/*
* Copyright (C) 2001 Ximian Inc.
*
* Authors: Michael Zucchi <notzed@ximian.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of version 2 of the GNU General Public
* License as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 02111-1307, USA.
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <sys/stat.h>
#include <sys/uio.h>
#include <unistd.h>
#include <errno.h>
#include <string.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include "e-util/e-msgport.h"
#include "camel-block-file.h"
#include "camel-partition-table.h"
/* Do we synchronously write table updates - makes the
tables consistent after program crash without sync */
/*#define SYNC_UPDATES*/
#ifdef ENABLE_THREADS
#include <pthread.h>
#endif
#define d(x) /*(printf("%s(%d):%s: ", __FILE__, __LINE__, __PRETTY_FUNCTION__),(x))*/
/* key index debug */
#define k(x) /*(printf("%s(%d):%s: ", __FILE__, __LINE__, __PRETTY_FUNCTION__),(x))*/
#ifdef ENABLE_THREADS
struct _CamelPartitionTablePrivate {
pthread_mutex_t lock; /* for locking partition */
};
#define CAMEL_PARTITION_TABLE_LOCK(kf, lock) (pthread_mutex_lock(&(kf)->priv->lock))
#define CAMEL_PARTITION_TABLE_UNLOCK(kf, lock) (pthread_mutex_unlock(&(kf)->priv->lock))
#else
#define CAMEL_PARTITION_TABLE_LOCK(kf, lock)
#define CAMEL_PARTITION_TABLE_UNLOCK(kf, lock)
#endif
static void
camel_partition_table_class_init(CamelPartitionTableClass *klass)
{
}
static void
camel_partition_table_init(CamelPartitionTable *cpi)
{
struct _CamelPartitionTablePrivate *p;
e_dlist_init(&cpi->partition);
p = cpi->priv = g_malloc0(sizeof(*cpi->priv));
#ifdef ENABLE_THREADS
pthread_mutex_init(&p->lock, NULL);
#endif
}
static void
camel_partition_table_finalise(CamelPartitionTable *cpi)
{
CamelBlock *bl;
struct _CamelPartitionTablePrivate *p;
p = cpi->priv;
if (cpi->blocks) {
camel_block_file_sync(cpi->blocks);
while ((bl = (CamelBlock *)e_dlist_remhead(&cpi->partition))) {
camel_block_file_sync_block(cpi->blocks, bl);
camel_block_file_unref_block(cpi->blocks, bl);
}
camel_object_unref((CamelObject *)cpi->blocks);
}
#ifdef ENABLE_THREADS
pthread_mutex_destroy(&p->lock);
#endif
g_free(p);
}
CamelType
camel_partition_table_get_type(void)
{
static CamelType type = CAMEL_INVALID_TYPE;
if (type == CAMEL_INVALID_TYPE) {
type = camel_type_register(camel_object_get_type(), "CamelPartitionTable",
sizeof (CamelPartitionTable),
sizeof (CamelPartitionTableClass),
(CamelObjectClassInitFunc) camel_partition_table_class_init,
NULL,
(CamelObjectInitFunc) camel_partition_table_init,
(CamelObjectFinalizeFunc) camel_partition_table_finalise);
}
return type;
}
/* ********************************************************************** */
/*
Have 2 hashes:
Name -> nameid
Word -> wordid
nameid is pointer to name file, includes a bit to say if name is deleted
wordid is a pointer to word file, includes pointer to start of word entries
delete a name -> set it as deleted, do nothing else though
lookup word, if nameid is deleted, mark it in wordlist as unused and mark for write (?)
