len].keyid = keyid; len++; qsort(keys, len, sizeof(keys[0]), keys_cmp); /* Split keys, fix partition table */ half = len/2; partid = keys[half-1].hashid; if (index < newindex) { memcpy(kb->keys, keys, sizeof(keys[0])*half); kb->used = half; memcpy(newkb->keys, keys+half, sizeof(keys[0])*(len-half)); newkb->used = len-half; ptb->partition[index].hashid = partid; } else { memcpy(newkb->keys, keys, sizeof(keys[0])*half); newkb->used = half; memcpy(kb->keys, keys+half, sizeof(keys[0])*(len-half)); kb->used = len-half; ptb->partition[newindex].hashid = partid; } camel_block_file_touch_block(cpi->blocks, ptblock); #ifdef SYNC_UPDATES camel_block_file_sync_block(cpi->blocks, ptblock); #endif camel_block_file_touch_block(cpi->blocks, newblock); camel_block_file_unref_block(cpi->blocks, newblock); } camel_block_file_touch_block(cpi->blocks, block); camel_block_file_unref_block(cpi->blocks, block); ret = 0; fail: CAMEL_PARTITION_TABLE_UNLOCK(cpi, lock); return ret; } /* ********************************************************************** */ #ifdef ENABLE_THREADS struct _CamelKeyTablePrivate { pthread_mutex_t lock; /* for locking key */ }; #define CAMEL_KEY_TABLE_LOCK(kf, lock) (pthread_mutex_lock(&(kf)->priv->lock)) #define CAMEL_KEY_TABLE_UNLOCK(kf, lock) (pthread_mutex_unlock(&(kf)->priv->lock)) #else #define CAMEL_KEY_TABLE_LOCK(kf, lock) #define CAMEL_KEY_TABLE_UNLOCK(kf, lock) #endif static void camel_key_table_class_init(CamelKeyTableClass *klass) { } static void camel_key_table_init(CamelKeyTable *ki) { struct _CamelKeyTablePrivate *p; p = ki->priv = g_malloc0(sizeof(*ki->priv)); #ifdef ENABLE_THREADS pthread_mutex_init(&p->lock, NULL); #endif } static void camel_key_table_finalise(CamelKeyTable *ki) { struct _CamelKeyTablePrivate *p; p = ki->priv; if (ki->blocks) { if (ki->root_block) { camel_block_file_sync_block(ki->blocks, ki->root_block); camel_block_file_unref_block(ki->blocks, ki->root_block); } camel_block_file_sync(ki->blocks); camel_object_unref((CamelObject *)ki->blocks); } #ifdef ENABLE_THREADS pthread_mutex_destroy(&p->lock); #endif g_free(p); } CamelType camel_key_table_get_type(void) { static CamelType type = CAMEL_INVALID_TYPE; if (type == CAMEL_INVALID_TYPE) { type = camel_type_register(camel_object_get_type(), "CamelKeyTable", sizeof (CamelKeyTable), sizeof (CamelKeyTableClass), (CamelObjectClassInitFunc) camel_key_table_class_init, NULL, (CamelObjectInitFunc) camel_key_table_init, (CamelObjectFinalizeFunc) camel_key_table_finalise); } return type; } CamelKeyTable * camel_key_table_new(CamelBlockFile *bs, camel_block_t root) { CamelKeyTable *ki; ki = (CamelKeyTable *)camel_object_new(camel_key_table_get_type()); ki->blocks = bs; camel_object_ref((CamelObject *)bs); ki->rootid = root; ki->root_block = camel_block_file_get_block(bs, ki->rootid); if (ki->root_block == NULL) { camel_object_unref((CamelObject *)ki); ki = NULL; } else { camel_block_file_detach_block(bs, ki->root_block); ki->root = (CamelKeyRootBlock *)&ki->root_block->data; k(printf("Opening key index\n")); k(printf(" first %u\n last %u\n free %u\n", ki->root->first, ki->root->last, ki->root->free)); } return ki; } int camel_key_table_sync(CamelKeyTable *ki) { #ifdef SYNC_UPDATES return 0; #else return camel_block_file_sync_block(ki->blocks, ki->root_block); #endif } camel_key_t camel_key_table_add(CamelKeyTable *ki, const char *key, camel_block_t