aboutsummaryrefslogtreecommitdiffstats
path: root/vendor/golang.org/x/text/unicode/norm/iter.go
blob: ce17f96c2e0caa84271b430e7afcf5975c800511 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package norm

import (
    "fmt"
    "unicode/utf8"
)

// MaxSegmentSize is the maximum size of a byte buffer needed to consider any
// sequence of starter and non-starter runes for the purpose of normalization.
const MaxSegmentSize = maxByteBufferSize

// An Iter iterates over a string or byte slice, while normalizing it
// to a given Form.
type Iter struct {
    rb     reorderBuffer
    buf    [maxByteBufferSize]byte
    info   Properties // first character saved from previous iteration
    next   iterFunc   // implementation of next depends on form
    asciiF iterFunc

    p        int    // current position in input source
    multiSeg []byte // remainder of multi-segment decomposition
}

type iterFunc func(*Iter) []byte

// Init initializes i to iterate over src after normalizing it to Form f.
func (i *Iter) Init(f Form, src []byte) {
    i.p = 0
    if len(src) == 0 {
        i.setDone()
        i.rb.nsrc = 0
        return
    }
    i.multiSeg = nil
    i.rb.init(f, src)
    i.next = i.rb.f.nextMain
    i.asciiF = nextASCIIBytes
    i.info = i.rb.f.info(i.rb.src, i.p)
    i.rb.ss.first(i.info)
}

// InitString initializes i to iterate over src after normalizing it to Form f.
func (i *Iter) InitString(f Form, src string) {
    i.p = 0
    if len(src) == 0 {
        i.setDone()
        i.rb.nsrc = 0
        return
    }
    i.multiSeg = nil
    i.rb.initString(f, src)
    i.next = i.rb.f.nextMain
    i.asciiF = nextASCIIString
    i.info = i.rb.f.info(i.rb.src, i.p)
    i.rb.ss.first(i.info)
}

// Seek sets the segment to be returned by the next call to Next to start
// at position p.  It is the responsibility of the caller to set p to the
// start of a segment.
func (i *Iter) Seek(offset int64, whence int) (int64, error) {
    var abs int64
    switch whence {
    case 0:
        abs = offset
    case 1:
        abs = int64(i.p) + offset
    case 2:
        abs = int64(i.rb.nsrc) + offset
    default:
        return 0, fmt.Errorf("norm: invalid whence")
    }
    if abs < 0 {
        return 0, fmt.Errorf("norm: negative position")
    }
    if int(abs) >= i.rb.nsrc {
        i.setDone()
        return int64(i.p), nil
    }
    i.p = int(abs)
    i.multiSeg = nil
    i.next = i.rb.f.nextMain
    i.info = i.rb.f.info(i.rb.src, i.p)
    i.rb.ss.first(i.info)
    return abs, nil
}

// returnSlice returns a slice of the underlying input type as a byte slice.
// If the underlying is of type []byte, it will simply return a slice.
// If the underlying is of type string, it will copy the slice to the buffer
// and return that.
func (i *Iter) returnSlice(a, b int) []byte {
    if i.rb.src.bytes == nil {
        return i.buf[:copy(i.buf[:], i.rb.src.str[a:b])]
    }
    return i.rb.src.bytes[a:b]
}

// Pos returns the byte position at which the next call to Next will commence processing.
func (i *Iter) Pos() int {
    return i.p
}

func (i *Iter) setDone() {
    i.next = nextDone
    i.p = i.rb.nsrc
}

// Done returns true if there is no more input to process.
func (i *Iter) Done() bool {
    return i.p >= i.rb.nsrc
}

// Next returns f(i.input[i.Pos():n]), where n is a boundary of i.input.
// For any input a and b for which f(a) == f(b), subsequent calls
// to Next will return the same segments.
// Modifying runes are grouped together with the preceding starter, if such a starter exists.
// Although not guaranteed, n will typically be the smallest possible n.
func (i *Iter) Next() []byte {
    return i.next(i)
}

func nextASCIIBytes(i *Iter) []byte {
    p := i.p + 1
    if p >= i.rb.nsrc {
        i.setDone()
        return i.rb.src.bytes[i.p:p]
    }
    if i.rb.src.bytes[p] < utf8.RuneSelf {
        p0 := i.p
        i.p = p
        return i.rb.src.bytes[p0:p]
    }
    i.info = i.rb.f.info(i.rb.src, i.p)
    i.next = i.rb.f.nextMain
    return i.next(i)
}

func nextASCIIString(i *Iter) []byte {
    p := i.p + 1
    if p >= i.rb.nsrc {
        i.buf[0] = i.rb.src.str[i.p]
        i.setDone()
        return i.buf[:1]
    }
    if i.rb.src.str[p] < utf8.RuneSelf {
        i.buf[0] = i.rb.src.str[i.p]
        i.p = p
        return i.buf[:1]
    }
    i.info = i.rb.f.info(i.rb.src, i.p)
    i.next = i.rb.f.nextMain
    return i.next(i)
}