*/
/* ********************************************************************** */
/* This simple hash seems to work quite well */
static camel_hash_t hash_key(const char *key)
{
camel_hash_t hash = 0xABADF00D;
while (*key) {
hash = hash * (*key) ^ (*key);
key++;
}
return hash;
}
/* Call with lock held */
static CamelBlock *find_partition(CamelPartitionTable *cpi, camel_hash_t id, int *indexp)
{
int index, jump;
CamelBlock *bl;
CamelPartitionMapBlock *ptb;
CamelPartitionMap *part;
/* first, find the block this key might be in, then binary search the block */
bl = (CamelBlock *)cpi->partition.head;
while (bl->next) {
ptb = (CamelPartitionMapBlock *)&bl->data;
part = ptb->partition;
if (ptb->used > 0 && id <= part[ptb->used-1].hashid) {
index = ptb->used/2;
jump = ptb->used/4;
if (jump == 0)
jump = 1;
while (1) {
if (id <= part[index].hashid) {
if (index == 0 || id > part[index-1].hashid)
break;
index -= jump;
} else {
if (index >= ptb->used-1)
break;
index += jump;
}
jump = jump/2;
if (jump == 0)
jump = 1;
}
*indexp = index;
return bl;
}
bl = bl->next;
}
g_warning("could not find a partition that could fit ! partition table corrupt!");
/* This should never be reached */
return NULL;
}
CamelPartitionTable *camel_partition_table_new(struct _CamelBlockFile *bs, camel_block_t root)
{
CamelPartitionTable *cpi;
CamelPartitionMapBlock *ptb;
CamelPartitionKeyBlock *kb;
CamelBlock *block, *pblock;
cpi = (CamelPartitionTable *)camel_object_new(camel_partition_table_get_type());
cpi->rootid = root;
cpi->blocks = bs;
camel_object_ref((CamelObject *)bs);
/* read the partition table into memory */
do {
block = camel_block_file_get_block(bs, root);
if (block == NULL)
goto fail;
ptb = (CamelPartitionMapBlock *)&block->data;
d(printf("Adding partition block, used = %d, hashid = %08x\n", ptb->used, ptb->partition[0].hashid));
/* if we have no data, prime initial block */
if (ptb->used == 0 && e_dlist_empty(&cpi->partition) && ptb->next == 0) {
pblock = camel_block_file_new_block(bs);
if (pblock == NULL) {
camel_block_file_unref_block(bs, block);
goto fail;
}
kb = (CamelPartitionKeyBlock *)&pblock->data;
kb->used = 0;
ptb->used = 1;
ptb->partition[0].hashid = 0xffffffff;
ptb->partition[0].blockid = pblock->id;
camel_block_file_touch_block(bs, pblock);
camel_block_file_unref_block(bs, pblock);
camel_block_file_touch_block(bs, block);
#ifdef SYNC_UPDATES
camel_block_file_sync_block(bs, block);
#endif
}
root = ptb->next;
camel_block_file_detach_block(bs, block);
e_dlist_addtail(&cpi->partition, (EDListNode *)block);
} while (root);
return cpi;
fail:
camel_object_unref((CamelObject *)cpi);
return NULL;
}
camel_key_t camel_partition_table_lookup(CamelPartitionTable *cpi, const char *key)
{
CamelPartitionKeyBlock *pkb;
CamelPartitionMapBlock *ptb;
CamelBlock *block, *ptblock;
camel_hash_t hashid;
camel_key_t keyid = 0;
int index, i;
hashid = hash_key(key);
CAMEL_PARTITION_TABLE_LOCK(cpi, lock);
ptblock = find_partition(cpi, hashid, &index);
if (ptblock == NULL) {
CAMEL_PARTITION_TABLE_UNLOCK(cpi, lock);
return 0;
}
ptb = (CamelPartitionMapBlock *)&ptblock->data;
block = camel_block_file_get_block(cpi->blocks, ptb->partition[index].blockid);
if (block == NULL) {
CAMEL_PARTITION_TABLE_UNLOCK(cpi, lock);
return 0;
}
pkb = (CamelPartitionKeyBlock *)&block->data;
/* What to do about duplicate hash's? */
