aboutsummaryrefslogtreecommitdiffstats
path: root/vendor/github.com/gizak/termui/linechart.go
blob: f7eea28bbe45dd19ea700cfadb72755dd7a9e6e0 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
// Copyright 2017 Zack Guo <zack.y.guo@gmail.com>. All rights reserved.
// Use of this source code is governed by a MIT license that can
// be found in the LICENSE file.

package termui

import (
    "fmt"
    "math"
)

// only 16 possible combinations, why bother
var braillePatterns = map[[2]int]rune{
    [2]int{0, 0}: '⣀',
    [2]int{0, 1}: '⡠',
    [2]int{0, 2}: '⡐',
    [2]int{0, 3}: '⡈',

    [2]int{1, 0}: '⢄',
    [2]int{1, 1}: '⠤',
    [2]int{1, 2}: '⠔',
    [2]int{1, 3}: '⠌',

    [2]int{2, 0}: '⢂',
    [2]int{2, 1}: '⠢',
    [2]int{2, 2}: '⠒',
    [2]int{2, 3}: '⠊',

    [2]int{3, 0}: '⢁',
    [2]int{3, 1}: '⠡',
    [2]int{3, 2}: '⠑',
    [2]int{3, 3}: '⠉',
}

var lSingleBraille = [4]rune{'\u2840', '⠄', '⠂', '⠁'}
var rSingleBraille = [4]rune{'\u2880', '⠠', '⠐', '⠈'}

// LineChart has two modes: braille(default) and dot. Using braille gives 2x capicity as dot mode,
// because one braille char can represent two data points.
/*
  lc := termui.NewLineChart()
  lc.BorderLabel = "braille-mode Line Chart"
  lc.Data = [1.2, 1.3, 1.5, 1.7, 1.5, 1.6, 1.8, 2.0]
  lc.Width = 50
  lc.Height = 12
  lc.AxesColor = termui.ColorWhite
  lc.LineColor = termui.ColorGreen | termui.AttrBold
  // termui.Render(lc)...
*/
type LineChart struct {
    Block
    Data          []float64
    DataLabels    []string // if unset, the data indices will be used
    Mode          string   // braille | dot
    DotStyle      rune
    LineColor     Attribute
    scale         float64 // data span per cell on y-axis
    AxesColor     Attribute
    drawingX      int
    drawingY      int
    axisYHeight   int
    axisXWidth    int
    axisYLabelGap int
    axisXLabelGap int
    topValue      float64
    bottomValue   float64
    labelX        [][]rune
    labelY        [][]rune
    labelYSpace   int
    maxY          float64
    minY          float64
    autoLabels    bool
}

// NewLineChart returns a new LineChart with current theme.
func NewLineChart() *LineChart {
    lc := &LineChart{Block: *NewBlock()}
    lc.AxesColor = ThemeAttr("linechart.axes.fg")
    lc.LineColor = ThemeAttr("linechart.line.fg")
    lc.Mode = "braille"
    lc.DotStyle = '•'
    lc.axisXLabelGap = 2
    lc.axisYLabelGap = 1
    lc.bottomValue = math.Inf(1)
    lc.topValue = math.Inf(-1)
    return lc
}

// one cell contains two data points
// so the capicity is 2x as dot-mode
func (lc *LineChart) renderBraille() Buffer {
    buf := NewBuffer()

    // return: b -> which cell should the point be in
    //         m -> in the cell, divided into 4 equal height levels, which subcell?
    getPos := func(d float64) (b, m int) {
        cnt4 := int((d-lc.bottomValue)/(lc.scale/4) + 0.5)
        b = cnt4 / 4
        m = cnt4 % 4
        return
    }
    // plot points
    for i := 0; 2*i+1 < len(lc.Data) && i < lc.axisXWidth; i++ {
        b0, m0 := getPos(lc.Data[2*i])
        b1, m1 := getPos(lc.Data[2*i+1])

        if b0 == b1 {
            c := Cell{
                Ch: braillePatterns[[2]int{m0, m1}],
                Bg: lc.Bg,
                Fg: lc.LineColor,
            }
            y := lc.innerArea.Min.Y + lc.innerArea.Dy() - 3 - b0
            x := lc.innerArea.Min.X + lc.labelYSpace + 1 + i
            buf.Set(x, y, c)
        } else {
            c0 := Cell{Ch: lSingleBraille[m0],
                Fg: lc.LineColor,
                Bg: lc.Bg}
            x0 := lc.innerArea.Min.X + lc.labelYSpace + 1 + i
            y0 := lc.innerArea.Min.Y + lc.innerArea.Dy() - 3 - b0
            buf.Set(x0, y0, c0)

            c1 := Cell{Ch: rSingleBraille[m1],
                Fg: lc.LineColor,
                Bg: lc.Bg}
            x1 := lc.innerArea.Min.X + lc.labelYSpace + 1 + i
            y1 := lc.innerArea.Min.Y + lc.innerArea.Dy() - 3 - b1
            buf.Set(x1, y1, c1)
        }