func nextHangul(i *Iter) []byte {
    p := i.p
    next := p + hangulUTF8Size
    if next >= i.rb.nsrc {
        i.setDone()
    } else if i.rb.src.hangul(next) == 0 {
        i.rb.ss.next(i.info)
        i.info = i.rb.f.info(i.rb.src, i.p)
        i.next = i.rb.f.nextMain
        return i.next(i)
    }
    i.p = next
    return i.buf[:decomposeHangul(i.buf[:], i.rb.src.hangul(p))]
}

func nextDone(i *Iter) []byte {
    return nil
}

// nextMulti is used for iterating over multi-segment decompositions
// for decomposing normal forms.
func nextMulti(i *Iter) []byte {
    j := 0
    d := i.multiSeg
    // skip first rune
    for j = 1; j < len(d) && !utf8.RuneStart(d[j]); j++ {
    }
    for j < len(d) {
        info := i.rb.f.info(input{bytes: d}, j)
        if info.BoundaryBefore() {
            i.multiSeg = d[j:]
            return d[:j]
        }
        j += int(info.size)
    }
    // treat last segment as normal decomposition
    i.next = i.rb.f.nextMain
    return i.next(i)
}

// nextMultiNorm is used for iterating over multi-segment decompositions
// for composing normal forms.
func nextMultiNorm(i *Iter) []byte {
    j := 0
    d := i.multiSeg
    for j < len(d) {
        info := i.rb.f.info(input{bytes: d}, j)
        if info.BoundaryBefore() {
            i.rb.compose()
            seg := i.buf[:i.rb.flushCopy(i.buf[:])]
            i.rb.insertUnsafe(input{bytes: d}, j, info)
            i.multiSeg = d[j+int(info.size):]
            return seg
        }
        i.rb.insertUnsafe(input{bytes: d}, j, info)
        j += int(info.size)
    }
    i.multiSeg = nil
    i.next = nextComposed
    return doNormComposed(i)
}

// nextDecomposed is the implementation of Next for forms NFD and NFKD.
func nextDecomposed(i *Iter) (next []byte) {
    outp := 0
    inCopyStart, outCopyStart := i.p, 0
    for {
        if sz := int(i.info.size); sz <= 1 {
            i.rb.ss = 0
            p := i.p
            i.p++ // ASCII or illegal byte.  Either way, advance by 1.
            if i.p >= i.rb.nsrc {
                i.setDone()
                return i.returnSlice(p, i.p)
            } else if i.rb.src._byte(i.p) < utf8.RuneSelf {
                i.next = i.asciiF
                return i.returnSlice(p, i.p)
            }
            outp++
        } else if d := i.info.Decomposition(); d != nil {
            // Note: If leading CCC != 0, then len(d) == 2 and last is also non-zero.
            // Case 1: there is a leftover to copy.  In this case the decomposition
            // must begin with a modifier and should always be appended.
            // Case 2: no leftover. Simply return d if followed by a ccc == 0 value.
            p := outp + len(d)
            if outp > 0 {
                i.rb.src.copySlice(i.buf[outCopyStart:], inCopyStart, i.p)
                // TODO: this condition should not be possible, but we leave it
                // in for defensive purposes.
                if p > len(i.buf) {
                    return i.buf[:outp]
                }
            } else if i.info.multiSegment() {
                // outp must be 0 as multi-segment decompositions always
                // start a new segment.
                if i.multiSeg == nil {
                    i.multiSeg = d
                    i.next = nextMulti
                    return nextMulti(i)
                }
                // We are in the last segment.  Treat as normal decomposition.
                d = i.multiSeg
                i.multiSeg = nil
                p = len(d)
            }
            prevCC := i.info.tccc
            if i.p += sz; i.p >= i.rb.nsrc {
                i.setDone()
                i.info = Properties{} // Force BoundaryBefore to succeed.
            } else {
                i.info = i.rb.f.info(i.rb.src, i.p)
            }
            switch i.rb.ss.next(i.info) {
            case ssOverflow:
                i.next = nextCGJDecompose
                fallthrough
            case ssStarter:
                if outp > 0 {
                    copy(i.buf[outp:], d)
                    return i.buf[:p]
                }
                return d
            }
            copy(i.buf[outp:], d)
            outp = p
            inCopyStart, outCopyStart = i.p, outp
            if i.info.ccc < prevCC {
                goto doNorm
            }
            continue
        } else if r := i.rb.src.hangul(i.p); r != 0 {
            outp = decomposeHangul(i.buf[:], r)
            i.p += hangulUTF8Size
            inCopyStart, outCopyStart = i.p, outp
            if i.p >= i.rb.nsrc {
                i.setDone()
                break
            } else if i.rb.src.hangul(i.p) != 0 {
                i.next = nextHangul
                return i.buf[:outp]
            }
        } else {
            p := outp + sz
            if p > len(i.buf) {
                break
            }
            outp = p
            i.p += sz
        }
        if i.p >= i.rb.nsrc {
            i.setDone()
            break
        }
        prevCC := i.info.tccc
        i.info = i.rb.f.info(i.rb.src, i.p)
        if v := i.rb.ss.next(i.info); v == ssStarter {
            break
        } else if v == ssOverflow {
            i.next = nextCGJDecompose
            break
        }
        if i.info.ccc < prevCC {
            goto doNorm
        }
    }
    if outCopyStart == 0 {
        return i.returnSlice(inCopyStart, i.p)
    } else if inCopyStart < i.p {
        i.rb.src.copySlice(i.buf[outCopyStart:], inCopyStart, i.p)
    }
    return i.buf[:outp]
doNorm:
    // Insert what we have decomposed so far in the reorderBuffer.
    // As we will only reorder, there will always be enough room.
    i.rb.src.copySlice(i.buf[outCopyStart:], inCopyStart, i.p)
    i.rb.insertDecomposed(i.buf[0:outp])
    return doNormDecomposed(i)
}