for (i=0;i<pkb->used;i++) {
if (pkb->keys[i].hashid == hashid) {
/* !! need to: lookup and compare string value */
/* get_key() if key == key ... */
keyid = pkb->keys[i].keyid;
break;
}
}
CAMEL_PARTITION_TABLE_UNLOCK(cpi, lock);
camel_block_file_unref_block(cpi->blocks, block);
return keyid;
}
void camel_partition_table_remove(CamelPartitionTable *cpi, const char *key)
{
CamelPartitionKeyBlock *pkb;
CamelPartitionMapBlock *ptb;
CamelBlock *block, *ptblock;
camel_hash_t hashid;
camel_key_t keyid = 0;
int index, i;
hashid = hash_key(key);
CAMEL_PARTITION_TABLE_LOCK(cpi, lock);
ptblock = find_partition(cpi, hashid, &index);
if (ptblock == NULL) {
CAMEL_PARTITION_TABLE_UNLOCK(cpi, lock);
return;
}
ptb = (CamelPartitionMapBlock *)&ptblock->data;
block = camel_block_file_get_block(cpi->blocks, ptb->partition[index].blockid);
if (block == NULL) {
CAMEL_PARTITION_TABLE_UNLOCK(cpi, lock);
return;
}
pkb = (CamelPartitionKeyBlock *)&block->data;
/* What to do about duplicate hash's? */
for (i=0;i<pkb->used;i++) {
if (pkb->keys[i].hashid == hashid) {
/* !! need to: lookup and compare string value */
/* get_key() if key == key ... */
keyid = pkb->keys[i].keyid;
/* remove this key */
pkb->used--;
for (;i<pkb->used;i++) {
pkb->keys[i].keyid = pkb->keys[i+1].keyid;
pkb->keys[i].hashid = pkb->keys[i+1].hashid;
}
camel_block_file_touch_block(cpi->blocks, block);
break;
}
}
CAMEL_PARTITION_TABLE_UNLOCK(cpi, lock);
camel_block_file_unref_block(cpi->blocks, block);
}
static int
keys_cmp(const void *ap, const void *bp)
{
const CamelPartitionKey *a = ap;
const CamelPartitionKey *b = bp;
if (a->hashid < b->hashid)
return -1;
else if (a->hashid > b->hashid)
return 1;
return 0;
}
int
camel_partition_table_add(CamelPartitionTable *cpi, const char *key, camel_key_t keyid)
{
camel_hash_t hashid, partid;
int index, newindex = 0; /* initialisation of this and pkb/nkb is just to silence compiler */
CamelPartitionMapBlock *ptb, *ptn;
CamelPartitionKeyBlock *kb, *newkb, *nkb = NULL, *pkb = NULL;
CamelBlock *block, *ptblock, *ptnblock;
int i, half, len;
struct _CamelPartitionKey keys[CAMEL_BLOCK_SIZE/4];
int ret = -1;
#define KEY_SIZE (sizeof(kb->keys)/sizeof(kb->keys[0]))
hashid = hash_key(key);
CAMEL_PARTITION_TABLE_LOCK(cpi, lock);
ptblock = find_partition(cpi, hashid, &index);
if (ptblock == NULL) {
CAMEL_PARTITION_TABLE_UNLOCK(cpi, lock);
return -1;
}
ptb = (CamelPartitionMapBlock *)&ptblock->data;
block = camel_block_file_get_block(cpi->blocks, ptb->partition[index].blockid);
if (block == NULL) {
CAMEL_PARTITION_TABLE_UNLOCK(cpi, lock);
return -1;
}
kb = (CamelPartitionKeyBlock *)&block->data;
/* TODO: Keep the key array in sorted order, cheaper lookups and split operation */
if (kb->used < sizeof(kb->keys)/sizeof(kb->keys[0])) {
/* Have room, just put it in */
kb->keys[kb->used].hashid = hashid;
kb->keys[kb->used].keyid = keyid;
kb->used++;
} else {
CamelBlock *newblock = NULL, *nblock = NULL, *pblock = NULL;
/* Need to split? See if previous or next has room, then split across that instead */
/* TODO: Should look at next/previous partition table block as well ... */
if (index > 0) {
pblock = camel_block_file_get_block(cpi->blocks, ptb->partition[index-1].blockid);
if (pblock == NULL)
goto fail;
pkb = (CamelPartitionKeyBlock *)&pblock->data;
}
if (index < (ptb->used-1)) {