    }
    return buf
}

func (lc *LineChart) renderDot() Buffer {
    buf := NewBuffer()
    for i := 0; i < len(lc.Data) && i < lc.axisXWidth; i++ {
        c := Cell{
            Ch: lc.DotStyle,
            Fg: lc.LineColor,
            Bg: lc.Bg,
        }
        x := lc.innerArea.Min.X + lc.labelYSpace + 1 + i
        y := lc.innerArea.Min.Y + lc.innerArea.Dy() - 3 - int((lc.Data[i]-lc.bottomValue)/lc.scale+0.5)
        buf.Set(x, y, c)
    }

    return buf
}

func (lc *LineChart) calcLabelX() {
    lc.labelX = [][]rune{}

    for i, l := 0, 0; i < len(lc.DataLabels) && l < lc.axisXWidth; i++ {
        if lc.Mode == "dot" {
            if l >= len(lc.DataLabels) {
                break
            }

            s := str2runes(lc.DataLabels[l])
            w := strWidth(lc.DataLabels[l])
            if l+w <= lc.axisXWidth {
                lc.labelX = append(lc.labelX, s)
            }
            l += w + lc.axisXLabelGap
        } else { // braille
            if 2*l >= len(lc.DataLabels) {
                break
            }

            s := str2runes(lc.DataLabels[2*l])
            w := strWidth(lc.DataLabels[2*l])
            if l+w <= lc.axisXWidth {
                lc.labelX = append(lc.labelX, s)
            }
            l += w + lc.axisXLabelGap

        }
    }
}

func shortenFloatVal(x float64) string {
    s := fmt.Sprintf("%.2f", x)
    if len(s)-3 > 3 {
        s = fmt.Sprintf("%.2e", x)
    }

    if x < 0 {
        s = fmt.Sprintf("%.2f", x)
    }
    return s
}

func (lc *LineChart) calcLabelY() {
    span := lc.topValue - lc.bottomValue
    lc.scale = span / float64(lc.axisYHeight)

    n := (1 + lc.axisYHeight) / (lc.axisYLabelGap + 1)
    lc.labelY = make([][]rune, n)
    maxLen := 0
    for i := 0; i < n; i++ {
        s := str2runes(shortenFloatVal(lc.bottomValue + float64(i)*span/float64(n)))
        if len(s) > maxLen {
            maxLen = len(s)
        }
        lc.labelY[i] = s
    }

    lc.labelYSpace = maxLen
}

func (lc *LineChart) calcLayout() {
    // set datalabels if it is not provided
    if (lc.DataLabels == nil || len(lc.DataLabels) == 0) || lc.autoLabels {
        lc.autoLabels = true
        lc.DataLabels = make([]string, len(lc.Data))
        for i := range lc.Data {
            lc.DataLabels[i] = fmt.Sprint(i)
        }
    }

    // lazy increase, to avoid y shaking frequently
    // update bound Y when drawing is gonna overflow
    lc.minY = lc.Data[0]
    lc.maxY = lc.Data[0]

    // valid visible range
    vrange := lc.innerArea.Dx()
    if lc.Mode == "braille" {
        vrange = 2 * lc.innerArea.Dx()
    }
    if vrange > len(lc.Data) {
        vrange = len(lc.Data)
    }

    for _, v := range lc.Data[:vrange] {
        if v > lc.maxY {
            lc.maxY = v
        }
        if v < lc.minY {
            lc.minY = v
        }
    }

    span := lc.maxY - lc.minY

    if lc.minY < lc.bottomValue {
        lc.bottomValue = lc.minY - 0.2*span
    }

    if lc.maxY > lc.topValue {
        lc.topValue = lc.maxY + 0.2*span
    }

    lc.axisYHeight = lc.innerArea.Dy() - 2
    lc.calcLabelY()

    lc.axisXWidth = lc.innerArea.Dx() - 1 - lc.labelYSpace
    lc.calcLabelX()

    lc.drawingX = lc.innerArea.Min.X + 1 + lc.labelYSpace
    lc.drawingY = lc.innerArea.Min.Y
}

func (lc *LineChart) plotAxes() Buffer {
    buf := NewBuffer()

    origY := lc.innerArea.Min.Y + lc.innerArea.Dy() - 2
    origX := lc.innerArea.Min.X + lc.labelYSpace

    buf.Set(origX, origY, Cell{Ch: ORIGIN, Fg: lc.AxesColor, Bg: lc.Bg})

    for x := origX + 1; x < origX+lc.axisXWidth; x++ {
        buf.Set(x, origY, Cell{Ch: HDASH, Fg: lc.AxesColor, Bg: lc.Bg})
    }

    for dy := 1; dy <= lc.axisYHeight; dy++ {
        buf.Set(origX, origY-dy, Cell{Ch: VDASH, Fg: lc.AxesColor, Bg: lc.Bg})
    }

    // x label
    oft := 0
    for _, rs := range lc.labelX {
        if oft+len(rs) > lc.axisXWidth {
            break
        }
        for j, r := range rs {
            c := Cell{
                Ch: r,
                Fg: lc.AxesColor,
                Bg: lc.Bg,
            }
            x := origX + oft + j
            y := lc.innerArea.Min.Y + lc.innerArea.Dy() - 1
            buf.Set(x, y, c)
        }
        oft += len(rs) + lc.axisXLabelGap
    }

    // y labels
    for i, rs := range lc.labelY {
        for j, r := range rs {
            buf.Set(
                lc.innerArea.Min.X+j,
                origY-i*(lc.axisYLabelGap+1),
                Cell{Ch: r, Fg: lc.AxesColor, Bg: lc.Bg})
        }
    }

    return buf
}

// Buffer implements Bufferer interface.
func (lc *LineChart) Buffer() Buffer {
    buf := lc.Block.Buffer()

    if lc.Data == nil || len(lc.Data) == 0 {
        return buf
    }
    lc.calcLayout()
    buf.Merge(lc.plotAxes())

    if lc.Mode == "dot" {
        buf.Merge(lc.renderDot())
    } else {
        buf.Merge(lc.renderBraille())
    }

    return buf
}