func doNormDecomposed(i *Iter) []byte {
    for {
        i.rb.insertUnsafe(i.rb.src, i.p, i.info)
        if i.p += int(i.info.size); i.p >= i.rb.nsrc {
            i.setDone()
            break
        }
        i.info = i.rb.f.info(i.rb.src, i.p)
        if i.info.ccc == 0 {
            break
        }
        if s := i.rb.ss.next(i.info); s == ssOverflow {
            i.next = nextCGJDecompose
            break
        }
    }
    // new segment or too many combining characters: exit normalization
    return i.buf[:i.rb.flushCopy(i.buf[:])]
}

func nextCGJDecompose(i *Iter) []byte {
    i.rb.ss = 0
    i.rb.insertCGJ()
    i.next = nextDecomposed
    i.rb.ss.first(i.info)
    buf := doNormDecomposed(i)
    return buf
}

// nextComposed is the implementation of Next for forms NFC and NFKC.
func nextComposed(i *Iter) []byte {
    outp, startp := 0, i.p
    var prevCC uint8
    for {
        if !i.info.isYesC() {
            goto doNorm
        }
        prevCC = i.info.tccc
        sz := int(i.info.size)
        if sz == 0 {
            sz = 1 // illegal rune: copy byte-by-byte
        }
        p := outp + sz
        if p > len(i.buf) {
            break
        }
        outp = p
        i.p += sz
        if i.p >= i.rb.nsrc {
            i.setDone()
            break
        } else if i.rb.src._byte(i.p) < utf8.RuneSelf {
            i.rb.ss = 0
            i.next = i.asciiF
            break
        }
        i.info = i.rb.f.info(i.rb.src, i.p)
        if v := i.rb.ss.next(i.info); v == ssStarter {
            break
        } else if v == ssOverflow {
            i.next = nextCGJCompose
            break
        }
        if i.info.ccc < prevCC {
            goto doNorm
        }
    }
    return i.returnSlice(startp, i.p)
doNorm:
    // reset to start position
    i.p = startp
    i.info = i.rb.f.info(i.rb.src, i.p)
    i.rb.ss.first(i.info)
    if i.info.multiSegment() {
        d := i.info.Decomposition()
        info := i.rb.f.info(input{bytes: d}, 0)
        i.rb.insertUnsafe(input{bytes: d}, 0, info)
        i.multiSeg = d[int(info.size):]
        i.next = nextMultiNorm
        return nextMultiNorm(i)
    }
    i.rb.ss.first(i.info)
    i.rb.insertUnsafe(i.rb.src, i.p, i.info)
    return doNormComposed(i)
}

func doNormComposed(i *Iter) []byte {
    // First rune should already be inserted.
    for {
        if i.p += int(i.info.size); i.p >= i.rb.nsrc {
            i.setDone()
            break
        }
        i.info = i.rb.f.info(i.rb.src, i.p)
        if s := i.rb.ss.next(i.info); s == ssStarter {
            break
        } else if s == ssOverflow {
            i.next = nextCGJCompose
            break
        }
        i.rb.insertUnsafe(i.rb.src, i.p, i.info)
    }
    i.rb.compose()
    seg := i.buf[:i.rb.flushCopy(i.buf[:])]
    return seg
}

func nextCGJCompose(i *Iter) []byte {
    i.rb.ss = 0 // instead of first
    i.rb.insertCGJ()
    i.next = nextComposed
    // Note that we treat any rune with nLeadingNonStarters > 0 as a non-starter,
    // even if they are not. This is particularly dubious for U+FF9E and UFF9A.
    // If we ever change that, insert a check here.
    i.rb.ss.first(i.info)
    i.rb.insertUnsafe(i.rb.src, i.p, i.info)
    return doNormComposed(i)
}