nblock = camel_block_file_get_block(cpi->blocks, ptb->partition[index+1].blockid);
if (nblock == NULL) {
if (pblock)
camel_block_file_unref_block(cpi->blocks, pblock);
goto fail;
}
nkb = (CamelPartitionKeyBlock *)&nblock->data;
}
if (pblock && pkb->used < KEY_SIZE) {
if (nblock && nkb->used < KEY_SIZE) {
if (pkb->used < nkb->used) {
newindex = index+1;
newblock = nblock;
} else {
newindex = index-1;
newblock = pblock;
}
} else {
newindex = index-1;
newblock = pblock;
}
} else {
if (nblock && nkb->used < KEY_SIZE) {
newindex = index+1;
newblock = nblock;
}
}
/* We had no room, need to split across another block */
if (newblock == NULL) {
/* See if we have room in the partition table for this block or need to split that too */
if (ptb->used >= sizeof(ptb->partition)/sizeof(ptb->partition[0])) {
/* TODO: Could check next block to see if it'll fit there first */
ptnblock = camel_block_file_new_block(cpi->blocks);
if (ptnblock == NULL) {
if (nblock)
camel_block_file_unref_block(cpi->blocks, nblock);
if (pblock)
camel_block_file_unref_block(cpi->blocks, pblock);
goto fail;
}
camel_block_file_detach_block(cpi->blocks, ptnblock);
/* split block and link on-disk, always sorted */
ptn = (CamelPartitionMapBlock *)&ptnblock->data;
ptn->next = ptb->next;
ptb->next = ptnblock->id;
len = ptb->used / 2;
ptn->used = ptb->used - len;
ptb->used = len;
memcpy(ptn->partition, &ptb->partition[len], ptn->used * sizeof(ptb->partition[0]));
/* link in-memory */
ptnblock->next = ptblock->next;
ptblock->next->prev = ptnblock;
ptblock->next = ptnblock;
ptnblock->prev = ptblock;
/* write in right order to ensure structure */
camel_block_file_touch_block(cpi->blocks, ptnblock);
#ifdef SYNC_UPDATES
camel_block_file_sync_block(cpi->blocks, ptnblock);
#endif
if (index > len) {
camel_block_file_touch_block(cpi->blocks, ptblock);
#ifdef SYNC_UPDATES
camel_block_file_sync_block(cpi->blocks, ptblock);
#endif
index -= len;
ptb = ptn;
ptblock = ptnblock;
}
}
/* try get newblock before modifying existing */
newblock = camel_block_file_new_block(cpi->blocks);
if (newblock == NULL) {
if (nblock)
camel_block_file_unref_block(cpi->blocks, nblock);
if (pblock)
camel_block_file_unref_block(cpi->blocks, pblock);
goto fail;
}
for (i=ptb->used-1;i>index;i--) {
ptb->partition[i+1].hashid = ptb->partition[i].hashid;
ptb->partition[i+1].blockid = ptb->partition[i].blockid;
}
ptb->used++;
newkb = (CamelPartitionKeyBlock *)&newblock->data;
newkb->used = 0;
newindex = index+1;
ptb->partition[newindex].hashid = ptb->partition[index].hashid;
ptb->partition[newindex].blockid = newblock->id;
if (nblock)
camel_block_file_unref_block(cpi->blocks, nblock);
if (pblock)
camel_block_file_unref_block(cpi->blocks, pblock);
} else {
newkb = (CamelPartitionKeyBlock *)&newblock->data;
if (newblock == pblock) {
if (nblock)
camel_block_file_unref_block(cpi->blocks, nblock);
} else {
if (pblock)
camel_block_file_unref_block(cpi->blocks, pblock);
}
}
/* sort keys to find midpoint */
len = kb->used;
memcpy(keys, kb->keys, sizeof(kb->keys[0])*len);
memcpy(keys+len, newkb->keys, sizeof(newkb->keys[0])*newkb->used);
len += newkb->used;
keys[len].hashid = hashid;
keys[len].keyid = keyid;
len++;
qsort(keys, len, sizeof(keys[0]), keys_cmp);
/* Split keys, fix partition table */
half = len/2;
partid = keys[half-1].hashid;
if (index < newindex) {