data, unsigned int flags) { CamelBlock *last, *next; CamelKeyBlock *kblast, *kbnext; int len, left; unsigned int offset; camel_key_t keyid = 0; /* Maximum key size = 128 chars */ len = strlen(key); if (len > CAMEL_KEY_TABLE_MAX_KEY) len = 128; CAMEL_KEY_TABLE_LOCK(ki, lock); if (ki->root->last == 0) { last = camel_block_file_new_block(ki->blocks); if (last == NULL) goto fail; ki->root->last = ki->root->first = last->id; camel_block_file_touch_block(ki->blocks, ki->root_block); k(printf("adding first block, first = %u\n", ki->root->first)); } else { last = camel_block_file_get_block(ki->blocks, ki->root->last); if (last == NULL) goto fail; } kblast = (CamelKeyBlock *)&last->data; if (kblast->used >= 127) goto fail; if (kblast->used > 0) { /*left = &kblast->u.keydata[kblast->u.keys[kblast->used-1].offset] - (char *)(&kblast->u.keys[kblast->used+1]);*/ left = kblast->u.keys[kblast->used-1].offset - sizeof(kblast->u.keys[0])*(kblast->used+1); d(printf("key '%s' used = %d (%d), filled = %d, left = %d len = %d?\n", key, kblast->used, kblast->used * sizeof(kblast->u.keys[0]), sizeof(kblast->u.keydata) - kblast->u.keys[kblast->used-1].offset, left, len)); if (left < len) { next = camel_block_file_new_block(ki->blocks); if (next == NULL) { camel_block_file_unref_block(ki->blocks, last); goto fail; } kbnext = (CamelKeyBlock *)&next->data; kblast->next = next->id; ki->root->last = next->id; d(printf("adding new block, first = %u, last = %u\n", ki->root->first, ki->root->last)); camel_block_file_touch_block(ki->blocks, ki->root_block); camel_block_file_touch_block(ki->blocks, last); camel_block_file_unref_block(ki->blocks, last); kblast = kbnext; last = next; } } if (kblast->used > 0) offset = kblast->u.keys[kblast->used-1].offset - len; else offset = sizeof(kblast->u.keydata)-len; kblast->u.keys[kblast->used].flags = flags; kblast->u.keys[kblast->used].data = data; kblast->u.keys[kblast->used].offset = offset; memcpy(kblast->u.keydata + offset, key, len); keyid = (last->id & (~(CAMEL_BLOCK_SIZE-1))) | kblast->used; kblast->used++; g_assert(kblast->used < 127); camel_block_file_touch_block(ki->blocks, last); camel_block_file_unref_block(ki->blocks, last); #ifdef SYNC_UPDATES camel_block_file_sync_block(ki->blocks, ki->root_block); #endif fail: CAMEL_KEY_TABLE_UNLOCK(ki, lock); return keyid; } void camel_key_table_set_data(CamelKeyTable *ki, camel_key_t keyid, camel_block_t data) { CamelBlock *bl; camel_block_t blockid; int index; CamelKeyBlock *kb; if (keyid == 0) return; blockid = keyid & (~(CAMEL_BLOCK_SIZE-1)); index = keyid & (CAMEL_BLOCK_SIZE-1); bl = camel_block_file_get_block(ki->blocks, blockid); if (bl == NULL) return; kb = (CamelKeyBlock *)&bl->data; CAMEL_KEY_TABLE_LOCK(ki, lock); if (kb->u.keys[index].data != data) { kb->u.keys[index].data = data; camel_block_file_touch_block(ki->blocks, bl); } CAMEL_KEY_TABLE_UNLOCK(ki, lock); camel_block_file_unref_block(ki->blocks, bl); } void camel_key_table_set_flags(CamelKeyTable *ki, camel_key_t keyid, unsigned int flags, unsigned int set) { CamelBlock *bl; camel_block_t blockid; int index; CamelKeyBlock *kb; unsigned int old; if (keyid == 0) return; blockid = keyid & (~(CAMEL_BLOCK_SIZE-1)); index = keyid & (CAMEL_BLOCK_SIZE-1); bl = camel_block_file_get_block(ki->blocks, blockid); if (bl == NULL) return; kb = (CamelKeyBlock *)&bl->data; g_assert(kb->used < 127); g_assert(index < kb->used); CAMEL_KEY_TABLE_LOCK(ki, lock); old = kb->u.keys[index].flags; if ((old & set) != (flags & set)) { kb->u.keys[index].flags = (old & (~set)) | (flags & set); camel_block_file_touch_block(ki->blocks, bl); } CAMEL_KEY_TABLE_UNLOCK(ki, lock); camel_block_file_unref_block(ki->blocks, bl); } camel_block_t camel_key_table_lookup(CamelKeyTable *ki, camel_key_t keyid, char **keyp, unsigned int *flags) { CamelBlock *bl; camel_block_t blockid; int index, len, off; char *key; CamelKeyBlock *kb; if (keyp) *keyp = 0; if (flags) *flags = 0; if (keyid == 0) return 0; blockid = keyid & (~(CAMEL_BLOCK_SIZE-1)); index = keyid & (CAMEL_BLOCK_SIZE-1); bl = camel_block_file_get_block(ki->blocks, blockid); if (bl == NULL) return 0; kb = (CamelKeyBlock *)&bl->data; #if 1 g_assert(kb->used < 127); /* this should be more accurate */ g_assert(index < kb->used); #else if (kb->used >=127 || index >= kb->used) { g_warning("Block %x: Invalid index or content: index %d used %d\n", blockid, index, kb->used); return 0; } #endif CAMEL_KEY_TABLE_LOCK(ki, lock); blockid = kb->u.keys[index].data; if (flags) *flags = kb->u.keys[index].flags; if (keyp) { off = kb->u.keys[index].offset; if (index == 0) len = sizeof(kb->u.keydata) - off; else len = kb->u.keys[index-1].offset - off; *keyp = key = g_malloc(len+1); memcpy(key, kb->u.keydata + off, len); key[len] = 0; } CAMEL_KEY_TABLE_UNLOCK(ki, lock); camel_block_file_unref_block(ki->blocks, bl); return blockid; } /* iterate through all keys */ camel_key_t camel_key_table_next(CamelKeyTable *ki, camel_key_t next, char **keyp, unsigned int *flagsp, camel_block_t *datap) { CamelBlock *bl; CamelKeyBlock *kb; camel_block_t blockid; int index; if (keyp) *keyp = 0; if (flagsp) *flagsp = 0; if (datap) *datap = 0; CAMEL_KEY_TABLE_LOCK(ki, lock); if (next == 0) { next = ki->root->first; if (next == 0) return 0; } else next++; do { blockid = next & (~(CAMEL_BLOCK_SIZE-1)); index = next & (CAMEL_BLOCK_SIZE-1); bl = camel_block_file_get_block(ki->blocks, blockid); if (bl == NULL) { CAMEL_KEY_TABLE_UNLOCK(ki, lock); return 0; } kb = (CamelKeyBlock *)&bl->data; /* see if we need to goto the next block */ if (index >= kb->used) { /* FIXME: check for loops */ next = kb->next; camel_block_file_unref_block(ki->blocks, bl); bl = NULL; } } while (bl == NULL); /* invalid block data */ if ((kb->u.keys[index].offset >= sizeof(kb->u.keydata) /*|| kb->u.keys[index].offset < kb->u.keydata - (char *)&kb->u.keys[kb->used])*/ || kb->u.keys[index].offset < sizeof(kb->u.keys[0]) * kb->used || (index > 0 && (kb->u.keys[index-1].offset >= sizeof(kb->u.keydata) /*|| kb->u.keys[index-1].offset < kb->u.keydata - (char *)&kb->u.keys[kb->used]))) {*/ || kb->u.keys[index-1].offset < sizeof(kb->u.keys[0]) * kb->used)))) { g_warning("Block %u invalid scanning keys", bl->id); camel_block_file_unref_block(ki->blocks, bl); CAMEL_KEY_TABLE_UNLOCK(ki, lock); return 0; } if (datap) *datap = kb->u.keys[index].data; if (flagsp) *flagsp = kb->u.keys[index].flags; if (keyp) { int len, off = kb->u.keys[index].offset; char *key; if (index == 0) len = sizeof(kb->u.keydata) - off; else len = kb->u.keys[index-1].offset - off; *keyp = key = g_malloc(len+1); memcpy(key, kb->u.keydata + off, len); key[len] = 0; } CAMEL_KEY_TABLE_UNLOCK(ki, lock); camel_block_file_unref_block(ki->blocks, bl); return next; } /* ********************************************************************** */