memcpy(kb->keys, keys, sizeof(keys[0])*half);
kb->used = half;
memcpy(newkb->keys, keys+half, sizeof(keys[0])*(len-half));
newkb->used = len-half;
ptb->partition[index].hashid = partid;
} else {
memcpy(newkb->keys, keys, sizeof(keys[0])*half);
newkb->used = half;
memcpy(kb->keys, keys+half, sizeof(keys[0])*(len-half));
kb->used = len-half;
ptb->partition[newindex].hashid = partid;
}
camel_block_file_touch_block(cpi->blocks, ptblock);
#ifdef SYNC_UPDATES
camel_block_file_sync_block(cpi->blocks, ptblock);
#endif
camel_block_file_touch_block(cpi->blocks, newblock);
camel_block_file_unref_block(cpi->blocks, newblock);
}
camel_block_file_touch_block(cpi->blocks, block);
camel_block_file_unref_block(cpi->blocks, block);
ret = 0;
fail:
CAMEL_PARTITION_TABLE_UNLOCK(cpi, lock);
return ret;
}
/* ********************************************************************** */
#ifdef ENABLE_THREADS
struct _CamelKeyTablePrivate {
pthread_mutex_t lock; /* for locking key */
};
#define CAMEL_KEY_TABLE_LOCK(kf, lock) (pthread_mutex_lock(&(kf)->priv->lock))
#define CAMEL_KEY_TABLE_UNLOCK(kf, lock) (pthread_mutex_unlock(&(kf)->priv->lock))
#else
#define CAMEL_KEY_TABLE_LOCK(kf, lock)
#define CAMEL_KEY_TABLE_UNLOCK(kf, lock)
#endif
static void
camel_key_table_class_init(CamelKeyTableClass *klass)
{
}
static void
camel_key_table_init(CamelKeyTable *ki)
{
struct _CamelKeyTablePrivate *p;
p = ki->priv = g_malloc0(sizeof(*ki->priv));
#ifdef ENABLE_THREADS
pthread_mutex_init(&p->lock, NULL);
#endif
}
static void
camel_key_table_finalise(CamelKeyTable *ki)
{
struct _CamelKeyTablePrivate *p;
p = ki->priv;
if (ki->blocks) {
if (ki->root_block) {
camel_block_file_sync_block(ki->blocks, ki->root_block);
camel_block_file_unref_block(ki->blocks, ki->root_block);
}
camel_block_file_sync(ki->blocks);
camel_object_unref((CamelObject *)ki->blocks);
}
#ifdef ENABLE_THREADS
pthread_mutex_destroy(&p->lock);
#endif
g_free(p);
}
CamelType
camel_key_table_get_type(void)
{
static CamelType type = CAMEL_INVALID_TYPE;
if (type == CAMEL_INVALID_TYPE) {
type = camel_type_register(camel_object_get_type(), "CamelKeyTable",
sizeof (CamelKeyTable),
sizeof (CamelKeyTableClass),
(CamelObjectClassInitFunc) camel_key_table_class_init,
NULL,
(CamelObjectInitFunc) camel_key_table_init,
(CamelObjectFinalizeFunc) camel_key_table_finalise);
}
return type;
}
CamelKeyTable *
camel_key_table_new(CamelBlockFile *bs, camel_block_t root)
{
CamelKeyTable *ki;
ki = (CamelKeyTable *)camel_object_new(camel_key_table_get_type());
ki->blocks = bs;
camel_object_ref((CamelObject *)bs);
ki->rootid = root;
ki->root_block = camel_block_file_get_block(bs, ki->rootid);
if (ki->root_block == NULL) {
camel_object_unref((CamelObject *)ki);
ki = NULL;
} else {
camel_block_file_detach_block(bs, ki->root_block);
ki->root = (CamelKeyRootBlock *)&ki->root_block->data;
k(printf("Opening key index\n"));
k(printf(" first %u\n last %u\n free %u\n", ki->root->first, ki->root->last, ki->root->free));
}
return ki;
}
int
camel_key_table_sync(CamelKeyTable *ki)
{
#ifdef SYNC_UPDATES
return 0;
#else
return camel_block_file_sync_block(ki->blocks, ki->root_block);
#endif
}
camel_key_t
camel_key_table_add(CamelKeyTable *ki, const char *key, camel_block_t data, unsigned int flags)
{
CamelBlock *last, *next;
CamelKeyBlock *kblast, *kbnext;
int len, left;
unsigned int offset;
camel_key_t keyid = 0;
/* Maximum key size = 128 chars */
len = strlen(key);
if (len > CAMEL_KEY_TABLE_MAX_KEY)
len = 128;
CAMEL_KEY_TABLE_LOCK(ki, lock);
if (ki->root->last == 0) {
last = camel_block_file_new_block(ki->blocks);
if (last == NULL)
goto fail;
ki->root->last = ki->root->first = last->id;
camel_block_file_touch_block(ki->blocks, ki->root_block);
k(printf("adding first block, first = %u\n", ki->root->first));
} else {
last = camel_block_file_get_block(ki->blocks, ki->root->last);
if (last == NULL)
goto fail;
}
kblast = (CamelKeyBlock *)&last->data;
if (kblast->used >= 127)
goto fail;
if (kblast->used > 0) {
/*left = &kblast->u.keydata[kblast->u.keys[kblast->used-1].offset] - (char *)(&kblast->u.keys[kblast->used+1]);*/
left = kblast->u.keys[kblast->used-1].offset - sizeof(kblast->u.keys[0])*(kblast->used+1);
d(printf("used = %d (%d), filled = %d, left = %d len = %d?\n",
kblast->used, kblast->used * sizeof(kblast->u.keys[0]),
sizeof(kblast->u.keydata) - kblast->u.keys[kblast->used-1].offset,
left, len));
if (left < len) {
next = camel_block_file_new_block(ki->blocks);
if (next == NULL) {
camel_block_file_unref_block(ki->blocks, last);
goto fail;
}
kbnext = (CamelKeyBlock *)&next->data;
kblast->next = next->id;
ki->root->last = next->id;
k(printf("adding new block, first = %u, last = %u\n", ki->root->first, ki->root->last));
camel_block_file_touch_block(ki->blocks, ki->root_block);
camel_block_file_touch_block(ki->blocks, last);
camel_block_file_unref_block(ki->blocks, last);
kblast = kbnext;
last = next;
}
}
if (kblast->used > 0)
offset = kblast->u.keys[kblast->used-1].offset - len;
else
offset = sizeof(kblast->u.keydata)-len;
kblast->u.keys[kblast->used].flags = flags;
kblast->u.keys[kblast->used].data = data;
kblast->u.keys[kblast->used].offset = offset;
memcpy(kblast->u.keydata + offset, key, len);
keyid = (last->id & (~(CAMEL_BLOCK_SIZE-1))) | kblast->used;
kblast->used++;
g_assert(kblast->used < 127);
camel_block_file_touch_block(ki->blocks, last);
camel_block_file_unref_block(ki->blocks, last);
#ifdef SYNC_UPDATES
camel_block_file_sync_block(ki->blocks, ki->root_block);
#endif
fail:
CAMEL_KEY_TABLE_UNLOCK(ki, lock);
return keyid;
}
void
camel_key_table_set_data(CamelKeyTable *ki, camel_key_t keyid, camel_block_t data)
{
CamelBlock *bl;
camel_block_t blockid;
int index;
CamelKeyBlock *kb;
if (keyid == 0)
return;
blockid = keyid & (~(CAMEL_BLOCK_SIZE-1));
index = keyid & (CAMEL_BLOCK_SIZE-1);
bl = camel_block_file_get_block(ki->blocks, blockid);
if (bl == NULL)
return;
kb = (CamelKeyBlock *)&bl->data;
CAMEL_KEY_TABLE_LOCK(ki, lock);
if (kb->u.keys[index].data != data) {
kb->u.keys[index].data = data;
camel_block_file_touch_block(ki->blocks, bl);
}
CAMEL_KEY_TABLE_UNLOCK(ki, lock);
camel_block_file_unref_block(ki->blocks, bl);
}
void
camel_key_table_set_flags(CamelKeyTable *ki, camel_key_t keyid, unsigned int flags, unsigned int set)
{
CamelBlock *bl;
camel_block_t blockid;
int index;
CamelKeyBlock *kb;
unsigned int old;
if (keyid == 0)
return;
blockid = keyid & (~(CAMEL_BLOCK_SIZE-1));
index = keyid & (CAMEL_BLOCK_SIZE-1);
bl = camel_block_file_get_block(ki->blocks, blockid);
if (bl == NULL)
return;
kb = (CamelKeyBlock *)&bl->data;
g_assert(kb->used < 127);
g_assert(index < kb->used);
CAMEL_KEY_TABLE_LOCK(ki, lock);
old = kb->u.keys[index].flags;
if ((old & set) != (flags & set)) {
kb->u.keys[index].flags = (old & (~set)) | (flags & set);
camel_block_file_touch_block(ki->blocks, bl);
}
CAMEL_KEY_TABLE_UNLOCK(ki, lock);
camel_block_file_unref_block(ki->blocks, bl);
}
camel_block_t
camel_key_table_lookup(CamelKeyTable *ki, camel_key_t keyid, char **keyp, unsigned int *flags)
{
CamelBlock *bl;
camel_block_t blockid;
int index, len, off;
char *key;
CamelKeyBlock *kb;
if (keyp)
*keyp = 0;
if (flags)
*flags = 0;
if (keyid == 0)
return 0;
blockid = keyid & (~(CAMEL_BLOCK_SIZE-1));
index = keyid & (CAMEL_BLOCK_SIZE-1);
bl = camel_block_file_get_block(ki->blocks, blockid);
if (bl == NULL)
return 0;
kb = (CamelKeyBlock *)&bl->data;
#if 1
g_assert(kb->used < 127); /* this should be more accurate */
g_assert(index < kb->used);
#else
if (kb->used >=127 || index >= kb->used) {
g_warning("Block %x: Invalid index or content: index %d used %d\n", blockid, index, kb->used);
return 0;
}
#endif
CAMEL_KEY_TABLE_LOCK(ki, lock);
blockid = kb->u.keys[index].data;
if (flags)
*flags = kb->u.keys[index].flags;
if (keyp) {
off = kb->u.keys[index].offset;
if (index == 0)
len = sizeof(kb->u.keydata) - off;
else
len = kb->u.keys[index-1].offset - off;
*keyp = key = g_malloc(len+1);
memcpy(key, kb->u.keydata + off, len);
key[len] = 0;
}
CAMEL_KEY_TABLE_UNLOCK(ki, lock);
camel_block_file_unref_block(ki->blocks, bl);
return blockid;
}
/* iterate through all keys */
camel_key_t
camel_key_table_next(CamelKeyTable *ki, camel_key_t next, char **keyp, unsigned int *flagsp, camel_block_t *datap)
{
CamelBlock *bl;
CamelKeyBlock *kb;
camel_block_t blockid;
int index;
if (keyp)
*keyp = 0;
if (flagsp)
*flagsp = 0;
if (datap)
*datap = 0;
CAMEL_KEY_TABLE_LOCK(ki, lock);
if (next == 0) {
next = ki->root->first;
if (next == 0)
return 0;
} else
next++;
do {
blockid = next & (~(CAMEL_BLOCK_SIZE-1));
index = next & (CAMEL_BLOCK_SIZE-1);
bl = camel_block_file_get_block(ki->blocks, blockid);
if (bl == NULL) {
CAMEL_KEY_TABLE_UNLOCK(ki, lock);
return 0;
}
kb = (CamelKeyBlock *)&bl->data;
/* see if we need to goto the next block */
if (index >= kb->used) {
/* FIXME: check for loops */
next = kb->next;
camel_block_file_unref_block(ki->blocks, bl);
bl = NULL;
}
} while (bl == NULL);
/* invalid block data */
if ((kb->u.keys[index].offset >= sizeof(kb->u.keydata)
/*|| kb->u.keys[index].offset < kb->u.keydata - (char *)&kb->u.keys[kb->used])*/
|| kb->u.keys[index].offset < sizeof(kb->u.keys[0]) * kb->used
|| (index > 0 &&
(kb->u.keys[index-1].offset >= sizeof(kb->u.keydata)
/*|| kb->u.keys[index-1].offset < kb->u.keydata - (char *)&kb->u.keys[kb->used]))) {*/
|| kb->u.keys[index-1].offset < sizeof(kb->u.keys[0]) * kb->used)))) {
g_warning("Block %u invalid scanning keys", bl->id);
camel_block_file_unref_block(ki->blocks, bl);
CAMEL_KEY_TABLE_UNLOCK(ki, lock);
return 0;
}
if (datap)
*datap = kb->u.keys[index].data;
if (flagsp)
*flagsp = kb->u.keys[index].flags;
if (keyp) {
int len, off = kb->u.keys[index].offset;
char *key;
if (index == 0)
len = sizeof(kb->u.keydata) - off;
else
len = kb->u.keys[index-1].offset - off;
*keyp = key = g_malloc(len+1);
memcpy(key, kb->u.keydata + off, len);
key[len] = 0;
}
CAMEL_KEY_TABLE_UNLOCK(ki, lock);
camel_block_file_unref_block(ki->blocks, bl);
return next;
}
/* ********************************************************************** */